1
|
Barbosa LC, Machado GC, Heringer M, Ferrer VP. Identification of established and novel extracellular matrix components in glioblastoma as targets for angiogenesis and prognosis. Neurogenetics 2024; 25:249-262. [PMID: 38775886 DOI: 10.1007/s10048-024-00763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/10/2024] [Indexed: 07/16/2024]
Abstract
Glioblastomas (GBM) are aggressive tumors known for their heterogeneity, rapid proliferation, treatment resistance, and extensive vasculature. Angiogenesis, the formation of new vessels, involves endothelial cell (EC) migration and proliferation. Various extracellular matrix (ECM) molecules regulate EC survival, migration, and proliferation. Culturing human brain EC (HBMEC) on GBM-derived ECM revealed a decrease in EC numbers compared to controls. Through in silico analysis, we explored ECM gene expression differences between GBM and brain normal glia cells and the impact of GBM microenvironment on EC ECM transcripts. ECM molecules such as collagen alpha chains (COL4A1, COL4A2, p < 0.0001); laminin alpha (LAMA4), beta (LAMB2), and gamma (LAMC1) chains (p < 0.0005); neurocan (NCAN), brevican (BCAN) and versican (VCAN) (p < 0.0005); hyaluronan synthase (HAS) 2 and metalloprotease (MMP) 2 (p < 0.005); MMP inhibitors (TIMP1-4, p < 0.0005), transforming growth factor beta-1 (TGFB1) and integrin alpha (ITGA3/5) (p < 0.05) and beta (ITGB1, p < 0.0005) chains showed increased expression in GBM. Additionally, GBM-influenced EC exhibited elevated expression of COL5A3, COL6A1, COL22A1 and COL27A1 (p < 0.01); LAMA1, LAMB1 (p < 0.001); fibulins (FBLN1/2, p < 0.01); MMP9, HAS1, ITGA3, TGFB1, and wingless-related integration site 9B (WNT9B) (p < 0.01) compared to normal EC. Some of these molecules: COL5A1/3, COL6A1, COL22/27A1, FBLN1/2, ITGA3/5, ITGB1 and LAMA1/B1 (p < 0.01); NCAN, HAS1, MMP2/9, TIMP1/2 and TGFB1 (p < 0.05) correlated with GBM patient survival. In conclusion, this study identified both established and novel ECM molecules regulating GBM angiogenesis, suggesting NCAN and COL27A1 are new potential prognostic biomarkers for GBM.
Collapse
Affiliation(s)
- Lucas Cunha Barbosa
- Graduation Program of Pathological Anatomy, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Cellular and Molecular Biology of Tumors, Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niteroi, Brazil
| | - Gabriel Cardoso Machado
- Graduation Program of Pathological Anatomy, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Cellular and Molecular Biology of Tumors, Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niteroi, Brazil
| | - Manoela Heringer
- Brain's Biomedicine Lab, Paulo Niemeyer State Brain Institute, Rio de Janeiro, Brazil
| | - Valéria Pereira Ferrer
- Graduation Program of Pathological Anatomy, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Laboratory of Cellular and Molecular Biology of Tumors, Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niteroi, Brazil.
| |
Collapse
|
2
|
Lima AGF, Mignone VW, Vardiero F, Kozlowski EO, Fernandes LR, Motta JM, Pavão MSG, Figueiredo CC, Mourão PAS, Morandi V. Direct antitumoral effects of sulfated fucans isolated from echinoderms: a possible role of neuropilin-1/β1 integrin endocytosis and focal adhesion kinase degradation. Glycobiology 2023; 33:715-731. [PMID: 37289485 PMCID: PMC10627248 DOI: 10.1093/glycob/cwad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Hypercoagulability, a major complication of metastatic cancers, has usually been treated with heparins from natural sources, or with their synthetic derivatives, which are under intense investigation in clinical oncology. However, the use of heparin has been challenging for patients with risk of severe bleeding. While the systemic administration of heparins, in preclinical models, has shown primarily attenuating effects on metastasis, their direct effect on established solid tumors has generated contradictory outcomes. We investigated the direct antitumoral properties of two sulfated fucans isolated from marine echinoderms, FucSulf1 and FucSulf2, which exhibit anticoagulant activity with mild hemorrhagic potential. Unlike heparin, sulfated fucans significantly inhibited tumor cell proliferation (by ~30-50%), and inhibited tumor migration and invasion in vitro. We found that FucSulf1 and FucSulf2 interacted with fibronectin as efficiently as heparin, leading to loss of prostate cancer and melanoma cell spreading. The sulfated fucans increased the endocytosis of β1 integrin and neuropilin-1 chains, two cell receptors implicated in fibronectin-dependent adhesion. The treatment of cancer cells with both sulfated fucans, but not with heparin, also triggered intracellular focal adhesion kinase (FAK) degradation, with a consequent overall decrease in activated focal adhesion kinase levels. Finally, only sulfated fucans inhibited the growth of B16-F10 melanoma cells implanted in the dermis of syngeneic C57/BL6 mice. FucSulf1 and FucSulf2 arise from this study as candidates for the design of possible alternatives to long-term treatments of cancer patients with heparins, with the advantage of also controlling local growth and invasion of malignant cells.
Collapse
Affiliation(s)
- Antonio G F Lima
- Laboratório de Biologia da Célula Endotelial e da Angiogênese (LabAngio), Departamento de Biologia Celular/IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20550-013, Brazil
- Laboratório do Tecido Conjuntivo, Instituto de Bioquímica Médica (IBqM) - Universidade Federal do Rio de Janeiro (UFRJ), Hospital Universitário Clementino Fraga Filho, Rio de Janeiro, 21941-913, Brazil
| | - Viviane W Mignone
- Laboratório de Biologia da Célula Endotelial e da Angiogênese (LabAngio), Departamento de Biologia Celular/IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20550-013, Brazil
| | - Francisco Vardiero
- Laboratório de Biologia da Célula Endotelial e da Angiogênese (LabAngio), Departamento de Biologia Celular/IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20550-013, Brazil
| | - Eliene O Kozlowski
- Laboratório do Tecido Conjuntivo, Instituto de Bioquímica Médica (IBqM) - Universidade Federal do Rio de Janeiro (UFRJ), Hospital Universitário Clementino Fraga Filho, Rio de Janeiro, 21941-913, Brazil
| | - Laila R Fernandes
- Laboratório de Biologia da Célula Endotelial e da Angiogênese (LabAngio), Departamento de Biologia Celular/IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20550-013, Brazil
| | - Juliana M Motta
- Laboratório do Tecido Conjuntivo, Instituto de Bioquímica Médica (IBqM) - Universidade Federal do Rio de Janeiro (UFRJ), Hospital Universitário Clementino Fraga Filho, Rio de Janeiro, 21941-913, Brazil
| | - Mauro S G Pavão
- Laboratório do Tecido Conjuntivo, Instituto de Bioquímica Médica (IBqM) - Universidade Federal do Rio de Janeiro (UFRJ), Hospital Universitário Clementino Fraga Filho, Rio de Janeiro, 21941-913, Brazil
| | - Camila C Figueiredo
- Laboratório de Biologia da Célula Endotelial e da Angiogênese (LabAngio), Departamento de Biologia Celular/IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20550-013, Brazil
| | - Paulo A S Mourão
- Laboratório do Tecido Conjuntivo, Instituto de Bioquímica Médica (IBqM) - Universidade Federal do Rio de Janeiro (UFRJ), Hospital Universitário Clementino Fraga Filho, Rio de Janeiro, 21941-913, Brazil
| | - Verônica Morandi
- Laboratório de Biologia da Célula Endotelial e da Angiogênese (LabAngio), Departamento de Biologia Celular/IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20550-013, Brazil
| |
Collapse
|
3
|
Fu Z, Zhu G, Luo C, Chen Z, Dou Z, Chen Y, Zhong C, Su S, Liu F. Matricellular protein tenascin C: Implications in glioma progression, gliomagenesis, and treatment. Front Oncol 2022; 12:971462. [PMID: 36033448 PMCID: PMC9413079 DOI: 10.3389/fonc.2022.971462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Matricellular proteins are nonstructural extracellular matrix components that are expressed at low levels in normal adult tissues and are upregulated during development or under pathological conditions. Tenascin C (TNC), a matricellular protein, is a hexameric and multimodular glycoprotein with different molecular forms that is produced by alternative splicing and post-translational modifications. Malignant gliomas are the most common and aggressive primary brain cancer of the central nervous system. Despite continued advances in multimodal therapy, the prognosis of gliomas remains poor. The main reasons for such poor outcomes are the heterogeneity and adaptability caused by the tumor microenvironment and glioma stem cells. It has been shown that TNC is present in the glioma microenvironment and glioma stem cell niches, and that it promotes malignant properties, such as neovascularization, proliferation, invasiveness, and immunomodulation. TNC is abundantly expressed in neural stem cell niches and plays a role in neurogenesis. Notably, there is increasing evidence showing that neural stem cells in the subventricular zone may be the cells of origin of gliomas. Here, we review the evidence regarding the role of TNC in glioma progression, propose a potential association between TNC and gliomagenesis, and summarize its clinical applications. Collectively, TNC is an appealing focus for advancing our understanding of gliomas.
Collapse
Affiliation(s)
- Zaixiang Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ganggui Zhu
- Department of Neurosurgery, Hangzhou First People’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Luo
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Zihang Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhangqi Dou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yike Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Zhong
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Su
- Department of Neurosurgery, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Fuyi Liu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Fuyi Liu,
| |
Collapse
|
4
|
Carballo CB, Coelho TRP, de Holanda Afonso RC, Faria JCDO, Alves T, Monte SM, Ventura Matioszek GM, Moura-Neto V, de Brito JM. Osteoarthritic Synovial Fluid and TGF-β1 Induce Interleukin-18 in Articular Chondrocytes. Cartilage 2020; 11:385-394. [PMID: 30146893 PMCID: PMC7298592 DOI: 10.1177/1947603518796149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Synovial fluid (SF) plays an important role in the maintenance of articular cartilage. SF is a dynamic reservoir of proteins derived from cartilage and synovial tissue; thus, its composition may serve as a biomarker that reflects the health and pathophysiological condition of the joint. The purpose of the current study was to evaluate the osteoarthritic synovial fluid (OASF) and transforming growth factor-β1 (TGF-β1) activity in articular chondrocytes catabolic and inflammatory responses. DESIGN Chondrocytes were seeded at passage 2 and cultured for 72 hours under different conditions. Human chondrocytes were subjected to OASF while rat chondrocytes were subjected to either healthy synovial fluid (rSF) or TGF-β1 and then assigned for cell viability analysis. In addition, the effects of OASF and TGF-β1 on chondrocytes metalloprotease (MMP)-3 and MMP-13 and interleukin-18 (IL-18) expression were evaluated by immunocytochemistry, ELISA, and reverse transcriptase-polymerase chain reaction. RESULTS SF from osteoarthritic patients significantly induced MMP-3, MMP-13, and IL-18 receptor expression in chondrocytes. To put in evidence the inflammatory activity of OASF, healthy chondrocytes from rat were cultured with TGF-β1. In the presence of TGF-β1 these cells started to express MMP-3, MMP-13, and IL-18 genes and attached to each other forming a chondrocyte aggregated structure. Healthy SF was able to maintain a typical monolayer of rounded chondrocytes with no inflammatory response. CONCLUSION In summary, these observations demonstrated that TGF-β1, one of the components of OASF, has a dual effect, acting in chondrocyte maintenance and also inducing inflammatory and catabolic properties of these cells.
Collapse
Affiliation(s)
- Camila B. Carballo
- Programa de Pós-graduação em Anatomia
Patológica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil,Orthopaedic Soft Tissue Research
Program, Hospital for Special Surgery, New York, NY, USA
| | - Thiago R. P. Coelho
- Programa de Pós-graduação em Anatomia
Patológica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Tercia Alves
- Instituto de Ciências Biomédicas,
Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Samylla M. Monte
- Instituto de Ciências Biomédicas,
Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Vivaldo Moura-Neto
- Instituto de Ciências Biomédicas,
Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José M. de Brito
- Instituto de Ciências Biomédicas,
Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil,José M. de Brito, Universidade Federal do
Rio de Janeiro, Instituto de Ciências Biomédicas, Av. Carlos Chagas Filho 373,
Bloco F2-01, Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
5
|
Integrin Signaling in Glioma Pathogenesis: From Biology to Therapy. Int J Mol Sci 2020; 21:ijms21030888. [PMID: 32019108 PMCID: PMC7037280 DOI: 10.3390/ijms21030888] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 11/17/2022] Open
Abstract
Integrins are a large family of transmembrane adhesion receptors, which play a key role in interactions of a cell with the surrounding stroma. Integrins are comprised of non-covalently linked α and β chains, which form heterodimeric receptor complexes. The signals from integrin receptors are combined with those originating from growth factor receptors and participate in orchestrating morphological changes of cells, organization of the cytoskeleton, stimulation of cell proliferation and rescuing cells from programmed cell death induced by extracellular matrix (ECM) detachment. Upon binding to specific ligands or ECM components, integrin dimers activate downstream signaling pathways, including focal adhesion kinase, phosphoinositide-3-kinase (PI3K) and AKT kinases, which regulate migration, invasion, proliferation and survival. Expression of specific integrins is upregulated in both tumor cells and stromal cells in a tumor microenvironment. Therefore, integrins became an attractive therapeutic target for many cancers, including the most common primary brain tumors-gliomas. In this review we provide an overview of the involvement of integrin signaling in glioma pathogenesis, formation of the tumor niche and brain tissue infiltration. We will summarize up-to-date therapeutic strategies for gliomas focused on interference with integrin ligand-receptor signaling.
Collapse
|
6
|
Ferrer VP, Moura Neto V, Mentlein R. Glioma infiltration and extracellular matrix: key players and modulators. Glia 2018; 66:1542-1565. [DOI: 10.1002/glia.23309] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Rolf Mentlein
- Department of Anatomy; University of Kiel; Kiel Germany
| |
Collapse
|
7
|
da Silva SV, Renovato-Martins M, Ribeiro-Pereira C, Citelli M, Barja-Fidalgo C. Obesity modifies bone marrow microenvironment and directs bone marrow mesenchymal cells to adipogenesis. Obesity (Silver Spring) 2016; 24:2522-2532. [PMID: 27753270 DOI: 10.1002/oby.21660] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/12/2016] [Accepted: 08/03/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the role of obesity on the bone marrow microenvironment and evaluate its possible impact on the adipogenic potential of mesenchymal stem cells (MSC). METHODS C57BL/6 male mice were fed with a high-fat diet (HFD) for 10 weeks. Femurs and tibiae were collected, and bone marrow mesenchymal stem cells (BM-MSC) were isolated and analyzed for proliferative potential, immunophenotype, and expression of adipogenesis markers. Their capacity to produce extracellular matrix proteins and proinflammatory cytokines in vitro was also evaluated. RESULTS HFD mice presented a significant increase in bone marrow cellularity and higher tumor necrosis factor-α production in vitro. BM-MSC from HFD mice had higher proliferative capacity, produced more extracellular matrix proteins associated with adipogenesis, collagen I, and collagen IV, and showed increased constitutive expression of adipogenic markers, peroxisome proliferator-activated receptor-γ, and CCAAT/enhanced binding protein family-α, without changes in preadipocyte factor-1 expression. Incubation with adipocyte-differentiation medium induced further increase in CCAAT/enhanced binding protein family-α and augmented adiponectin expression in obese BM-MSC. These alterations did not result in increased adipogenic differentiation within the bone marrow. Moreover, BM-HSC from HFD mice, co-cultivated with BM-MSCs from lean mice, exerted paracrine effects on these cells, inducing augment of peroxisome proliferator-activated receptor-γ. CONCLUSIONS The data suggest that obesity promotes an inflammatory microenvironment in bone marrow that commits BM-MSC to adipogenesis.
Collapse
Affiliation(s)
- Simone Vargas da Silva
- Departamento de Biologia Celular, Laboratório de Farmacologia Celular e Molecular, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Renovato-Martins
- Departamento de Biologia Celular, Laboratório de Farmacologia Celular e Molecular, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane Ribeiro-Pereira
- Departamento de Biologia Celular, Laboratório de Farmacologia Celular e Molecular, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marta Citelli
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina Barja-Fidalgo
- Departamento de Biologia Celular, Laboratório de Farmacologia Celular e Molecular, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Romero-López M, Trinh AL, Sobrino A, Hatch MMS, Keating MT, Fimbres C, Lewis DE, Gershon PD, Botvinick EL, Digman M, Lowengrub JS, Hughes CCW. Recapitulating the human tumor microenvironment: Colon tumor-derived extracellular matrix promotes angiogenesis and tumor cell growth. Biomaterials 2016; 116:118-129. [PMID: 27914984 DOI: 10.1016/j.biomaterials.2016.11.034] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022]
Abstract
Extracellular matrix (ECM) is an essential and dynamic component of all tissues and directly affects cellular behavior by providing both mechanical and biochemical signaling cues. Changes in ECM can alter tissue homeostasis, potentially leading to promotion of cellular transformation and the generation of tumors. Therefore, understanding ECM compositional changes during cancer progression is vital to the development of targeted treatments. Previous efforts to reproduce the native 3D cellular microenvironment have utilized protein gels and scaffolds that incompletely recapitulate the complexity of native tissues. Here, we address this problem by extracting and comparing ECM from normal human colon and colon tumor that had metastasized to liver. We found differences in protein composition and stiffness, and observed significant differences in vascular network formation and tumor growth in each of the reconstituted matrices, both in vitro and in vivo. We studied free/bound ratios of NADH in the tumor and endothelial cells using Fluorescence Lifetime Imaging Microscopy as a surrogate for the metabolic state of the cells. We observed that cells seeded in tumor ECM had higher relative levels of free NADH, consistent with a higher glycolytic rate, than those seeded in normal ECM. These results demonstrate that the ECM plays an important role in the growth of cancer cells and their associated vasculature.
Collapse
Affiliation(s)
- Mónica Romero-López
- Department of Biomedical Engineering, The Henry Samueli School of Engineering, UC Irvine, USA
| | - Andrew L Trinh
- Department of Biomedical Engineering, The Henry Samueli School of Engineering, UC Irvine, USA
| | - Agua Sobrino
- Department of Biomedical Engineering, The Henry Samueli School of Engineering, UC Irvine, USA
| | - Michaela M S Hatch
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, UC Irvine, USA
| | - Mark T Keating
- Department of Biomedical Engineering, The Henry Samueli School of Engineering, UC Irvine, USA
| | - Cristhian Fimbres
- Department of Biomedical Engineering, The Henry Samueli School of Engineering, UC Irvine, USA
| | - David E Lewis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, UC Irvine, USA
| | - Paul D Gershon
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, UC Irvine, USA
| | - Elliot L Botvinick
- Department of Biomedical Engineering, The Henry Samueli School of Engineering, UC Irvine, USA; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, UC Irvine, USA
| | - Michelle Digman
- Department of Biomedical Engineering, The Henry Samueli School of Engineering, UC Irvine, USA
| | - John S Lowengrub
- Department of Biomedical Engineering, The Henry Samueli School of Engineering, UC Irvine, USA; Department of Mathematics, School of Physical Sciences, UC Irvine, USA
| | - Christopher C W Hughes
- Department of Biomedical Engineering, The Henry Samueli School of Engineering, UC Irvine, USA; Department of Molecular Biology and Biochemistry, School of Biological Sciences, UC Irvine, USA; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, UC Irvine, USA.
| |
Collapse
|
9
|
Helal-Neto E, Brandão-Costa RM, Saldanha-Gama R, Ribeiro-Pereira C, Midlej V, Benchimol M, Morandi V, Barja-Fidalgo C. Priming Endothelial Cells With a Melanoma-Derived Extracellular Matrix Triggers the Activation of αvβ3/VEGFR2 Axis. J Cell Physiol 2016; 231:2464-73. [DOI: 10.1002/jcp.25358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/22/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Edward Helal-Neto
- Laboratório de Farmacologia Celular e Molecular, IBRAG; Universidade do Estado do Rio de Janeiro; Rio de Janeiro Brazil
- Laboratório de Biologia da Célula Endotelial e da Angiogênese, IBRAG; Universidade do Estado do Rio de Janeiro; Rio de Janeiro Brazil
| | - Renata M. Brandão-Costa
- Laboratório de Farmacologia Celular e Molecular, IBRAG; Universidade do Estado do Rio de Janeiro; Rio de Janeiro Brazil
| | - Roberta Saldanha-Gama
- Laboratório de Farmacologia Celular e Molecular, IBRAG; Universidade do Estado do Rio de Janeiro; Rio de Janeiro Brazil
| | - Cristiane Ribeiro-Pereira
- Laboratório de Farmacologia Celular e Molecular, IBRAG; Universidade do Estado do Rio de Janeiro; Rio de Janeiro Brazil
| | - Victor Midlej
- Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - Marlene Benchimol
- Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
- Unigranrio; Universidade do Grande Rio; Rio de Janeiro Brazil
| | - Verônica Morandi
- Laboratório de Biologia da Célula Endotelial e da Angiogênese, IBRAG; Universidade do Estado do Rio de Janeiro; Rio de Janeiro Brazil
| | - Christina Barja-Fidalgo
- Laboratório de Farmacologia Celular e Molecular, IBRAG; Universidade do Estado do Rio de Janeiro; Rio de Janeiro Brazil
| |
Collapse
|
10
|
Sun Z, Lawson DA, Sinclair E, Wang CY, Lai MD, Hetts SW, Higashida RT, Dowd CF, Halbach VV, Werb Z, Su H, Cooke DL. Endovascular biopsy: Strategy for analyzing gene expression profiles of individual endothelial cells obtained from human vessels ✩. ACTA ACUST UNITED AC 2015; 7:157-165. [PMID: 26989654 PMCID: PMC4792280 DOI: 10.1016/j.btre.2015.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The combination of guide wire sampling, FACS and high throughput microfluidic single-cell quantitative RT-PCR, is an effective strategy for analyzing molecular changes of ECs in vascular lesions. Although heterogeneous, the ECs in normal iliac artery fall into two classes.
Purpose To develop a strategy of achieving targeted collection of endothelial cells (ECs) by endovascular methods and analyzing the gene expression profiles of collected single ECs. Methods and results 134 ECs and 37 leukocytes were collected from four patients' intra-iliac artery endovascular guide wires by fluorescence activated cell sorting (FACS) and analyzed by single-cell quantitative RT-PCR for expression profile of 48 genes. Compared to CD45+ leukocytes, the ECs expressed higher levels (p < 0.05) of EC surface markers used on FACS and other EC related genes. The gene expression profile showed that these isolated ECs fell into two clusters, A and B, that differentially expressed 19 genes related to angiogenesis, inflammation and extracellular matrix remodeling, with cluster B ECs have demonstrating similarities to senescent or aging ECs. Conclusion Combination of endovascular device sampling, FACS and single-cell quantitative RT-PCR is a feasible method for analyzing EC gene expression profile in vascular lesions.
Collapse
Affiliation(s)
- Zhengda Sun
- Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Devon A Lawson
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - Elizabeth Sinclair
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Chih-Yang Wang
- Department of Anatomy, University of California, San Francisco, CA, USA; Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Steven W Hetts
- Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Randall T Higashida
- Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Christopher F Dowd
- Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Van V Halbach
- Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Daniel L Cooke
- Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
11
|
Dubois LG, Campanati L, Righy C, D'Andrea-Meira I, Spohr TCLDSE, Porto-Carreiro I, Pereira CM, Balça-Silva J, Kahn SA, DosSantos MF, Oliveira MDAR, Ximenes-da-Silva A, Lopes MC, Faveret E, Gasparetto EL, Moura-Neto V. Gliomas and the vascular fragility of the blood brain barrier. Front Cell Neurosci 2014; 8:418. [PMID: 25565956 PMCID: PMC4264502 DOI: 10.3389/fncel.2014.00418] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/18/2014] [Indexed: 12/22/2022] Open
Abstract
Astrocytes, members of the glial family, interact through the exchange of soluble factors or by directly contacting neurons and other brain cells, such as microglia and endothelial cells. Astrocytic projections interact with vessels and act as additional elements of the Blood Brain Barrier (BBB). By mechanisms not fully understood, astrocytes can undergo oncogenic transformation and give rise to gliomas. The tumors take advantage of the BBB to ensure survival and continuous growth. A glioma can develop into a very aggressive tumor, the glioblastoma (GBM), characterized by a highly heterogeneous cell population (including tumor stem cells), extensive proliferation and migration. Nevertheless, gliomas can also give rise to slow growing tumors and in both cases, the afflux of blood, via BBB is crucial. Glioma cells migrate to different regions of the brain guided by the extension of blood vessels, colonizing the healthy adjacent tissue. In the clinical context, GBM can lead to tumor-derived seizures, which represent a challenge to patients and clinicians, since drugs used for its treatment must be able to cross the BBB. Uncontrolled and fast growth also leads to the disruption of the chimeric and fragile vessels in the tumor mass resulting in peritumoral edema. Although hormonal therapy is currently used to control the edema, it is not always efficient. In this review we comment the points cited above, considering the importance of the BBB and the concerns that arise when this barrier is affected.
Collapse
Affiliation(s)
- Luiz Gustavo Dubois
- Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende Rio de Janeiro, Brazil
| | - Loraine Campanati
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas da, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Cassia Righy
- Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende Rio de Janeiro, Brazil
| | | | | | | | - Claudia Maria Pereira
- Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde (ECS), Universidade do Grande Rio (UNIGRANRIO) Duque de Caxias, Brazil
| | - Joana Balça-Silva
- Centro de Neurociência e Biologia Celular, Faculdade de Medicina, Universidade de Coimbra Coimbra, Portugal
| | - Suzana Assad Kahn
- Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende Rio de Janeiro, Brazil
| | - Marcos F DosSantos
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas da, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | | - Adriana Ximenes-da-Silva
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió Alagoas, Brazil
| | - Maria Celeste Lopes
- Centro de Neurociência e Biologia Celular, Faculdade de Medicina, Universidade de Coimbra Coimbra, Portugal
| | - Eduardo Faveret
- Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende Rio de Janeiro, Brazil
| | | | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende Rio de Janeiro, Brazil ; Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas da, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Biasoli D, Sobrinho MF, da Fonseca ACC, de Matos DG, Romão L, de Moraes Maciel R, Rehen SK, Moura-Neto V, Borges HL, Lima FRS. Glioblastoma cells inhibit astrocytic p53-expression favoring cancer malignancy. Oncogenesis 2014; 3:e123. [PMID: 25329722 PMCID: PMC4216902 DOI: 10.1038/oncsis.2014.36] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 08/31/2014] [Accepted: 09/14/2014] [Indexed: 12/22/2022] Open
Abstract
The tumor microenvironment has a dynamic and usually cancer-promoting function during all tumorigenic steps. Glioblastoma (GBM) is a fatal tumor of the central nervous system, in which a substantial number of non-tumoral infiltrated cells can be found. Astrocytes neighboring these tumor cells have a particular reactive phenotype and can enhance GBM malignancy by inducing aberrant cell proliferation and invasion. The tumor suppressor p53 has a potential non-cell autonomous function by modulating the expression of secreted proteins that influence neighbor cells. In this work, we investigated the role of p53 on the crosstalk between GBM cells and astrocytes. We show that extracellular matrix (ECM) from p53(+/-) astrocytes is richer in laminin and fibronectin, compared with ECM from p53(+/+) astrocytes. In addition, ECM from p53(+/-) astrocytes increases the survival and the expression of mesenchymal markers in GBM cells, which suggests haploinsufficient phenotype of the p53(+/-) microenvironment. Importantly, conditioned medium from GBM cells blocks the expression of p53 in p53(+/+) astrocytes, even when DNA was damaged. These results suggest that GBM cells create a dysfunctional microenvironment based on the impairment of p53 expression that in turns exacerbates tumor endurance.
Collapse
Affiliation(s)
- D Biasoli
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M F Sobrinho
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A C C da Fonseca
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - D G de Matos
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L Romão
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - R de Moraes Maciel
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - S K Rehen
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - V Moura-Neto
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - H L Borges
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - F R S Lima
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Cuddapah VA, Robel S, Watkins S, Sontheimer H. A neurocentric perspective on glioma invasion. Nat Rev Neurosci 2014; 15:455-65. [PMID: 24946761 PMCID: PMC5304245 DOI: 10.1038/nrn3765] [Citation(s) in RCA: 584] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Malignant gliomas are devastating tumours that frequently kill patients within 1 year of diagnosis. The major obstacle to a cure is diffuse invasion, which enables tumours to escape complete surgical resection and chemo- and radiation therapy. Gliomas use the same tortuous extracellular routes of migration that are travelled by immature neurons and stem cells, frequently using blood vessels as guides. They repurpose ion channels to dynamically adjust their cell volume to accommodate to narrow spaces and breach the blood-brain barrier through disruption of astrocytic endfeet, which envelop blood vessels. The unique biology of glioma invasion provides hitherto unexplored brain-specific therapeutic targets for this devastating disease.
Collapse
Affiliation(s)
- Vishnu Anand Cuddapah
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 425, Birmingham, Alabama 35294, USA
| | - Stefanie Robel
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 425, Birmingham, Alabama 35294, USA
| | - Stacey Watkins
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 425, Birmingham, Alabama 35294, USA
| | - Harald Sontheimer
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 425, Birmingham, Alabama 35294, USA
| |
Collapse
|
14
|
Zheng L, Zhang D, Zhang Y, Wen Y, Wang Y. mTOR signal transduction pathways contribute to TN-C FNIII A1 overexpression by mechanical stress in osteosarcoma cells. Mol Cells 2014; 37:118-25. [PMID: 24598996 PMCID: PMC3935624 DOI: 10.14348/molcells.2014.2247] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 11/27/2022] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor with a very poor prognosis. Treating osteosarcoma remains a challenge due to its high transitivity. Tenascin-C, with large molecular weight variants including different combinations of its alternative spliced FNIII repeats, is specifically over expressed in tumor tissues. This study examined the expression of Tenascin-C FNIIIA1 in osteosarcoma tissues, and estimated the effect of mechanical stimulation on A1 expression in MG-63 cells. Through immunohistochemical analysis, we found that the A1 protein was expressed at a higher level in osteosarcoma tissues than in adjacent normal tissues. By cell migration assay, we observed that there was a significant correlation between A1 expression and MG-63 cell migra-tion. The relation is that Tenascin-C FNIIIA1 can promote MG-63 cell migration. According to our further study into the effect of mechanical stimulation on A1 expression in MG-63 cells, the mRNA and protein levels of A1 were significantly up-regulated under mechanical stress with the mTOR molecule proving indispensable. Meanwhile, 4E-BP1 and S6K1 (downstream molecule of mTOR) are necessary for A1 normal expression in MG-63 cells whether or not mechanical stress has been encountered. We found that Tenascin-C FNIIIA1 is over-expressed in osteosar-coma tissues and can promote MG-63 cell migration. Furthermore, mechanical stress can facilitate MG-63 cell migration though facilitating A1 overexpression with the necessary molecules (mTOR, 4E-BP1 and S6K1). In con-clusion, high expression of A1 may promote the meta-stasis of osteosarcoma by facilitating MG-63 cell migration. Tenascin-C FNIIIA1 could be used as an indicator in metastatic osteosarcoma patients.
Collapse
Affiliation(s)
- Lianhe Zheng
- Department of Orthopaedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, 710032, Shaanxi Province,
China
| | - Dianzhong Zhang
- Department of Orthopaedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, 710032, Shaanxi Province,
China
| | - Yunfei Zhang
- Department of Orthopaedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, 710032, Shaanxi Province,
China
| | - Yanhua Wen
- Department of Orthopaedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, 710032, Shaanxi Province,
China
| | - Yucai Wang
- Department of Orthopaedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, 710032, Shaanxi Province,
China
| |
Collapse
|
15
|
Transforming growth factor-β1 may be a key mediator of the fibrogenic properties of neural cells in leprosy. J Neuropathol Exp Neurol 2013; 72:351-66. [PMID: 23481710 DOI: 10.1097/nen.0b013e31828bfc60] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Fibrosis is the main cause of irreversible nerve damage in leprosy. Phenotypic changes in Mycobacterium leprae (ML)-infected Schwann cells (SCs) have been suggested to mediate this process. We found that SC line cultures stimulated with ML upregulated transforming growth factor-β1 (TGF-β1), and that TGF-β1 or ML induced increased numbers of α-smooth muscle actin (α-SMA)-positive cells with characteristic stress fibers. Mycobacterium leprae and TGF-β1 also induced increased type I collagen and fibronectin mRNA and secretion and augmented mRNA levels of SOX9 and ZEB1, which are involved in the epithelial-mesenchymal transition. These effects could be inhibited by the TGF-β1 type I receptor (ALK5) inhibitor, SB-431542. In nerve biopsies from leprosy-infected patients with varying grades of fibrosis (n = 11), type I and III collagen and fibronectin were found in the endoneurium and perineurium, α-SMA-positive cells filled the fibrotic perineurium but not the endoneurium, and CD34-positive fibroblasts predominated in the endoneurium. Results of transcriptional studies of 3 leprosy nerves and 5 controls were consistent with these data, but α-SMA and other mRNA levels were not different from those in the control samples. Our findings suggest that TGF-β1 may orchestrate events, including reprogramming of the SC phenotype, leading to transdifferentiation, connective tissue cell expansion, and fibrogenesis in the evolution of leprosy nerve lesions during some evolutionary stages.
Collapse
|
16
|
|
17
|
Lima FRS, Kahn SA, Soletti RC, Biasoli D, Alves T, da Fonseca ACC, Garcia C, Romão L, Brito J, Holanda-Afonso R, Faria J, Borges H, Moura-Neto V. Glioblastoma: therapeutic challenges, what lies ahead. Biochim Biophys Acta Rev Cancer 2012; 1826:338-49. [PMID: 22677165 DOI: 10.1016/j.bbcan.2012.05.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/25/2012] [Accepted: 05/26/2012] [Indexed: 12/17/2022]
Abstract
Glioblastoma (GBM) is one of the most aggressive human cancers. Despite current advances in multimodality therapies, such as surgery, radiotherapy and chemotherapy, the outcome for patients with high grade glioma remains fatal. The knowledge of how glioma cells develop and depend on the tumor environment might open opportunities for new therapies. There is now a growing awareness that the main limitations in understanding and successfully treating GBM might be bypassed by the identification of a distinct cell type that has defining properties of somatic stem cells, as well as cancer-initiating capacity - brain tumor stem cells, which could represent a therapeutic target. In addition, experimental studies have demonstrated that the combination of antiangiogenic therapy, based on the disruption of tumor blood vessels, with conventional chemotherapy generates encouraging results. Emerging reports have also shown that microglial cells can be used as therapeutic vectors to transport genes and/or substances to the tumor site, which opens up new perspectives for the development of GBM therapies targeting microglial cells. Finally, recent studies have shown that natural toxins can be conjugated to drugs that bind to overexpressed receptors in cancer cells, generating targeted-toxins to selectively kill cancer cells. These targeted-toxins are highly effective against radiation- and chemotherapy-resistant cancer cells, making them good candidates for clinical trials in GBM patients. In this review, we discuss recent studies that reveal new possibilities of GBM treatment taking into account cancer stem cells, angiogenesis, microglial cells and drug delivery in the development of new targeted-therapies.
Collapse
Affiliation(s)
- Flavia R S Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mentlein R, Hattermann K, Held-Feindt J. Lost in disruption: Role of proteases in glioma invasion and progression. Biochim Biophys Acta Rev Cancer 2012; 1825:178-85. [DOI: 10.1016/j.bbcan.2011.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 12/12/2022]
|