1
|
Varzideh F, Gambardella J, Kansakar U, Jankauskas SS, Santulli G. Molecular Mechanisms Underlying Pluripotency and Self-Renewal of Embryonic Stem Cells. Int J Mol Sci 2023; 24:8386. [PMID: 37176093 PMCID: PMC10179698 DOI: 10.3390/ijms24098386] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Embryonic stem cells (ESCs) are derived from the inner cell mass (ICM) of the blastocyst. ESCs have two distinctive properties: ability to proliferate indefinitely, a feature referred as "self-renewal", and to differentiate into different cell types, a peculiar characteristic known as "pluripotency". Self-renewal and pluripotency of ESCs are finely orchestrated by precise external and internal networks including epigenetic modifications, transcription factors, signaling pathways, and histone modifications. In this systematic review, we examine the main molecular mechanisms that sustain self-renewal and pluripotency in both murine and human ESCs. Moreover, we discuss the latest literature on human naïve pluripotency.
Collapse
Affiliation(s)
- Fahimeh Varzideh
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jessica Gambardella
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Stanislovas S. Jankauskas
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Gaetano Santulli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
2
|
Resveratrol enhances pluripotency of mouse embryonic stem cells by activating AMPK/Ulk1 pathway. Cell Death Discov 2019; 5:61. [PMID: 30729040 PMCID: PMC6361884 DOI: 10.1038/s41420-019-0137-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 11/25/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
Resveratrol, a natural polyphenolic compound, shows many beneficial effects in various animal models. It increases efficiency of somatic cell reprograming into iPSCs and contributes to cell differentiation. Here, we studied the effect of resveratrol on proliferation and pluripotency of mouse embryonic stem cells (mESCs). Our results demonstrate that resveratrol induces autophagy in mESCs that is provided by the activation of the AMPK/Ulk1 pathway and the concomitant suppression of the activity of the mTORC1 signaling cascade. These events correlate with the enhanced expression of pluripotency markers Oct3/4, Sox2, Nanog, Klf4, SSEA-1 and alkaline phosphatase. Pluripotency is retained under resveratrol-caused retardation of cell proliferation. Given that the Ulk1 overexpression enhances pluripotency of mESCs, the available data evidence that mTOR/Ulk1/AMPK-autophagy network provides the resveratrol-mediated regulation of mESC pluripotency. The capability of resveratrol to support the mESC pluripotency provides a new approach for developing a defined medium for ESC culturing as well as for better understanding signaling events that govern self-renewal and pluripotency.
Collapse
|
3
|
Brennan JC, Tillitt DE. Development of a dual luciferase activity and fluorescamine protein assay adapted to a 384 micro-well plate format: Reducing variability in human luciferase transactivation cell lines aimed at endocrine active substances. Toxicol In Vitro 2018; 47:18-25. [DOI: 10.1016/j.tiv.2017.10.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 11/27/2022]
|
4
|
Godwin S, Ward D, Pedone E, Homer M, Fletcher AG, Marucci L. An extended model for culture-dependent heterogenous gene expression and proliferation dynamics in mouse embryonic stem cells. NPJ Syst Biol Appl 2017; 3:19. [PMID: 28794899 PMCID: PMC5543144 DOI: 10.1038/s41540-017-0020-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 05/31/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022] Open
Abstract
During development, pluripotency is a transient state describing a cell's ability to give rise to all three germ layers and germline. Recent studies have shown that, in vitro, pluripotency is highly dynamic: exogenous stimuli provided to cultures of mouse embryonic stem cells, isolated from pre-implantation blastocysts, significantly affect the spectrum of pluripotency. 2i/LIF, a recently defined serum-free medium, forces mouse embryonic stem cells into a ground-state of pluripotency, while serum/LIF cultures promote the co-existence of ground-like and primed-like mouse embryonic stem cell subpopulations. The latter heterogeneity correlates with temporal fluctuations of pluripotency markers, including the master regulator Nanog, in single cells. We propose a mathematical model of Nanog dynamics in both media, accounting for recent experimental data showing the persistence of a small Nanog Low subpopulation in ground-state pluripotency mouse embryonic stem cell cultures. The model integrates into the core pluripotency Gene Regulatory Network both inhibitors present in 2i/LIF (PD and Chiron), and feedback interactions with genes found to be differentially expressed in the two media. Our simulations and bifurcation analysis show that, in ground-state cultures, Nanog dynamics result from the combination of reduced noise in gene expression and the shift of the system towards a monostable, but still excitable, regulation. Experimental data and agent-based modelling simulations indicate that mouse embryonic stem cell proliferation dynamics vary in the two media, and cannot be reproduced by accounting only for Nanog-dependent cell-cycle regulation. We further demonstrate that both PD and Chiron play a key role in regulating heterogeneity in transcription factor expression and, ultimately, mouse embryonic stem cell fate decision.
Collapse
Affiliation(s)
- Simon Godwin
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB UK
| | - Daniel Ward
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB UK
| | - Elisa Pedone
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB UK.,School of Cellular & Molecular Medicine, University of Bristol, Bristol, BS8 1TD UK
| | - Martin Homer
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB UK
| | - Alexander G Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield, S3 7RH UK.,Bateson Centre, University of Sheffield, Sheffield, S10 2TN UK
| | - Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB UK.,School of Cellular & Molecular Medicine, University of Bristol, Bristol, BS8 1TD UK.,BrisSynBio, University of Bristol, Bristol, BS8 1TQ UK
| |
Collapse
|
5
|
De Jaime-Soguero A, Aulicino F, Ertaylan G, Griego A, Cerrato A, Tallam A, del Sol A, Cosma MP, Lluis F. Wnt/Tcf1 pathway restricts embryonic stem cell cycle through activation of the Ink4/Arf locus. PLoS Genet 2017; 13:e1006682. [PMID: 28346462 PMCID: PMC5386305 DOI: 10.1371/journal.pgen.1006682] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 04/10/2017] [Accepted: 03/10/2017] [Indexed: 12/22/2022] Open
Abstract
Understanding the mechanisms regulating cell cycle, proliferation and potency of pluripotent stem cells guarantees their safe use in the clinic. Embryonic stem cells (ESCs) present a fast cell cycle with a short G1 phase. This is due to the lack of expression of cell cycle inhibitors, which ultimately determines naïve pluripotency by holding back differentiation. The canonical Wnt/β-catenin pathway controls mESC pluripotency via the Wnt-effector Tcf3. However, if the activity of the Wnt/β-catenin controls the cell cycle of mESCs remains unknown. Here we show that the Wnt-effector Tcf1 is recruited to and triggers transcription of the Ink4/Arf tumor suppressor locus. Thereby, the activation of the Wnt pathway, a known mitogenic pathway in somatic tissues, restores G1 phase and drastically reduces proliferation of mESCs without perturbing pluripotency. Tcf1, but not Tcf3, is recruited to a palindromic motif enriched in the promoter of cell cycle repressor genes, such as p15Ink4b, p16Ink4a and p19Arf, which mediate the Wnt-dependent anti-proliferative effect in mESCs. Consistently, ablation of β-catenin or Tcf1 expression impairs Wnt-dependent cell cycle regulation. All together, here we showed that Wnt signaling controls mESC pluripotency and proliferation through non-overlapping functions of distinct Tcf factors. Studying how to safely expand stem cells in culture is essential for regenerative medicine applications. Hence there is a clear need to decode how the cell cycle of mouse embryonic stem cells (mESCs) is regulated. Tcf3 and Tcf1 belong to the Tcf family of proteins. Tcf/Lef are effectors of the Wnt/β-catenin pathway and Tcf3 controls mESC pluripotency. Here we identified a recruitment site for Tcf1 embedded into a number of cell cycle repressor genes such as p15Ink4b, p16Ink4a and p19Arf. Tcf1-mediated activation of these genes drastically slows down proliferation of mESCs. In conclusion, here we showed that the Wnt pathway, besides controlling mESC pluripotency via Tcf3, also regulates mESC cell cycle through the recruitment of Tcf1 to the regulatory sites of key cell cycle genes.
Collapse
Affiliation(s)
- Anchel De Jaime-Soguero
- KU Leuven Stem Cell Institute, Department of Development and Regeneration, Stem Cell Signalling laboratory, Herestraat 49, Onderwijs en Navorsing 4, Leuven, Belgium
| | - Francesco Aulicino
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
| | - Gokhan Ertaylan
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University. Universiteitssingel 60, 6229 ER Maastricht, The Netherlands
| | - Anna Griego
- KU Leuven Stem Cell Institute, Department of Development and Regeneration, Stem Cell Signalling laboratory, Herestraat 49, Onderwijs en Navorsing 4, Leuven, Belgium
| | - Aniello Cerrato
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale "Gaetano Salvatore", CNR, Napoli, Italy
| | - Aravind Tallam
- TWINCORE, Zentrum für Experimentelle und Klinische Infektionsforschung, Hannover, Germany
| | - Antonio del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
- * E-mail: ;
| | - Frederic Lluis
- KU Leuven Stem Cell Institute, Department of Development and Regeneration, Stem Cell Signalling laboratory, Herestraat 49, Onderwijs en Navorsing 4, Leuven, Belgium
- * E-mail: ;
| |
Collapse
|
6
|
Comparison of cell cycle components, apoptosis and cytoskeleton-related molecules and therapeutic effects of flavopiridol and geldanamycin on the mouse fibroblast, lung cancer and embryonic stem cells. Tumour Biol 2016; 37:12423-12440. [DOI: 10.1007/s13277-016-5108-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022] Open
|
7
|
El-Badawy A, El-Badri N. The cell cycle as a brake for β-cell regeneration from embryonic stem cells. Stem Cell Res Ther 2016; 7:9. [PMID: 26759123 PMCID: PMC4711007 DOI: 10.1186/s13287-015-0274-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle machinery. Both β cells and ES cells possess unique cell cycle machinery yet with significant contrasts. In this review, we compare the cell cycle control mechanisms in both ES cells and β cells, and highlight the fundamental differences between pluripotent cells of embryonic origin and differentiated β cells. Through critical analysis of the differences of the cell cycle between these two cell types, we propose that the cell cycle of ES cells may act as a brake for β-cell regeneration. Based on these differences, we discuss the potential of modulating the cell cycle of ES cells for the large-scale generation of functionally mature β cells in vitro. Further understanding of the factors that modulate the ES cell cycle will lead to new approaches to enhance the production of functional mature insulin-producing cells, and yield a reliable system to generate bona fide β cells in vitro.
Collapse
Affiliation(s)
- Ahmed El-Badawy
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Sheikh Zayed District, 12588, 6th of October City, Giza, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Sheikh Zayed District, 12588, 6th of October City, Giza, Egypt.
| |
Collapse
|
8
|
Wang R, Wang J, Acharya D, Paul AM, Bai F, Huang F, Guo YL. Antiviral responses in mouse embryonic stem cells: differential development of cellular mechanisms in type I interferon production and response. J Biol Chem 2014; 289:25186-98. [PMID: 24966329 DOI: 10.1074/jbc.m113.537746] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have recently reported that mouse embryonic stem cells (mESCs) are deficient in expressing type I interferons (IFNs) in response to viral infection and synthetic viral RNA analogs (Wang, R., Wang, J., Paul, A. M., Acharya, D., Bai, F., Huang, F., and Guo, Y. L. (2013) J. Biol. Chem. 288, 15926-15936). Here, we report that mESCs are able to respond to type I IFNs, express IFN-stimulated genes, and mediate the antiviral effect of type I IFNs against La Crosse virus and chikungunya virus. The major signaling components in the IFN pathway are expressed in mESCs. Therefore, the basic molecular mechanisms that mediate the effects of type I IFNs are functional in mESCs; however, these mechanisms may not yet be fully developed as mESCs express lower levels of IFN-stimulated genes and display weaker antiviral activity in response to type I IFNs when compared with fibroblasts. Further analysis demonstrated that type I IFNs do not affect the stem cell state of mESCs. We conclude that mESCs are deficient in type I IFN expression, but they can respond to and mediate the cellular effects of type I IFNs. These findings represent unique and uncharacterized properties of mESCs and are important for understanding innate immunity development and ESC physiology.
Collapse
Affiliation(s)
| | - Jundi Wang
- From the Departments of Biological Sciences and
| | | | | | - Fengwei Bai
- From the Departments of Biological Sciences and
| | - Faqing Huang
- Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406
| | - Yan-Lin Guo
- From the Departments of Biological Sciences and
| |
Collapse
|
9
|
Wang R, Teng C, Spangler J, Wang J, Huang F, Guo YL. Mouse embryonic stem cells have underdeveloped antiviral mechanisms that can be exploited for the development of mRNA-mediated gene expression strategy. Stem Cells Dev 2013; 23:594-604. [PMID: 24219369 DOI: 10.1089/scd.2013.0417] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We have recently reported that mouse embryonic stem cells (mESCs) are deficient in expressing type I interferons (IFN) when exposed to viral infection and double-stranded RNA. In this study, we extended our investigation and demonstrated that single-stranded RNA and protein-encoding mRNA can induce strong IFN expression and cytotoxicity in fibroblasts and epithelial cells, but none of the effects associated with these antiviral responses were observed in mESCs. Our results provided additional data to support the conclusion that mESCs are intrinsically deficient in antiviral responses. While our findings represent a novel feature of mESCs that in itself is important for understanding innate immunity development, we exploited this property to develop a novel mRNA-mediated gene expression cell model. Direct introduction of synthetic mRNA to express desired genes has been shown as an effective alternative to DNA/viral vector-based gene expression. However, a major biological challenge is that a synthetic mRNA is detected as a viral RNA analog by the host cell, resulting in a series of adverse effects associated with antiviral responses. We demonstrate that the lack of antiviral responses in mESCs effectively avoids this problem. mESCs can tolerate repeated transfection and effectively express proteins from their synthetic mRNA with expected biological functions, as demonstrated by the expression of green fluorescent protein and the transcription factor Etv2. Therefore, mRNA-based gene expression could be developed into a novel ESC differentiation strategy that avoids safety concerns associated with viral/DNA-based vectors in regenerative medicine.
Collapse
Affiliation(s)
- Ruoxing Wang
- 1 Department of Biological Sciences, The University of Southern Mississippi , Hattiesburg, Mississippi
| | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Wang R, Wang J, Paul AM, Acharya D, Bai F, Huang F, Guo YL. Mouse embryonic stem cells are deficient in type I interferon expression in response to viral infections and double-stranded RNA. J Biol Chem 2013; 288:15926-36. [PMID: 23580653 DOI: 10.1074/jbc.m112.421438] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Embryonic stem cells (ESCs) are considered to be a promising cell source for regenerative medicine because of their unlimited capacity for self-renewal and differentiation. However, little is known about the innate immunity in ESCs and ESC-derived cells. We investigated the responses of mouse (m)ESCs to three types of live viruses as follows: La Crosse virus, West Nile virus, and Sendai virus. Our results demonstrated mESCs were susceptible to viral infection, but they were unable to express type I interferons (IFNα and IFNβ, IFNα/β), which differ from fibroblasts (10T1/2 cells) that robustly express IFNα/β upon viral infections. The failure of mESCs to express IFNα/β was further demonstrated by treatment with polyIC, a synthetic viral dsRNA analog that strongly induced IFNα/β in 10T1/2 cells. Although polyIC transiently inhibited the transcription of pluripotency markers, the stem cell morphology was not significantly affected. However, polyIC can induce dsRNA-activated protein kinase in mESCs, and this activation resulted in a strong inhibition of cell proliferation. We conclude that the cytosolic receptor dsRNA-activated protein kinase is functional, but the mechanisms that mediate type I IFN expression are deficient in mESCs. This conclusion is further supported by the findings that the major viral RNA receptors are either expressed at very low levels (TLR3 and MDA5) or may not be active (retinoic acid-inducible gene I) in mESCs.
Collapse
Affiliation(s)
- Ruoxing Wang
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Wu J, Tzanakakis ES. Contribution of stochastic partitioning at human embryonic stem cell division to NANOG heterogeneity. PLoS One 2012; 7:e50715. [PMID: 23226362 PMCID: PMC3511357 DOI: 10.1371/journal.pone.0050715] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/23/2012] [Indexed: 12/16/2022] Open
Abstract
Heterogeneity is an often unappreciated characteristic of stem cell populations yet its importance in fate determination is becoming increasingly evident. Although gene expression noise has received greater attention as a source of non-genetic heterogeneity, the effects of stochastic partitioning of cellular material during mitosis on population variability have not been researched to date. We examined self-renewing human embryonic stem cells (hESCs), which typically exhibit a dispersed distribution of the pluripotency marker NANOG. In conjunction with our experiments, a multiscale cell population balance equation (PBE) model was constructed accounting for transcriptional noise and stochastic partitioning at division as sources of population heterogeneity. Cultured hESCs maintained time-invariant profiles of size and NANOG expression and the data were utilized for parameter estimation. Contributions from both sources considered in this study were significant on the NANOG profile, although elimination of the gene expression noise resulted in greater changes in the dispersion of the NANOG distribution. Moreover, blocking of division by treating hESCs with nocodazole or colcemid led to a 39% increase in the average NANOG content and over 68% of the cells had higher NANOG level than the mean NANOG expression of untreated cells. Model predictions, which were in excellent agreement with these findings, revealed that stochastic partitioning accounted for 17% of the total noise in the NANOG profile of self-renewing hESCs. The computational framework developed in this study will aid in gaining a deeper understanding of how pluripotent stem/progenitor cells orchestrate processes such as gene expression and proliferation for maintaining their pluripotency or differentiating along particular lineages. Such models will be essential in designing and optimizing efficient differentiation strategies and bioprocesses for the production of therapeutically suitable stem cell progeny.
Collapse
Affiliation(s)
- Jincheng Wu
- Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Emmanuel S. Tzanakakis
- Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York, United States of America
- New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Western New York Stem Cell Culture and Analysis Center, State University of New York at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|