1
|
Zhong J, Zhang Y, Lin S, Kang J, Hu M, Liu J, Chen Y, Jiang Q, Zhang C. Activin a regulates vascular formation and stabilization in direct coculture of dental pulp stem cells and endothelial cells. Int Endod J 2025. [PMID: 40106315 DOI: 10.1111/iej.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
AIM Establishing functional circulation on time is crucial to dental pulp tissue regeneration. Mesenchymal stem cells (MSCs) could act as mural cells to stabilize newly formed blood vessels, accelerating anastomosis. Our preliminary study found that direct coculture of dental pulp stem cells (DPSCs) and human umbilical vein endothelial cells (HUVECs) significantly enhanced Activin A secretion. This study aimed to disclose the dynamic patterns of Activin A expression and its regulation on vascular formation and stabilization. METHODOLOGY DPSCs and HUVECs were cocultured directly at a ratio of 1:1 for 3 and 6 days. Activin A and Follistatin expression were evaluated by qRT-PCR and ELISA. HUVECs were exposed to 100 ng/mL Activin A or the conditioned medium (CM) generated from DPSC monoculture and DPSC-HUVEC coculture, respectively. HUVEC proliferation, migration, tube formation and angiogenic sprouting were assessed. In parallel, membrane-bound vascular endothelial growth factor receptors (mVEGFR1 and mVEGFR2) and soluble VEGFR1 (sVEGFR1) were analysed at days 3 and 6. RESULTS Activin A expression and secretion were elevated time-dependently during DPSC-HUVEC coculture. Follistatin expression decreased in DPSC-HUVEC coculture while the ratio of Activin A/Follinstain increased significantly. Activin A treatment did not promote DPSC towards smooth muscle cell (SMC)-specific differentiation, while Activin A and DPSC+HUVEC-CM suppressed HUVEC proliferation, migration, tube formation and sprouting. Activin A and DPSC+HUVEC-CM treatment markedly increased mVEGFR1 expression and sVEGFR1 secretion, suppressing HUVEC vascular formation. Activin A IgG partially reversed the effects of DPSC+HUVEC-CM on HUVECs by decreasing VEGFR1 expression and increasing vessel formation. Activin A pretreatment downregulated VEGF-triggered VEGFR2 phosphorylation of HUVECs. INHBA knockdown DPSCs disrupted the stabilization of the preformed HUVEC vascular tube network. CONCLUSION DPSC-HUVEC direct coculture upregulates Activin A secretion, interrupting VEGF receptors' balance in HUVECs to suppress HUVEC angiogenic sprouting and enhance vascular stabilization. These findings provide novel insights into the paracrine interactions on vascular stabilization of DPSC-HUVEC direct coculture.
Collapse
Affiliation(s)
- Jialin Zhong
- Restorative Dental Sciences, Faculty of Dentistry, the University of Hong Kong, Hong Kong, China
| | - Yuchen Zhang
- Restorative Dental Sciences, Faculty of Dentistry, the University of Hong Kong, Hong Kong, China
- Obstetrics Department, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shulan Lin
- Restorative Dental Sciences, Faculty of Dentistry, the University of Hong Kong, Hong Kong, China
| | - Jun Kang
- Restorative Dental Sciences, Faculty of Dentistry, the University of Hong Kong, Hong Kong, China
| | - Mingxin Hu
- Restorative Dental Sciences, Faculty of Dentistry, the University of Hong Kong, Hong Kong, China
| | - Junqing Liu
- Restorative Dental Sciences, Faculty of Dentistry, the University of Hong Kong, Hong Kong, China
| | - Ying Chen
- Restorative Dental Sciences, Faculty of Dentistry, the University of Hong Kong, Hong Kong, China
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Chengfei Zhang
- Restorative Dental Sciences, Faculty of Dentistry, the University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Zhang Y, Zhong J, Lin S, Hu M, Liu J, Kang J, Qi Y, Basabrain MS, Zou T, Zhang C. Direct contact with endothelial cells drives dental pulp stem cells toward smooth muscle cells differentiation via TGF-β1 secretion. Int Endod J 2023; 56:1092-1107. [PMID: 37294792 DOI: 10.1111/iej.13943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/11/2023]
Abstract
AIM Prevascularization is vital to accelerate functional blood circulation establishment in transplanted engineered tissue constructs. Mesenchymal stem cells (MSCs) or mural cells could promote the survival of implanted endothelial cells (ECs) and enhance the stabilization of newly formed blood vessels. However, the dynamic cell-cell interactions between MSCs, mural cells and ECs in the angiogenic processes remain unclear. This study aimed to explore the interactions of human umbilical vein ECs (HUVECs) and dental pulp stem cells (DPSCs) in an in vitro cell coculture model. METHODOLOGY Human umbilical vascular ECs and DPSCs were directly cocultured or indirectly cocultured with transwell inserts in endothelial basal media-2 (EBM-2) supplemented with 5% FBS for 6 days. Expression of SMC-specific markers in DPSCs monoculture and HUVEC+DPSC cocultures was assessed by western blot and immunofluorescence. Activin A and transforming growth factor-beta 1 (TGF-β1) in conditioned media (CM) of HUVECs monoculture (E-CM), DPSCs monoculture (D-CM) and HUVEC+DPSC cocultures (E+D-CM) were analysed by enzyme-linked immunosorbent assay. TGF-β RI kinase inhibitor VI, SB431542, was used to block TGF-β1/ALK5 signalling in DPSCs. RESULTS The expression of SMC-specific markers, α-SMA, SM22α and Calponin, were markedly increased in HUVEC+DPSC direct cocultures compared to that in DPSCs monoculture, while no differences were demonstrated between HUVEC+DPSC indirect cocultures and DPSCs monoculture. E+D-CM significantly upregulated the expression of SMC-specific markers in DPSCs compared to E-CM and D-CM. Activin A and TGF-β1 were considerably higher in E+D-CM than that in D-CM, with upregulated Smad2 phosphorylation in HUVEC+DPSC cocultures. Treatment with activin A did not change the expression of SMC-specific markers in DPSCs, while treatment with TGF-β1 significantly enhanced these markers' expression in DPSCs. In addition, blocking TGF-β1/ALK5 signalling inhibited the expression of α-SMA, SM22α and Calponin in DPSCs. CONCLUSIONS TGF-β1 was responsible for DPSC differentiation into SMCs in HUVEC+DPSC cocultures, and TGF-β1/ALK5 signalling pathway played a vital role in this process.
Collapse
Affiliation(s)
- Yuchen Zhang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jialin Zhong
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Shulan Lin
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Mingxin Hu
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Junqing Liu
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jun Kang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yubingqing Qi
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Mohammed S Basabrain
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ting Zou
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Chengfei Zhang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Medzikovic L, Aryan L, Ruffenach G, Li M, Savalli N, Sun W, Sarji S, Hong J, Sharma S, Olcese R, Fishbein G, Eghbali M. Myocardial fibrosis and calcification are attenuated by microRNA-129-5p targeting Asporin and Sox9 in cardiac fibroblasts. JCI Insight 2023; 8:e168655. [PMID: 37154157 PMCID: PMC10243800 DOI: 10.1172/jci.insight.168655] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/15/2023] [Indexed: 05/10/2023] Open
Abstract
Myocardial fibrosis and calcification associate with adverse outcomes in nonischemic heart failure. Cardiac fibroblasts (CF) transition into myofibroblasts (MF) and osteogenic fibroblasts (OF) to promote myocardial fibrosis and calcification. However, common upstream mechanisms regulating both CF-to-MF transition and CF-to-OF transition remain unknown. microRNAs are promising targets to modulate CF plasticity. Our bioinformatics revealed downregulation of miR-129-5p and upregulation of its targets small leucine-rich proteoglycan Asporin (ASPN) and transcription factor SOX9 as common in mouse and human heart failure (HF). We experimentally confirmed decreased miR-129-5p and enhanced SOX9 and ASPN expression in CF in human hearts with myocardial fibrosis and calcification. miR-129-5p repressed both CF-to-MF and CF-to-OF transition in primary CF, as did knockdown of SOX9 and ASPN. Sox9 and Aspn are direct targets of miR-129-5p that inhibit downstream β-catenin expression. Chronic Angiotensin II infusion downregulated miR-129-5p in CF in WT and TCF21-lineage CF reporter mice, and it was restored by miR-129-5p mimic. Importantly, miR-129-5p mimic not only attenuated progression of myocardial fibrosis, calcification marker expression, and SOX9 and ASPN expression in CF but also restored diastolic and systolic function. Together, we demonstrate miR-129-5p/ASPN and miR-129-5p/SOX9 as potentially novel dysregulated axes in CF-to-MF and CF-to-OF transition in myocardial fibrosis and calcification and the therapeutic relevance of miR-129-5p.
Collapse
Affiliation(s)
| | - Laila Aryan
- Department of Anesthesiology & Perioperative Medicine
| | | | - Min Li
- Department of Anesthesiology & Perioperative Medicine
| | | | - Wasila Sun
- Department of Anesthesiology & Perioperative Medicine
| | - Shervin Sarji
- Department of Anesthesiology & Perioperative Medicine
| | - Jason Hong
- Department of Anesthesiology & Perioperative Medicine
- Division of Pulmonary & Critical Care Medicine
| | - Salil Sharma
- Department of Anesthesiology & Perioperative Medicine
| | - Riccardo Olcese
- Department of Anesthesiology & Perioperative Medicine
- Department of Physiology, and
| | - Gregory Fishbein
- Department of Physiology, and
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | |
Collapse
|
4
|
Wang H, Zhang P, Chen X, Liu W, Fu Z, Liu M. Activin a inhibits foam cell formation and up-regulates ABCA1 and ABCG1 expression through Alk4-Smad signaling pathway in RAW 264.7 macrophages. Steroids 2021; 174:108887. [PMID: 34237315 DOI: 10.1016/j.steroids.2021.108887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Activin A has been reported to play important roles in the pathogenesis of atherosclerosis. The purpose of this study is to investigate the effects of activin A on oxidized low-density lipoprotein (ox-LDL)-induced foam cell formation and explore the underlying molecular mechanisms in murine macrophage-like cell line RAW 264.7. METHODS The effects of activin A on Dil-labeled ox-LDL uptake were examined by confocal microscopy and flow cytometry analysis. The mRNA and protein levels of cholesterol receptors were analyzed by RT-qPCR and western blot analysis, respectively. To investigate whether activin receptor-like kinase 4 (Alk4) is required for activin A-mediated cellular effects, cells were pre-treated with SB-431542. The involvement of Smad2, Smad3 and Smad4 was confirmed by transfection with specific small interfering RNAs (siRNAs). RESULTS Activin A inhibits ox-ldl-induced foam cell formation and class A scavenger receptors (SR-A) expression, while up-regulates ATP-binding cassette transporter A1 (ABCA1) and ABCG1 expression in RAW 264.7 macrophages. Pre-treatment with SB-431542 abolished activin A-mediated anti-atherogenic effect. Knockdown of Smad2 reversed activin A-induced inhibition of ox-LDL uptake and SR-A expression. However, knockdown of Smad3 or Smad4 did not have such effect. Meanwhile, knockdown of either Smad2, Smad3 or Smad4 reversed the activin A-induced up-regulation of ABCA1 and ABCG1. CONCLUSIONS Our study provides novel evidence that activin A may exert anti-atherogenic effects through Alk4-Smad signaling pathway in RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Hao Wang
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Peng Zhang
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, People's Republic of China; Division of Cardiology, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen 361000, People's Republic of China
| | - Xiahuan Chen
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Wenwen Liu
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Zhifang Fu
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Meilin Liu
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, People's Republic of China.
| |
Collapse
|
5
|
Wang N, Lu L, Cao QF, Qian S, Ding J, Wang C, Duan H, Shen H, Qi J. Partial inhibition of activin receptor-like kinase 4 alleviates bladder fibrosis caused by bladder outlet obstruction. Exp Cell Res 2021; 406:112724. [PMID: 34237300 DOI: 10.1016/j.yexcr.2021.112724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022]
Abstract
The bladder undergoes profound structural alterations after bladder outlet obstruction (BOO), characterized by hypertrophy of the bladder wall and accumulation of extracellular matrix (ECM). Transforming growth factor-β (TGF-β) has been found to promote fibrosis of the bladder induced by partial bladder outlet obstruction (pBOO). Activin receptor-like kinase 4 (ALK4) is a downstream receptor of the TGF-β superfamily. However, the role of the ALK4-Smad2/3 pathway in the pathogenesis of bladder fibrosis caused by pBOO remains unknown. This study focused on learning the role of ALK4 in the process of bladder fibrosis caused by pBOO. The pBOO mice models showed that ALK4 expression was found to upregulate in the wild-type bladder 6 weeks after pBOO compared to control group. Then, mice with heterozygous knockout of the ALK4 gene (ALK4+/-) were generated. Histological analysis and Western blot (WB) results showed significant suppression of collagen expression in the bladders of ALK4+/- mice after pBOO compared with WT mice. WB also showed that ALK4+/- mice demonstrated significant suppression of phosphorylated Smad2/3 (p-Smad2/3) expression in the bladder 6 weeks after pBOO but not of phosphorylated extracellular signal-regulated kinase, c-Jun N-terminal kinase or protein 38 (p-ERK, p-JNK, p-P38) expression. This effect might have occurred through partial inactivation of the Smad2/3 signaling pathway. In vitro, ALK4 overexpression promoted collagen production in cultured BSMCs and activated the Smad2/3 signaling pathway. Taken together, our results demonstrated that ALK4 insufficiency alleviated bladder fibrosis in a mouse model of pBOO partly by suppressing Smad2/3 activity.
Collapse
Affiliation(s)
- Ning Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China; Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lu Lu
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Qi Feng Cao
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Subo Qian
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jie Ding
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Chen Wang
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Huangqi Duan
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Haibo Shen
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Jun Qi
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Relationship of activin A levels with clinical presentation, extent, and severity of coronary artery disease. Anatol J Cardiol 2017; 18:402-409. [PMID: 29256875 PMCID: PMC6282897 DOI: 10.14744/anatoljcardiol.2017.7935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Objective: We aimed to evaluate the relationship of serum activin A levels with risk factors, clinical presentation, biochemical marker levels, extent, and severity of atherosclerotic coronary artery disease (CAD). Methods: In total, 310 CAD patients [92 with ST-segment elevation myocardial infarction (STEMI), 111 with non-STEMI (NSTEMI), and 107 with unstable angina (UA)] and 207 healthy subjects (controls) were enrolled. Activin A levels in all participants were measured using ELISA. Angiographic measurements were performed in patients and not in the healthy subjects. Results: Activin A levels were higher in all patient groups than in controls (patients vs. controls, p=0.041; NSTEMI vs. UA, p=0.744; STEMI vs. UA, p=0.172; NSTEMI vs. STEMI, p=0.104). According to the cut-off value of activin A level, patients with high and low activin A levels had a similar distribution of clinical and biochemical variables but the prevalence of severe stenosis was observed in groups with high activin A levels. Our results revealed that activin A levels did not decrease as thrombolysis in myocardial infarction (risk score increased (p=0.590). The area under the ROC curve for activin A levels in patients was 0.590±0.047 (95% CI: 0.439–0.591, p=0.193). In multiple analysis of the overall population, male gender (β=–0.260; 95% CI: –617.39 to –110.04; p=0.005) was an independent predictor of activin A levels. Conclusion: This study indicated that activin A can not be a predictive marker in CAD and is not associated with extensive and severe CAD. In contrast, the increase in activin A levels in patients, especially in patients with different clinical groups of acute coronary syndromes, suggested its involvement in atherosclerosis.
Collapse
|
7
|
Wanga S, Hibender S, Ridwan Y, van Roomen C, Vos M, van der Made I, van Vliet N, Franken R, van Riel LA, Groenink M, Zwinderman AH, Mulder BJ, de Vries CJ, Essers J, de Waard V. Aortic microcalcification is associated with elastin fragmentation in Marfan syndrome. J Pathol 2017; 243:294-306. [PMID: 28727149 DOI: 10.1002/path.4949] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 06/17/2017] [Accepted: 07/06/2017] [Indexed: 12/20/2022]
Abstract
Marfan syndrome (MFS) is a connective tissue disorder in which aortic rupture is the major cause of death. MFS patients with an aortic diameter below the advised limit for prophylactic surgery (<5 cm) may unexpectedly experience an aortic dissection or rupture, despite yearly monitoring. Hence, there is a clear need for improved prognostic markers to predict such aortic events. We hypothesize that elastin fragments play a causal role in aortic calcification in MFS, and that microcalcification serves as a marker for aortic disease severity. To address this hypothesis, we analysed MFS patient and mouse aortas. MFS patient aortic tissue showed enhanced microcalcification in areas with extensive elastic lamina fragmentation in the media. A causal relationship between medial injury and microcalcification was revealed by studies in vascular smooth muscle cells (SMCs); elastin peptides were shown to increase the activity of the calcification marker alkaline phosphatase (ALP) and reduce the expression of the calcification inhibitor matrix GLA protein in human SMCs. In murine Fbn1C1039G/+ MFS aortic SMCs, Alpl mRNA and activity were upregulated as compared with wild-type SMCs. The elastin peptide-induced ALP activity was prevented by incubation with lactose or a neuraminidase inhibitor, which inhibit the elastin receptor complex, and a mitogen-activated protein kinase kinase-1/2 inhibitor, indicating downstream involvement of extracellular signal-regulated kinase-1/2 (ERK1/2) phosphorylation. Histological analyses in MFS mice revealed macrocalcification in the aortic root, whereas the ascending aorta contained microcalcification, as identified with the near-infrared fluorescent bisphosphonate probe OsteoSense-800. Significantly, microcalcification correlated strongly with aortic diameter, distensibility, elastin breaks, and phosphorylated ERK1/2. In conclusion, microcalcification co-localizes with aortic elastin degradation in MFS aortas of humans and mice, where elastin-derived peptides induce a calcification process in SMCs via the elastin receptor complex and ERK1/2 activation. We propose microcalcification as a novel imaging marker to monitor local elastin degradation and thus predict aortic events in MFS patients. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shaynah Wanga
- Department of Medical Biochemistry, Academic Medical Centre Amsterdam, Amsterdam, The Netherlands.,Netherlands Heart Institute, Utrecht, The Netherlands.,Department of Cardiology, Academic Medical Centre Amsterdam, Amsterdam, The Netherlands
| | - Stijntje Hibender
- Department of Medical Biochemistry, Academic Medical Centre Amsterdam, Amsterdam, The Netherlands
| | - Yanto Ridwan
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Cindy van Roomen
- Department of Medical Biochemistry, Academic Medical Centre Amsterdam, Amsterdam, The Netherlands
| | - Mariska Vos
- Department of Medical Biochemistry, Academic Medical Centre Amsterdam, Amsterdam, The Netherlands
| | - Ingeborg van der Made
- Department of Experimental Cardiology, Academic Medical Centre Amsterdam, Amsterdam, The Netherlands
| | - Nicole van Vliet
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Romy Franken
- Department of Cardiology, Academic Medical Centre Amsterdam, Amsterdam, The Netherlands
| | - Luigi Amjg van Riel
- Department of Medical Biochemistry, Academic Medical Centre Amsterdam, Amsterdam, The Netherlands
| | - Maarten Groenink
- Department of Cardiology, Academic Medical Centre Amsterdam, Amsterdam, The Netherlands.,Department of Radiology, Academic Medical Centre Amsterdam, Amsterdam, The Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology and Biostatistics, Academic Medical Centre Amsterdam, Amsterdam, The Netherlands
| | - Barbara Jm Mulder
- Department of Cardiology, Academic Medical Centre Amsterdam, Amsterdam, The Netherlands
| | - Carlie Jm de Vries
- Department of Medical Biochemistry, Academic Medical Centre Amsterdam, Amsterdam, The Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands.,Department of Radiation Oncology, Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Vivian de Waard
- Department of Medical Biochemistry, Academic Medical Centre Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Hamers AAJ, Argmann C, Moerland PD, Koenis DS, Marinković G, Sokolović M, de Vos AF, de Vries CJM, van Tiel CM. Nur77-deficiency in bone marrow-derived macrophages modulates inflammatory responses, extracellular matrix homeostasis, phagocytosis and tolerance. BMC Genomics 2016; 17:162. [PMID: 26932821 PMCID: PMC4774191 DOI: 10.1186/s12864-016-2469-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 02/12/2016] [Indexed: 02/08/2023] Open
Abstract
Background The nuclear orphan receptor Nur77 (NR4A1, TR3, or NGFI-B) has been shown to modulate the inflammatory response of macrophages. To further elucidate the role of Nur77 in macrophage physiology, we compared the transcriptome of bone marrow-derived macrophages (BMM) from wild-type (WT) and Nur77-knockout (KO) mice. Results In line with previous observations, SDF-1α (CXCL12) was among the most upregulated genes in Nur77-deficient BMM and we demonstrated that Nur77 binds directly to the SDF-1α promoter, resulting in inhibition of SDF-1α expression. The cytokine receptor CX3CR1 was strongly downregulated in Nur77-KO BMM, implying involvement of Nur77 in macrophage tolerance. Ingenuity pathway analyses (IPA) to identify canonical pathways regulation and gene set enrichment analyses (GSEA) revealed a potential role for Nur77 in extracellular matrix homeostasis. Nur77-deficiency increased the collagen content of macrophage extracellular matrix through enhanced expression of several collagen subtypes and diminished matrix metalloproteinase (MMP)-9 activity. IPA upstream regulator analyses discerned the small GTPase Rac1 as a novel regulator of Nur77-mediated gene expression. We identified an inhibitory feedback loop with increased Rac1 activity in Nur77-KO BMM, which may explain the augmented phagocytic activity of these cells. Finally, we predict multiple chronic inflammatory diseases to be influenced by macrophage Nur77 expression. GSEA and IPA associated Nur77 to osteoarthritis, chronic obstructive pulmonary disease, rheumatoid arthritis, psoriasis, and allergic airway inflammatory diseases. Conclusions Altogether these data identify Nur77 as a modulator of macrophage function and an interesting target to treat chronic inflammatory disease. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2469-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anouk A J Hamers
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. .,Present address: Department of Inflammation Biology, La Jolla Institute for Allergy and Immunology, San Diego, USA.
| | - Carmen Argmann
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. .,Present address: Institute for Genomics and Multiscale Biology Mount Sinai Hospital, New York, USA.
| | - Perry D Moerland
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Duco S Koenis
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Goran Marinković
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Milka Sokolović
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. .,Present address: European Food Information Council, Brussels, Belgium.
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Carlie J M de Vries
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Claudia M van Tiel
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Affiliation(s)
- Kathleen A Martin
- From the Departments of Internal Medicine (K.A.M., K.K.H.) and Pharmacology (K.A.M.), Yale Cardiovascular Research Center and Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Karen K Hirschi
- From the Departments of Internal Medicine (K.A.M., K.K.H.) and Pharmacology (K.A.M.), Yale Cardiovascular Research Center and Vascular Biology and Therapeutics Program, Yale University, New Haven, CT.
| |
Collapse
|
10
|
Morris E, Chrobak I, Bujor A, Hant F, Mummery C, Dijke PT, Trojanowska M. Endoglin promotes TGF-β/Smad1 signaling in scleroderma fibroblasts. J Cell Physiol 2011; 226:3340-8. [PMID: 21344387 PMCID: PMC3381731 DOI: 10.1002/jcp.22690] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
TGF-β is the primary inducer of extracellular matrix proteins in scleroderma (systemic sclerosis, SSc). Previous studies indicate that in a subset of SSc fibroblasts TGF-β signaling is activated via elevated levels of activin receptor-like kinase (ALK) 1 and phosphorylated Smad1 (pSmad1). The goal of this study was to determine the role of endoglin/ALK1 in TGF-β/Smad1 signaling in SSc fibroblasts. In SSc fibroblasts, increased levels of endoglin correlated with high levels of pSmad1, collagen, and connective tissue growth factor (CCN2). Endoglin depletion via siRNA in SSc fibroblasts inhibited pSmad1 but did not affect pSmad2/3. Following endoglin depletion mRNA and protein levels of collagen and CCN2 were significantly decreased in SSc fibroblasts but remained unchanged in normal fibroblasts. ALK1 was expressed at similar levels in SSc and normal fibroblasts. Depletion of ALK1 resulted in inhibition of pSmad1 and a moderate but significant reduction of mRNA and protein levels of collagen and CCN2 in SSc fibroblasts. Furthermore, constitutively high levels of endoglin were found in complexes with ALK1 in SSc fibroblasts. Overexpression of constitutively active ALK1 (caALK1) in normal and SSc fibroblasts led to a moderate increase of collagen and CCN2. However, caALK1 potently induced endothelin 1 (ET-1) mRNA and protein levels in SSc fibroblasts. Additional experiments demonstrated that endoglin and ALK1 mediate TGF-β induction of ET-1 in SSc and normal fibroblasts. In conclusion, this study has revealed an important profibrotic role of endoglin in SSc fibroblasts. The endoglin/ALK1/Smad1 pathway could be a therapeutic target in patients with SSc if appropriately blocked.
Collapse
MESH Headings
- Activin Receptors, Type II/genetics
- Activin Receptors, Type II/metabolism
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Collagen/genetics
- Collagen/metabolism
- Connective Tissue Growth Factor/genetics
- Connective Tissue Growth Factor/metabolism
- Endoglin
- Endothelin-1/genetics
- Endothelin-1/metabolism
- Enzyme Activation
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Fibrosis
- HEK293 Cells
- Humans
- Mutation
- Phenotype
- Phosphorylation
- RNA Interference
- RNA, Messenger/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Scleroderma, Diffuse/genetics
- Scleroderma, Diffuse/metabolism
- Scleroderma, Diffuse/pathology
- Signal Transduction
- Skin/metabolism
- Skin/pathology
- Smad1 Protein/metabolism
- Smad2 Protein/metabolism
- Smad3 Protein/metabolism
- Transfection
- Transforming Growth Factor beta/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Erin Morris
- Medical University of South Carolina, Division of Rheumatology Charleston, SC 29425
| | - Izabela Chrobak
- Arthritis Center, Boston University School of Medicine, Boston MA 02118
| | - Andreea Bujor
- Arthritis Center, Boston University School of Medicine, Boston MA 02118
| | - Faye Hant
- Medical University of South Carolina, Division of Rheumatology Charleston, SC 29425
| | - Christine Mummery
- Department of Anatomy & Embryology, Leiden University Medical Center 2300 RC Leiden, The Netherlands
| | - Peter ten Dijke
- Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Center 2300 RC Leiden, The Netherlands
| | - Maria Trojanowska
- Arthritis Center, Boston University School of Medicine, Boston MA 02118
| |
Collapse
|