1
|
Zheng K, Wei Z, Li W. Ecological insights into hematopoiesis regulation: unraveling the influence of gut microbiota. Gut Microbes 2024; 16:2350784. [PMID: 38727219 PMCID: PMC11093038 DOI: 10.1080/19490976.2024.2350784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The gut microbiota constitutes a vast ecological system within the human body, forming a mutually interdependent entity with the host. In recent years, advancements in molecular biology technologies have provided a clearer understanding of the role of the gut microbiota. They not only influence the local immune status and metabolic functions of the host's intestinal tract but also impact the functional transformation of hematopoietic stem cells (HSCs) through the gut-blood axis. In this review, we will discuss the role of the gut microbiota in influencing hematopoiesis. We analyze the interactions between HSCs and other cellular components, with a particular emphasis on the direct functional regulation of HSCs by the gut microbiota and their indirect influence through cellular components in the bone marrow microenvironment. Additionally, we propose potential control targets for signaling pathways triggered by the gut microbiota to regulate hematopoietic function, filling crucial knowledge gaps in the development of this research field.
Collapse
Affiliation(s)
- Kaiwen Zheng
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| | - Zhifeng Wei
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Shamsasenjan K, Timari H, Saleh M. The effect of mesenchymal stem cell-derived microvesicles on differentiation of umbilical cord blood-derived CD34+ cells toward myeloid lineage. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Upregulation of CD14 in mesenchymal stromal cells accelerates lipopolysaccharide-induced response and enhances antibacterial properties. iScience 2022; 25:103759. [PMID: 35141503 PMCID: PMC8814754 DOI: 10.1016/j.isci.2022.103759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 08/04/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have broad-ranging therapeutic properties, including the ability to inhibit bacterial growth and resolve infection. However, the genetic mechanisms regulating these antibacterial properties in MSCs are largely unknown. Here, we utilized a systems-based approach to compare MSCs from different genetic backgrounds that displayed differences in antibacterial activity. Although both MSCs satisfied traditional MSC-defining criteria, comparative transcriptomics and quantitative membrane proteomics revealed two unique molecular profiles. The antibacterial MSCs responded rapidly to bacterial lipopolysaccharide (LPS) and had elevated levels of the LPS co-receptor CD14. CRISPR-mediated overexpression of endogenous CD14 in MSCs resulted in faster LPS response and enhanced antibacterial activity. Single-cell RNA sequencing of CD14-upregulated MSCs revealed a shift in transcriptional ground state and a more uniform LPS-induced response. Our results highlight the impact of genetic background on MSC phenotypic diversity and demonstrate that overexpression of CD14 can prime these cells to be more responsive to bacterial challenge. MSCs from different genetic backgrounds have distinct responses to bacteria Upregulating CD14 in MSCs enhances LPS-induced response and antibacterial traits CD14 upregulation homogenizes MSC transcriptional profiles across individual cells
Collapse
|
4
|
Sasaki Y, Guo YM, Goto T, Ubukawa K, Asanuma K, Kobayashi I, Sawada K, Wakui H, Takahashi N. IL-6 Generated from Human Hematopoietic Stem and Progenitor Cells through TLR4 Signaling Promotes Emergency Granulopoiesis by Regulating Transcription Factor Expression. THE JOURNAL OF IMMUNOLOGY 2021; 207:1078-1086. [PMID: 34341172 DOI: 10.4049/jimmunol.2100168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/16/2021] [Indexed: 11/19/2022]
Abstract
Emergency granulopoiesis, also known as demand-adapted granulopoiesis, is defined as the response of an organism to systemic bacterial infections, and it results in neutrophil mobilization from reservoir pools and increased myelopoiesis in the bone marrow. Indirect and direct initiating mechanisms of emergency granulopoiesis have been hypothesized. However, the detailed mechanism of hyperactive myelopoiesis in the bone marrow, which leads to granulocyte left shift, remains unknown. In this study, we report that TLR4 is expressed on granulo-monocytic progenitors, as well as mobilized human peripheral blood CD34+ cells, which account for 0.2% of monocytes in peripheral blood, and ∼ 10% in bone marrow. LPS, a component of Gram-negative bacteria that results in a systemic bacterial infection, induces the differentiation of peripheral blood CD34+ cells into myelocytes and monocytes in vitro via the TLR4 signaling pathway. Moreover, CD34+ cells directly responded to LPS stimulation by activating the MAPK and NF-κB signaling pathways, and they produced IL-6 that promotes emergency granulopoiesis by phosphorylating C/EBPα and C/EBPβ, and this effect was suppressed by the action of an IL-6 receptor inhibitor. This work supports the finding that TLR is expressed on human hematopoietic stem and progenitor cells, and it provides evidence that human hematopoietic stem and progenitor cells can directly sense pathogens and produce cytokines exerting autocrine and/or paracrine effects, thereby promoting differentiation.
Collapse
Affiliation(s)
- Yumi Sasaki
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Yong-Mei Guo
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan;
| | - Tatsufumi Goto
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Kumi Ubukawa
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Ken Asanuma
- Division of Radio Isotope, Bioscience Education and Research Support Center, Akita University School of Medicine, Akita, Japan; and
| | - Isuzu Kobayashi
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Kenichi Sawada
- Medical Corporation Hokubukai Utsukushigaoka Hospital, Hokkaido, Japan
| | - Hideki Wakui
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Naoto Takahashi
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
5
|
Vasin MV, Ushakov IB. Potential Ways to Increase Body Resistance to Damaging Action of Ionizing Radiation with Radiomitigators. ACTA ACUST UNITED AC 2020. [DOI: 10.1134/s2079086419060082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Therapeutic Mesenchymal Stromal Cells for Immunotherapy and for Gene and Drug Delivery. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 16:204-224. [PMID: 32071924 PMCID: PMC7012781 DOI: 10.1016/j.omtm.2020.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mesenchymal stromal cells (MSCs) possess several fairly unique properties that, when combined, make them ideally suited for cellular-based immunotherapy and as vehicles for gene and drug delivery for a wide range of diseases and disorders. Key among these are: (1) their relative ease of isolation from a variety of tissues; (2) the ability to be expanded in culture without a loss of functionality, a property that varies to some degree with tissue source; (3) they are relatively immune-inert, perhaps obviating the need for precise donor/recipient matching; (4) they possess potent immunomodulatory functions that can be tailored by so-called licensing in vitro and in vivo; (5) the efficiency with which they can be modified with viral-based vectors; and (6) their almost uncanny ability to selectively home to damaged tissues, tumors, and metastases following systemic administration. In this review, we summarize the latest research in the immunological properties of MSCs, their use as immunomodulatory/anti-inflammatory agents, methods for licensing MSCs to customize their immunological profile, and their use as vehicles for transferring both therapeutic genes in genetic disease and drugs and genes designed to destroy tumor cells.
Collapse
|
7
|
Li Y, Huang L, Cai Z, Deng W, Wang P, Su H, Wu Y, Shen H. A Study of the Immunoregulatory Function of TLR3 and TLR4 on Mesenchymal Stem Cells in Ankylosing Spondylitis. Stem Cells Dev 2019; 28:1398-1412. [PMID: 31456484 DOI: 10.1089/scd.2019.0039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yuxi Li
- Department of Orthopedics and Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lin Huang
- Department of Orthopedics and Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaopeng Cai
- Department of Orthopedics, Sun Yat-sen University Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wen Deng
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Wang
- Department of Orthopedics, Sun Yat-sen University Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hongjun Su
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanfeng Wu
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiyong Shen
- Department of Orthopedics, Sun Yat-sen University Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
8
|
Preconditioning of Rat Bone Marrow-Derived Mesenchymal Stromal Cells with Toll-Like Receptor Agonists. Stem Cells Int 2019; 2019:7692973. [PMID: 31531025 PMCID: PMC6721436 DOI: 10.1155/2019/7692973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are dynamic cells that can sense the environment, adapting their regulatory functions to different conditions. Accordingly, the therapeutic potential of BM-MSCs can be modulated by preconditioning strategies aimed at modifying their paracrine action. Although rat BM-MSCs (rBM-MSCs) have been widely tested in preclinical research, most preconditioning studies have employed human and mouse BM-MSCs. Herein, we investigated whether rBM-MSCs modify their phenotype and paracrine functions in response to Toll-like receptor (TLR) agonists. The data showed that rBM-MSCs expressed TLR3, TLR4, and MDA5 mRNA and were able to internalize polyinosinic-polycytidylic acid (Poly(I:C)), a TLR3/MDA5 agonist. rBM-MSCs were then stimulated with Poly(I:C) or with lipopolysaccharide (LPS, a TLR4 agonist) for 1 h and were grown under normal culture conditions. LPS or Poly(I:C) stimulation did not affect the viability or the morphology of rBM-MSCs and did not modify the expression pattern of key cell surface markers. Poly(I:C) did not induce statistically significant changes in the release of several inflammatory mediators and VEGF by rBM-MSCs, although it tended to increase IL-6 and MCP-1 secretion, whereas LPS increased the release of IL-6, MCP-1, and VEGF, three factors that were constitutively secreted by unstimulated cells. The neurotrophic activity of the conditioned medium from unstimulated and LPS-preconditioned rBM-MSCs was investigated using dorsal root ganglion explants, showing that soluble factors produced by unstimulated and LPS-preconditioned rBM-MSCs can stimulate neurite outgrowth similarly, in a VEGF-dependent manner. LPS-preconditioned cells, however, were slightly more efficient in increasing the number of regrowing axons in a model of sciatic nerve transection in rats. In conclusion, LPS preconditioning boosted the production of constitutively secreted factors by rBM-MSCs, without changing their mesenchymal identity, an effect that requires further investigation in exploratory preclinical studies.
Collapse
|
9
|
Tsepkolenko A, Tsepkolenko V, Dash S, Mishra A, Bader A, Melerzanov A, Giri S. The regenerative potential of skin and the immune system. Clin Cosmet Investig Dermatol 2019; 12:519-532. [PMID: 31410045 PMCID: PMC6643261 DOI: 10.2147/ccid.s196364] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/22/2019] [Indexed: 12/11/2022]
Abstract
Skin has the natural ability to heal and replace dead cells regulated by a network of complex immune processes. This ability is conferred by the population of resident immune cells that act in coordination with other players to provide a homeostatic environment under constant challenge. Other than providing structure and integrity, the epidermis and dermis also house distinct immune properties. The dermal part is represented by fibroblasts and endothelial cells followed by an array of immune cells which includes dendritic cells (DCs), macrophages, mast cells, NK-cells, neutrophils, basophils, eosinophils, αβ T lymphocytes, B-cells and platelets. On the other hand, the functionally active immune cells in the epidermis comprise keratinocytes, DCs, NKT-cells, γδ T cells and αβ T cells (CD4+ and CD8+). Keratinocytes create a unique microenvironment for the cells of the immune system by promoting immune recognition and cellular differentiation. T lymphocytes exhibit tissue-specific tropism toward the epidermis and the lymphatic drainage system important for their function in immune regulation. This diversity in immune regulators makes the skin a unique organ to overcome pathogenic or foreign invasion. In addition, the highly coordinated molecular events make the skin an attractive model to understand and explore its regenerative potential.
Collapse
Affiliation(s)
| | | | - Sabyasachi Dash
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10044, USA
| | - Apoorva Mishra
- Moscow Institute of Physics and Technology
, Dolgoprudny, Moscow Region141700, Russia
| | - Augustinus Bader
- Applied Stem Cell Biology and Cell Technology, Biomedical and Biotechnological Center (BBZ), Medical Faculty, University of Leipzig, Leipzig, D-04103, Germany
| | - Alexander Melerzanov
- Moscow Institute of Physics and Technology
, Dolgoprudny, Moscow Region141700, Russia
| | - Shibashish Giri
- Applied Stem Cell Biology and Cell Technology, Biomedical and Biotechnological Center (BBZ), Medical Faculty, University of Leipzig, Leipzig, D-04103, Germany
- Department of Plastic and Hand Surgery, University Hospital Rechts der Isar, Munich Technical University, Munich, Germany
| |
Collapse
|
10
|
O'Rourke F, Kempf VAJ. Interaction of bacteria and stem cells in health and disease. FEMS Microbiol Rev 2019; 43:162-180. [DOI: 10.1093/femsre/fuz003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Fiona O'Rourke
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, University Hospital, Goethe University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany
| | - Volkhard A J Kempf
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, University Hospital, Goethe University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany
| |
Collapse
|
11
|
Ellery SJ, Kelleher M, Grigsby P, Burd I, Derks JB, Hirst J, Miller SL, Sherman LS, Tolcos M, Walker DW. Antenatal prevention of cerebral palsy and childhood disability: is the impossible possible? J Physiol 2018; 596:5593-5609. [PMID: 29928763 DOI: 10.1113/jp275595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
This review covers our current knowledge of the causes of perinatal brain injury leading to cerebral palsy-like outcomes, and argues that much of this brain damage is preventable. We review the experimental evidence that there are treatments that can be safely administered to women in late pregnancy that decrease the likelihood and extent of perinatal brain damage that occurs because of acute and severe hypoxia that arises during some births, and the additional impact of chronic fetal hypoxia, infection, inflammation, growth restriction and preterm birth. We discuss the types of interventions required to ameliorate or even prevent apoptotic and necrotic cell death, and the vulnerability of all the major cell types in the brain (neurons, astrocytes, oligodendrocytes, microglia, cerebral vasculature) to hypoxia/ischaemia, and whether a pan-protective treatment given to the mother before birth is a realistic prospect.
Collapse
Affiliation(s)
- Stacey J Ellery
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Meredith Kelleher
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Peta Grigsby
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Irina Burd
- Department of Gynecology & Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| | - Jan B Derks
- Department of Perinatal Medicine University Medical Center Utrecht, The Netherlands, Gynaecology, Monash University, Melbourne, Australia
| | - Jon Hirst
- University of Newcastle, Newcastle, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Larry S Sherman
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Mary Tolcos
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia
| | - David W Walker
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia.,School of Health & Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia
| |
Collapse
|
12
|
Wang X, Ye X, Ji J, Wang J, Xu B, Zhang Q, Ming J, Liu X. MicroRNA‑155 targets myosin light chain kinase to inhibit the migration of human bone marrow‑derived mesenchymal stem cells. Int J Mol Med 2018; 42:1585-1592. [PMID: 29901087 DOI: 10.3892/ijmm.2018.3718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 05/31/2018] [Indexed: 11/06/2022] Open
Abstract
Toll‑like receptors (TLRs) are expressed in human bone marrow‑derived mesenchymal stromal cells (BM‑MSCs). The activation of TLRs is important in the proliferation, differ-entiation, migration and hematopoiesis‑supporting functions of BM‑MSCs. MicroRNAs (miRNAs) are involved in various biological functions by mediating mRNA degradation or inhibiting the translation of target genes. Our previous study confirmed that TLRs regulate the migration ability of BM‑MSCs. It was also identified that multiple miRNAs were regulated by TLRs. In view of this, it was hypothesized that TLR‑regulated miRNAs may be important in regulating the migration of BM‑MSCs. The migration ability of BM‑MSCs was evaluated following transfection of the cells with the mimics or antagonists of miRNA (miR)‑27b, miR‑146a, miR‑155 and miR‑154. miR‑155 significantly inhibited cell migration. Myosin light chain kinase (MYLK) was identified as the direct target of miR‑155 in BM‑MSCs, which was further investigated using the luciferase reporter assay. However, miR‑155 did not affect the expression of upstream proteins of the RhoA pathway controlling the activity of MYLK, suggesting that miR‑155 directly suppressed the expression of MYLK without affecting the RhoA pathway. These results may facilitate the development and clinical use of BM‑MSCs in terms of their migration.
Collapse
Affiliation(s)
- Xingbing Wang
- Department of Hematology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Xu Ye
- Department of Hematology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Jingjuan Ji
- Reproductive Medicine Center, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Jian Wang
- Department of Hematology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Bo Xu
- Reproductive Medicine Center, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Qian Zhang
- Department of Hematology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Jing Ming
- Department of Hematology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Xin Liu
- Department of Hematology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
13
|
Zhan Y, He Z, Liu X, Miao N, Lin F, Xu W, Mu S, Mu H, Yuan M, Cao X, Jin H, Liu Z, Li Y, Zhang B. Aspirin-induced attenuation of adipogenic differentiation of bone marrow mesenchymal stem cells is accompanied by the disturbed epigenetic modification. Int J Biochem Cell Biol 2018; 98:29-42. [DOI: 10.1016/j.biocel.2018.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 12/15/2022]
|
14
|
Liu J, Tao H, Wang H, Dong F, Zhang R, Li J, Ge P, Song P, Zhang H, Xu P, Liu X, Shen C. Biological Behavior of Human Nucleus Pulposus Mesenchymal Stem Cells in Response to Changes in the Acidic Environment During Intervertebral Disc Degeneration. Stem Cells Dev 2017; 26:901-911. [PMID: 28298159 DOI: 10.1089/scd.2016.0314] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
An acidic environment is vital for the maintenance of cellular activities but can be affected tremendously during intervertebral disc degeneration (IVDD). The effect of changes in the acidity of the environment on human nucleus pulposus mesenchymal stem cells (NP-MSCs) is, however, unknown. Thus, this study aimed to observe the biological effects of acidic conditions mimicking a degenerated intervertebral disc on NP-MSCs in vitro. NP-MSCs were isolated from patients with lumbar disc herniation and were further identified by their immunophenotypes and multilineage differentiation. Then, cells were cultured at acidic pH levels (pH 6.2, pH 6.5, pH 6.8, pH 7.1, and pH 7.4) with/without amiloride, an acid-sensing ion channel (ASIC) blocker. The proliferation and apoptosis of NP-MSCs and the expression of stem cell-related genes (Oct4, Nanog, Jagged, Notch1), ASICs, and functional genes (Aggrecan, SOX-9, Collagen-I, and Collagen-II) in NP-MSCs were evaluated. Our work showed that cells obtained from human degenerated NP met the criteria of International Society for Cellular Therapy. Therefore, cells obtained from a degenerated nucleus pulposus were definitively identified as NP-MSCs. Our results also indicated that acidic conditions could significantly inhibit cell proliferation and increase cell apoptosis. Gene expression results demonstrated that acidic conditions could decrease the expression of stem cell-related genes and inhibit extracellular matrix synthesis, whereas it could increase the expression of ASICs. Our study further verified that the above-mentioned biological activities of NP-MSCs could be significantly improved by amiloride. Therefore, the results of the study indicated that the biological behavior of NP-MSCs could be inhibited by acidic conditions during IVDD, and amiloride may meliorate IVDD by improving the activities of NP-MSCs.
Collapse
Affiliation(s)
- Jianjun Liu
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Hui Tao
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Hanbang Wang
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Fulong Dong
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Renjie Zhang
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Jie Li
- 2 Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Peng Ge
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Peiwen Song
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Huaqing Zhang
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Peng Xu
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Xiaoying Liu
- 3 Biology Department, School of Life Science, Anhui Medical University , Hefei, People's Republic of China
| | - Cailiang Shen
- 1 Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| |
Collapse
|
15
|
Najar M, Krayem M, Meuleman N, Bron D, Lagneaux L. Mesenchymal Stromal Cells and Toll-Like Receptor Priming: A Critical Review. Immune Netw 2017; 17:89-102. [PMID: 28458620 PMCID: PMC5407987 DOI: 10.4110/in.2017.17.2.89] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal Stromal Cells (MSCs) are potential cellular candidates for several immunotherapy purposes. Their multilineage potential and immunomodulatory properties make them interesting tools for the treatment of various immunological diseases. However, depending on the local microenvironment, diverse biological functions of MSCs can be modulated. Indeed, during infections such as obtained following TLR-agonist engagement (called as TLR priming), the phenotype, multilineage potential, hematopoietic support and immunomodulatory capacity of MSCs can present critical changes, which could further affect their therapeutic potential. Thus, for appropriate clinical application of MSCs, it is important to well know and understand these effects in particular during infectious episodes and to find the suitable experimental settings to study that. Pre-stimulation of MSCs with a specific TLR ligand may serve as an effective priming step to modulate one of its function to achieve a desired therapeutic issue.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Belgium
| | - Mohammad Krayem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels 1000, Belgium
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Belgium
| | - Dominique Bron
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Belgium
| |
Collapse
|
16
|
Murphy KC, Whitehead J, Falahee PC, Zhou D, Simon SI, Leach JK. Multifactorial Experimental Design to Optimize the Anti-Inflammatory and Proangiogenic Potential of Mesenchymal Stem Cell Spheroids. Stem Cells 2017; 35:1493-1504. [PMID: 28276602 DOI: 10.1002/stem.2606] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/13/2017] [Accepted: 02/19/2017] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cell therapies promote wound healing by manipulating the local environment to enhance the function of host cells. Aggregation of mesenchymal stem cells (MSCs) into three-dimensional spheroids increases cell survival and augments their anti-inflammatory and proangiogenic potential, yet there is no consensus on the preferred conditions for maximizing spheroid function in this application. The objective of this study was to optimize conditions for forming MSC spheroids that simultaneously enhance their anti-inflammatory and proangiogenic nature. We applied a design of experiments (DOE) approach to determine the interaction between three input variables (number of cells per spheroid, oxygen tension, and inflammatory stimulus) on MSC spheroids by quantifying secretion of prostaglandin E2 (PGE2 ) and vascular endothelial growth factor (VEGF), two potent molecules in the MSC secretome. DOE results revealed that MSC spheroids formed with 40,000 cells per spheroid in 1% oxygen with an inflammatory stimulus (Spheroid 1) would exhibit enhanced PGE2 and VEGF production versus those formed with 10,000 cells per spheroid in 21% oxygen with no inflammatory stimulus (Spheroid 2). Compared to Spheroid 2, Spheroid 1 produced fivefold more PGE2 and fourfold more VEGF, providing the opportunity to simultaneously upregulate the secretion of these factors from the same spheroid. The spheroids induced macrophage polarization, sprout formation with endothelial cells, and keratinocyte migration in a human skin equivalent model-demonstrating efficacy on three key cell types that are dysfunctional in chronic non-healing wounds. We conclude that DOE-based analysis effectively identifies optimal culture conditions to enhance the anti-inflammatory and proangiogenic potential of MSC spheroids. Stem Cells 2017;35:1493-1504.
Collapse
Affiliation(s)
- Kaitlin C Murphy
- Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Jacklyn Whitehead
- Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Patrick C Falahee
- Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Dejie Zhou
- Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Scott I Simon
- Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - J Kent Leach
- Department of Biomedical Engineering, University of California Davis, Davis, California, USA.,Department of Orthopaedic Surgery, School of Medicine, University of California Davis, Sacramento, California, USA
| |
Collapse
|
17
|
Jang YJ, Park JI, Jeong SE, Seo YM, Dam PTM, Seo YW, Choi BC, Song SJ, Chun SY, Cho MK. Regulation of interleukin-11 expression in ovulatory follicles of the rat ovary. Reprod Fertil Dev 2017; 29:2437-2445. [DOI: 10.1071/rd16460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/29/2017] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to examine the regulation of interleukin (IL)-11 expression, as well as the role of IL-11, during ovulation in gonadotropin-primed immature rats. Injection of equine chorionic gonadotropin (eCG), followed by human CG (hCG) to induce superovulation stimulated expression of the Il11 gene in theca cells within 6 h, as revealed by northern blot and in situ hybridisation analyses. Real-time reverse transcription–polymerase chain reaction analysis showed that the IL-11 receptor, α subunit gene was expressed in granulosa and theca cells and that injection of hCG had no effect on its expression. IL-11 protein expression was stimulated in theca cells by hCG. LH-stimulated increases in Il11 mRNA levels in cultured preovulatory follicles were inhibited by protein kinase A and mitogen-activated protein kinase kinase inhibitors. Toll-like receptor (TLR) 2 and TLR4 were detected in preovulatory follicles, and the TLR4 ligand lipopolysaccharide, but not the TLR2 ligand Pam3Cys, increased Il11 mRNA levels in theca cells, but not in granulosa cells. Treatment of preovulatory follicles with IL-11 stimulated progesterone production and steroidogenic acute regulatory protein (Star) gene expression. Together, these results indicate that IL-11 in theca cells is stimulated by mitogen-activated protein kinase signalling and TLR4 activation, and increases progesterone production during ovulation.
Collapse
|
18
|
Modulation of Immunoregulatory Properties of Mesenchymal Stromal Cells by Toll-Like Receptors: Potential Applications on GVHD. Stem Cells Int 2016; 2016:9434250. [PMID: 27738438 PMCID: PMC5050362 DOI: 10.1155/2016/9434250] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/22/2016] [Indexed: 12/25/2022] Open
Abstract
In the last decade, the immunomodulatory properties of mesenchymal stromal cells (MSCs) have attracted a lot of attention, due to their potential applicability in the treatment of graft-versus-host disease (GVHD), a condition frequently associated with opportunistic infections. The present review addresses how Pathogen-Associated Molecular Patterns (PAMPS) modulate the immunosuppressive phenotype of human MSCs by signaling through Toll-like receptors (TLRs). Overall, we observed that regardless of the source tissue, human MSCs express TLR2, TLR3, TLR4, and TLR9. Stimulation of distinct TLRs on MSCs elicits distinct inflammatory signaling pathways, differentially influencing the expression of inflammatory factors and the ability of MSCs to suppress the proliferation of immune system cells. The capacity to enhance the immunosuppressive phenotype of MSCs through TLRs stimulation might be properly elucidated in order to improve the MSC-based immunotherapy against GVHD.
Collapse
|
19
|
Enciso J, Mayani H, Mendoza L, Pelayo R. Modeling the Pro-inflammatory Tumor Microenvironment in Acute Lymphoblastic Leukemia Predicts a Breakdown of Hematopoietic-Mesenchymal Communication Networks. Front Physiol 2016; 7:349. [PMID: 27594840 PMCID: PMC4990565 DOI: 10.3389/fphys.2016.00349] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/02/2016] [Indexed: 01/10/2023] Open
Abstract
Lineage fate decisions of hematopoietic cells depend on intrinsic factors and extrinsic signals provided by the bone marrow microenvironment, where they reside. Abnormalities in composition and function of hematopoietic niches have been proposed as key contributors of acute lymphoblastic leukemia (ALL) progression. Our previous experimental findings strongly suggest that pro-inflammatory cues contribute to mesenchymal niche abnormalities that result in maintenance of ALL precursor cells at the expense of normal hematopoiesis. Here, we propose a molecular regulatory network interconnecting the major communication pathways between hematopoietic stem and progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs) within the BM. Dynamical analysis of the network as a Boolean model reveals two stationary states that can be interpreted as the intercellular contact status. Furthermore, simulations describe the molecular patterns observed during experimental proliferation and activation. Importantly, our model predicts instability in the CXCR4/CXCL12 and VLA4/VCAM1 interactions following microenvironmental perturbation due by temporal signaling from Toll like receptors (TLRs) ligation. Therefore, aberrant expression of NF-κB induced by intrinsic or extrinsic factors may contribute to create a tumor microenvironment where a negative feedback loop inhibiting CXCR4/CXCL12 and VLA4/VCAM1 cellular communication axes allows for the maintenance of malignant cells.
Collapse
Affiliation(s)
- Jennifer Enciso
- Oncology Research Unit, Mexican Institute for Social SecurityMexico City, Mexico; Biochemistry Sciences Program, Universidad Nacional Autónoma de MexicoMexico City, Mexico
| | - Hector Mayani
- Oncology Research Unit, Mexican Institute for Social Security Mexico City, Mexico
| | - Luis Mendoza
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de Mexico Mexico City, Mexico
| | - Rosana Pelayo
- Oncology Research Unit, Mexican Institute for Social Security Mexico City, Mexico
| |
Collapse
|
20
|
Pleyer L, Valent P, Greil R. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis-Masters of Survival and Clonality? Int J Mol Sci 2016; 17:ijms17071009. [PMID: 27355944 PMCID: PMC4964385 DOI: 10.3390/ijms17071009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/20/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are malignant hematopoietic stem cell disorders that have the capacity to progress to acute myeloid leukemia (AML). Accumulating evidence suggests that the altered bone marrow (BM) microenvironment in general, and in particular the components of the stem cell niche, including mesenchymal stem cells (MSCs) and their progeny, play a pivotal role in the evolution and propagation of MDS. We here present an overview of the role of MSCs in the pathogenesis of MDS, with emphasis on cellular interactions in the BM microenvironment and related stem cell niche concepts. MSCs have potent immunomodulatory capacities and communicate with diverse immune cells, but also interact with various other cellular components of the microenvironment as well as with normal and leukemic stem and progenitor cells. Moreover, compared to normal MSCs, MSCs in MDS and AML often exhibit altered gene expression profiles, an aberrant phenotype, and abnormal functional properties. These alterations supposedly contribute to the “reprogramming” of the stem cell niche into a disease-permissive microenvironment where an altered immune system, abnormal stem cell niche interactions, and an impaired growth control lead to disease progression. The current article also reviews molecular targets that play a role in such cellular interactions and possibilities to interfere with abnormal stem cell niche interactions by using specific targeted drugs.
Collapse
Affiliation(s)
- Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.
- Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute, 5020 Salzburg, Austria.
- 3rd Medical Department, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology & Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Richard Greil
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.
- Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute, 5020 Salzburg, Austria.
- 3rd Medical Department, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| |
Collapse
|
21
|
Wang X, Zhu Y, Xu B, Wang J, Liu X. Identification of TLR2 and TLR4‑induced microRNAs in human mesenchymal stem cells and their possible roles in regulating TLR signals. Mol Med Rep 2016; 13:4969-80. [PMID: 27121537 PMCID: PMC4878556 DOI: 10.3892/mmr.2016.5197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 01/14/2016] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are expressed in human bone marrow-derived mesenchymal stromal cells (BM-MSCs), and the activation of TLRs is important in proliferation, differentiation, migration and hematopoiesis-supporting functions of BM-MSCs. However, the molecular mechanisms underlying these processes remain to be elucidated. MicroRNAs (miRNAs) are involved in various biological functions by mediating mRNA degradation or inhibiting translation of target genes. The present study aimed to identify whether TLRs regulate the expression of miRNAs in BM-MSCs and elucidate the regulatory roles of miRNAs. Illumina high-throughput sequencing was used to profile miRNAs expressed in BM-MSCs stimulated with TLR2 agonist, PAM3CSK4 (PM) or TLR4 agonist, lipopolysaccharides (LPS). A marked expression change upon PM or LPS treatment was observed for 164 known miRNAs and six novel miRNAs that were identified. The expression of six novel miRNAs and 40 randomly selected known miRNAs was further validated by reverse transcription-quantitative polymerase chain reaction. In addition, bioinformatic methods were used to predict the potential target genes of the abundant known miRNAs. The gene ontology analysis demonstrated that predicted targets were enriched in the regulation of signal transduction, cellular processes and macromolecule metabolic processes. Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that these potential targets were involved in numerous important pathways, predominantly including mitogen-activated protein kinase, phosphati-dylinositol-4,5-bisphosphate 3-kinase-Akt, neurotrophin and cancer-associated signaling pathways. The present study aimed to identify the global expression change of miRNAs in BM-MSCs stimulated with LPS and PM, providing the opportunity to further elucidate the roles of miRNAs in mediating TLR signals to regulate the functions of BM-MSCs.
Collapse
Affiliation(s)
- Xingbing Wang
- Department of Hematology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Yunxia Zhu
- Department of Hematology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Bo Xu
- Reproductive Medicine Center, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Jing Wang
- Department of Hematology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Xin Liu
- Department of Hematology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
22
|
Ziegler P, Boettcher S, Takizawa H, Manz MG, Brümmendorf TH. LPS-stimulated human bone marrow stroma cells support myeloid cell development and progenitor cell maintenance. Ann Hematol 2015; 95:173-8. [PMID: 26555286 DOI: 10.1007/s00277-015-2550-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/04/2015] [Indexed: 01/22/2023]
Abstract
The nonhematopoietic bone marrow (BM) microenvironment provides a functional niche for hematopoietic cell maintenance, recruitment, and differentiation. It consists of multiple cell types including vasculature, bone, adipose tissue, and fibroblast-like bone marrow stromal cells (BMSC), which can be summarized under the generic term niche cells. BMSC express Toll-like receptors (TLRs) and are capable to respond to TLR-agonists by changing their cytokine expression pattern in order to more efficiently support hematopoiesis. Here, we show that in addition to enhanced myeloid colony formation from human CD34+ cells, lipopolysaccharide (LPS) stimulation retains overall higher numbers of CD34+ cells in co-culture assays using BMSC, with eightfold more CD34+ cells that underwent up to three divisions as compared to non-stimulated assays. When subjected to cytokine-supplemented myeloid colony-forming unit (CFU) assays or transplanted into newborn RAG2(-/-) γc (-/-) mice, CD34(+) cells from LPS-stimulated BMSC cultures give rise to the full spectrum of myeloid colonies and T and B cells, respectively, thus supporting maintenance of myeloid and lymphoid primed hematopoietic progenitor cells (HPCs) under inflammatory conditions. Collectively, we suggest that BMSC enhance hematopoiesis during inflammatory conditions to support the replenishment of innate immune effector cells and to prevent the exhaustion of the hematopoietic stem and progenitor cell (HSPC) pool.
Collapse
Affiliation(s)
- Patrick Ziegler
- Institute for Occupational and Social Medicine, RWTH Aachen University, Aachen, Germany.
- Institute for Research in Biomedicine (IRB), Via Vincenzo Vela 6, 6500, Bellinzona, Switzerland.
| | - Steffen Boettcher
- Institute for Research in Biomedicine (IRB), Via Vincenzo Vela 6, 6500, Bellinzona, Switzerland
- Division of Hematology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Hitoshi Takizawa
- Institute for Research in Biomedicine (IRB), Via Vincenzo Vela 6, 6500, Bellinzona, Switzerland
- Division of Hematology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Markus G Manz
- Institute for Research in Biomedicine (IRB), Via Vincenzo Vela 6, 6500, Bellinzona, Switzerland
- Division of Hematology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Tim H Brümmendorf
- Department of Oncology, Hematology, Hemostaseology and Stem cell transplantation, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| |
Collapse
|
23
|
Lei J, Firdaus W, Rosenzweig JM, Alrebh S, Bakhshwin A, Borbiev T, Fatemi A, Blakemore K, Johnston MV, Burd I. Murine model: maternal administration of stem cells for prevention of prematurity. Am J Obstet Gynecol 2015; 212:639.e1-10. [PMID: 25555657 DOI: 10.1016/j.ajog.2014.12.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/01/2014] [Accepted: 12/21/2014] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Using a mouse model of intrauterine inflammation, we have demonstrated that exposure to inflammation induces preterm birth and perinatal brain injury. Mesenchymal stem cells (MSCs) have been shown to exhibit immunomodulatory effects in many inflammatory conditions. We hypothesized that treatment with human adipose tissue-derived MSCs may decrease the rate of preterm birth and perinatal brain injury through changes in antiinflammatory and regulatory milieu. STUDY DESIGN A mouse model of intrauterine inflammation was used with the following groups: (1) control; (2) intrauterine inflammation (lipopolysaccharide); and (3) intrauterine lipopolysaccharide+intraperitoneal (MSCs). Preterm birth was investigated. Luminex multiplex enzyme-linked immunosorbent assays were performed for protein levels of cytokines in maternal and fetal compartments. Immunofluorescent staining was used to identify and localize MSCs and to examine microglial morphologic condition and neurotoxicity in perinatal brain. Behavioral testing was performed at postnatal day 5. RESULTS Pretreatment with MSCs significantly decreased the rate of preterm birth by 21% compared with the lipopolysaccharide group (P<.01). Pretreatment was associated with increased interleukin-10 in maternal serum, increased interleukin-4 in placenta, decreased interleukin-6 in fetal brain (P<.05), decreased microglial activation (P<.05), and decreased fetal neurotoxicity (P<.05). These findings were associated with improved neurobehavioral testing at postnatal day 5 (P<.05). Injected MSCs were localized to placenta. CONCLUSION Maternally administered MSCs appear to modulate maternal and fetal immune response to intrauterine inflammation in the model and decrease preterm birth, perinatal brain injury, and motor deficits in offspring mice.
Collapse
Affiliation(s)
- Jun Lei
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Wance Firdaus
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jason M Rosenzweig
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shorouq Alrebh
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ahmed Bakhshwin
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Talaibek Borbiev
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ali Fatemi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD; The Kennedy Krieger Institute, Baltimore, MD
| | - Karin Blakemore
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michael V Johnston
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD; The Kennedy Krieger Institute, Baltimore, MD
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD; The Kennedy Krieger Institute, Baltimore, MD.
| |
Collapse
|
24
|
Toll like receptor 3 & 4 responses of human turbinate derived mesenchymal stem cells: stimulation by double stranded RNA and lipopolysaccharide. PLoS One 2014; 9:e101558. [PMID: 25004159 PMCID: PMC4086816 DOI: 10.1371/journal.pone.0101558] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/09/2014] [Indexed: 01/17/2023] Open
Abstract
Background and objectives Multipotent mesenchymal stromal cells (MSCs) represent a promising cell-based therapy for a number of inflammatory or autoimmune diseases. Herein, Toll like receptor (TLR) expression by MSCs and their immune regulatory roles are investigated. In this study, we investigated the influence of TLR on the immune response, proliferation, and differentiation potential of human turbinated MSC (hTMSC) cultures in vitro. Subjects and Methods After isolating hTMSCs from discarded inferior turbinate tissue, FACS analysis was used to assess the expression of TLRs such as TLR2, TLR3, TLR4, and TLR5 in hTMSCs and cell proliferation was assessed using a cell counting kit (CCK)-8. Cytokine and chemokine secretions were analyzed with multiplex immunoassays for IL-1α, IL-1β, IL-4, IL-6, IL-8, IL-10, IL-12, IP-10 (CXCL10), RANTES (CCL5), TNF-a, GM-CSF, and IFN-γ. The differentiation potential of hTMSCs was evaluated in the osteogenic, chondogenic, and adipogeinc media and analyzed by histology and gene expression related to differentiation. Results FACS analysis revealed that TLR3 and TLR4 expression consisted of a relatively high percentage of the surface proteins expressed by hTMSCs. The proliferation of hTMSCs was influenced and significantly increased by the presence of TLR4 agonists. In particular, hTMSCs produced a set of cytokines and chemokines and the expression of IL-6, IL-8, IL-12, IP-10 (CXCL10), RANTES (CCL5), TNF-α, and GM-CSF were up-regulated in response to the TLR4 agonist LPS. The osteogenic and adipogeinc differentiation potential of hTMSCs was not affected by TLR agonists. Conclusions We conclude that TLR4 stimulation affects TLR expression, proliferation, and the immunomodulation potential of hTMSCs. Understanding the mechanism behind TLR's influence on hTMSCs and their immunomodulating properties would be useful for providing a novel target to exploit in the improvement of stem cell-based therapeutic strategies.
Collapse
|
25
|
Current world literature. Curr Opin Organ Transplant 2013; 18:111-30. [PMID: 23299306 DOI: 10.1097/mot.0b013e32835daf68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Distinctive contact between CD34+ hematopoietic progenitors and CXCL12+ CD271+ mesenchymal stromal cells in benign and myelodysplastic bone marrow. J Transl Med 2012; 92:1330-41. [PMID: 22710983 DOI: 10.1038/labinvest.2012.93] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) support hematopoiesis and are cytogenetically and functionally abnormal in myelodysplastic syndrome (MDS), implying a possible pathophysiologic role in MDS and potential utility as a diagnostic or risk-stratifying tool. We have analyzed putative MSC markers and their relationship to CD34+ hematopoietic stem/progenitor cells (HSPCs) within intact human bone marrow in paraffin-embedded bone marrow core biopsies of benign, MDS and leukemic (AML) marrows using tissue microarrays to facilitate scanning, image analysis and quantitation. We found that CD271+, ALP+ MSCs formed an extensive branching perivascular, periosteal and parenchymal network. Nestin was brightly positive in capillary/arteriolar endothelium and occasional subendothelial cells, whereas CD146 was most brightly expressed in SMA+ vascular smooth muscle/pericytes. CD271+ MSCs were distinct by double immunofluorescence from CD163+ macrophages and were in close contact with but distinct from brightly nestin+ and from brightly CD146+ vascular elements. Double immunofluorescence revealed an intimate spatial relationship between CD34+ HSPCs and CD271+ MSCs; remarkably, 86% of CD34+ HSPCs were in direct contact with CD271+ MSCs across benign, MDS and AML marrows, predominantly in a perivascular distribution. Expression of the intercrine chemokine CXCL12 was strong in the vasculature in both benign and neoplastic marrow, but was also present in extravascular parenchymal cells, particularly in MDS specimens. We identified these parenchymal cells as MSCs by ALP/CXCL12 and CD271/CXCL12 double immunofluorescence. The area covered by CXCL12+ ALP+ MSCs was significantly greater in MDS compared with benign and AML marrow (P=0.021, Kruskal-Wallis test). The preservation of direct CD271+ MSC/CD34+ HSPC contact across benign and neoplastic marrow suggests a physiologically important role for the CD271+ MSC/CD34+ HSPC relationship and possible abnormal exposure of CD34+ HSPCs to increased MSC CXCL12 expression in MDS.
Collapse
|
27
|
Delarosa O, Dalemans W, Lombardo E. Toll-like receptors as modulators of mesenchymal stem cells. Front Immunol 2012; 3:182. [PMID: 22783256 PMCID: PMC3387651 DOI: 10.3389/fimmu.2012.00182] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/13/2012] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have differentiation and immunomodulatory properties that make them interesting tools for the treatment of degenerative disorders, allograft rejection, or inflammatory and autoimmune diseases. Biological properties of MSCs can be modulated by the inflammatory microenvironment they face at the sites of injury or inflammation. Indeed, MSCs do not constitutively exert their immunomodulating properties but have to be primed by inflammatory mediators released from immune cells and inflamed tissue. A polarization process, mediated by Toll-like receptors (TLRs), toward either an anti-inflammatory or a pro-inflammatory phenotype has been described for MSCs. TLRs have been linked to allograft rejection and the perpetuation of chronic inflammatory diseases (e.g., Crohn’s disease, rheumatoid arthritis) through the recognition of conserved pathogen-derived components or endogenous ligands (danger signals) produced upon injury. Interest in understanding the effects of TLR activation on MSCs has greatly increased in the last few years since MSCs will likely encounter TLR ligands at sites of injury, and it has been proven that the activation of TLRs in MSCs can modulate their function and therapeutic effect.
Collapse
Affiliation(s)
- Olga Delarosa
- Research and Development Department, TiGenix SA, Parque Tecnológico de Madrid Madrid, Spain
| | | | | |
Collapse
|