1
|
McIntyre G, Jackson Z, Colina J, Sekhar S, DiFeo A. miR-181a: regulatory roles, cancer-associated signaling pathway disruptions, and therapeutic potential. Expert Opin Ther Targets 2024; 28:1061-1091. [PMID: 39648331 PMCID: PMC12054384 DOI: 10.1080/14728222.2024.2433687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION microRNA-181a (miR-181a) is a crucial post-transcriptional regulator of many mRNA transcripts and noncoding-RNAs, influencing cell proliferation, cancer cell stemness, apoptosis, and immune responses. Its abnormal expression is well-characterized in numerous cancers, establishing it as a significant genomic vulnerability and biomarker in cancer research. AREAS COVERED Here, we summarize miR-181a's correlation with poor patient outcomes across numerous cancers and the mechanisms governing miR-181a's activity and processing. We comprehensively describe miR-181a's involvement in multiple regulatory cancer signaling pathways, cellular processes, and the tumor microenvironment. We also discuss current therapeutic approaches to targeting miR-181a, highlighting their limitations and future potential. EXPERT OPINION miR-181a is a clinically relevant pan-cancer biomarker with potential as a therapeutic target. Its regulatory control of tumorigenic signaling pathways and immune responses positions it as a promising candidate for personalized treatments. The success of miR-181a as a target relies on the development of specific therapeutics platforms. Future research on miR-181a's role in the tumor microenvironment and the RNA binding proteins that regulate its stability will help uncover new techniques to targeting miR-181a. Further research into miR-181a serum levels in patients undergoing therapy will help to better stratify patients and enhance therapeutic success.
Collapse
Affiliation(s)
- Grace McIntyre
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Zoe Jackson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jose Colina
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Sreeja Sekhar
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Analisa DiFeo
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Ni Z, Shen Y, Wang W, Cheng X, Fu Y. miR-141-5p Affects the Cell Proliferation and Apoptosis by Targeting BTG1 in Cervical Cancer. Cancer Biother Radiopharm 2024; 39:395-405. [PMID: 34767738 DOI: 10.1089/cbr.2021.0227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: MicroRNAs have been discovered to have the possibility to play a significant role in cancer development. While miR-141-5p has been found upregulated in various cancers, its functions in cervical cancer have rarely been reported. Methods: The expression level of miR-141-5p was assessed in cervical cancer tissues and cell lines by RT-qPCR. The function of miR-141-5p in C33A and HeLa cells was detected by CCK-8, and colony formation, wound-healing, transwell chamber, and flow cytometry assays. Dual luciferase reporter was carried out to identify the interaction between miR-141-5p and BTG antiproliferation factor 1 (BTG1). Results: miR-141-5p was upregulated in cervical cancer and was negatively associated with the prognosis of patients with cervical cancer. Functional analyses demonstrated that silenced miR-141-5p expression inhibited the cell proliferation, migration, and invasion, and alleviated apoptosis of C33A and HeLa cells. In addition, miR-141-5p suppresses the activity of BTG1-3'-UTR. Rescue assays demonstrated that the cervical cancer progression is suppressed by miR-141-5p inhibitor and retrieved by sh-BTG1. Conclusions: The authors' findings reveal that miR-141-5p exerts its role through targeting BTG1 in cervical cancer progression, indicating that miR-141-5p may represent a promising target for the treatment of cervical cancer patients. The Clinical Trial Registration number: (2019-KY013).
Collapse
Affiliation(s)
- Zhenzhen Ni
- Departments of Pathology , Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yan Shen
- Department of Cervical Diseases, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Wei Wang
- Departments of Pathology , Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xue Cheng
- Departments of Pathology , Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yajuan Fu
- Department of Cervical Diseases, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
3
|
Zhang ZW, Zhang KX, Liao X, Quan Y, Zhang HY. Evolutionary screening of precision oncology biomarkers and its applications in prognostic model construction. iScience 2024; 27:109859. [PMID: 38799582 PMCID: PMC11126775 DOI: 10.1016/j.isci.2024.109859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/15/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024] Open
Abstract
Biomarker screening is critical for precision oncology. However, one of the main challenges in precision oncology is that the screened biomarkers often fail to achieve the expected clinical effects and are rarely approved by regulatory authorities. Considering the close association between cancer pathogenesis and the evolutionary events of organisms, we first explored the evolutionary feature underlying clinically approved biomarkers, and two evolutionary features of approved biomarkers (Ohnologs and specific evolutionary stages of genes) were identified. Subsequently, we utilized evolutionary features for screening potential prognostic biomarkers in four common cancers: head and neck squamous cell carcinoma, liver hepatocellular carcinoma, lung adenocarcinoma, and lung squamous cell carcinoma. Finally, we constructed an evolution-strengthened prognostic model (ESPM) for cancers. These models can predict cancer patients' survival time across different cancer cohorts effectively and perform better than conventional models. In summary, our study highlights the application potentials of evolutionary information in precision oncology biomarker screening.
Collapse
Affiliation(s)
- Zhi-Wen Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Ke-Xin Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Xuan Liao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yuan Quan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
4
|
miRNAs role in cervical cancer pathogenesis and targeted therapy: Signaling pathways interplay. Pathol Res Pract 2023; 244:154386. [PMID: 36868096 DOI: 10.1016/j.prp.2023.154386] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
Cervical cancer (CC) is the primary cause of cancer deaths in underdeveloped countries. The persistence of infection with high-risk human papillomavirus (HPV) is a significant contributor to the development of CC. However, few women with morphologic HPV infection develop invasive illnesses, suggesting other mechanisms contribute to cervical carcinogenesis. MicroRNAs (miRNAs, miRs) are small chain nucleic acids that can regulate wide networks of cellular events. They can inhibit or degrade their target protein-encoding genes. They had the power to regulate CC's invasion, pathophysiology, angiogenesis, apoptosis, proliferation, and cell cycle phases. Further research is required, even though novel methods have been developed for employing miRNAs in the diagnosis, and treatment of CC. We'll go through some of the new findings about miRNAs and their function in CC below. The function of miRNAs in the development of CC and its treatment is one of these. Clinical uses of miRNAs in the analysis, prediction, and management of CC are also covered.
Collapse
|
5
|
Bhattacharjee R, Dey T, Kumar L, Kar S, Sarkar R, Ghorai M, Malik S, Jha NK, Vellingiri B, Kesari KK, Pérez de la Lastra JM, Dey A. Cellular landscaping of cisplatin resistance in cervical cancer. Biomed Pharmacother 2022; 153:113345. [PMID: 35810692 DOI: 10.1016/j.biopha.2022.113345] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer (CC) caused by human papillomavirus (HPV) is one of the largest causes of malignancies in women worldwide. Cisplatin is one of the widely used drugs for the treatment of CC is rendered ineffective owing to drug resistance. This review highlights the cause of resistance and the mechanism of cisplatin resistance cells in CC to develop therapeutic ventures and strategies that could be utilized to overcome the aforementioned issue. These strategies would include the application of nanocarries, miRNA, CRIPSR/Cas system, and chemotherapeutics in synergy with cisplatin to not only overcome the issues of drug resistance but also enhance its anti-cancer efficiency. Moreover, we have also discussed the signaling network of cisplatin resistance cells in CC that would provide insights to develop therapeutic target sites and inhibitors. Furthermore, we have discussed the role of CC metabolism on cisplatin resistance cells and the physical and biological factors affecting the tumor microenvironments.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Tanima Dey
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Lamha Kumar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, Kerala, India
| | - Sulagna Kar
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Ritayan Sarkar
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India.
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641-046, India
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo 00076, Finland; Department of Bio-products and Bio-systems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - José M Pérez de la Lastra
- Biotechnology of Macromolecules, Instituto de Productos Naturales y Agrobiología, IPNA (CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de la Laguna (Santa Cruz de Tenerife), Spain.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| |
Collapse
|
6
|
Ravegnini G, Gorini F, Dondi G, Tesei M, De Crescenzo E, Morganti AG, Hrelia P, De Iaco P, Angelini S, Perrone AM. Emerging Role of MicroRNAs in the Therapeutic Response in Cervical Cancer: A Systematic Review. Front Oncol 2022; 12:847974. [PMID: 35747791 PMCID: PMC9209727 DOI: 10.3389/fonc.2022.847974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Cervical cancer is a common female cancer, with nearly 600,000 cases and more than 300,000 deaths worldwide every year. From a clinical point of view, surgery plays a key role in early cancer management, whereas advanced stages are treated with chemotherapy and/or radiation as adjuvant therapies. Nevertheless, predicting the degree of cancer response to chemotherapy or radiation therapy at diagnosis in order to personalize the clinical approach represents the biggest challenge in locally advanced cancers. The feasibility of such predictive models has been repeatedly assessed using histopathological factors, imaging and nuclear methods, tissue and fluid scans, however with poor results. In this context, the identification of novel potential biomarkers remains an unmet clinical need, and microRNAs (miRNAs) represent an interesting opportunity. With this in mind, the aim of this systematic review was to map the current literature on tumor and circulating miRNAs identified as significantly associated with the therapeutic response in cervical cancer; finally, a perspective point of view sheds light on the challenges ahead in this tumor.Systematic Review RegistrationPROSPERO (CRD42021277980).
Collapse
Affiliation(s)
- Gloria Ravegnini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
- *Correspondence: Gloria Ravegnini, ; Pierandrea De Iaco, ; Sabrina Angelini,
| | - Francesca Gorini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Giulia Dondi
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Marco Tesei
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Eugenia De Crescenzo
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Alessio G. Morganti
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Pierandrea De Iaco
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- *Correspondence: Gloria Ravegnini, ; Pierandrea De Iaco, ; Sabrina Angelini,
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
- *Correspondence: Gloria Ravegnini, ; Pierandrea De Iaco, ; Sabrina Angelini,
| | - Anna Myriam Perrone
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Epi-miRNAs: Regulators of the Histone Modification Machinery in Human Cancer. JOURNAL OF ONCOLOGY 2022; 2022:4889807. [PMID: 35087589 PMCID: PMC8789461 DOI: 10.1155/2022/4889807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of death and disability worldwide. Epigenetic deregulation is one of the most critical mechanisms in carcinogenesis and can be classified into effects on DNA methylation and histone modification. MicroRNAs are small noncoding RNAs involved in fine-tuning their target genes after transcription. Various microRNAs control the expression of histone modifiers and are involved in a variety of cancers. Therefore, overexpression or downregulation of microRNAs can alter cell fate and cause malignancies. In this review, we discuss the role of microRNAs in regulating the histone modification machinery in various cancers, with a focus on the histone-modifying enzymes such as acetylases, deacetylases, methyltransferases, demethylases, kinases, phosphatases, desumoylases, ubiquitinases, and deubiquitinases. Understanding of microRNA-related aberrations underlying histone modifiers in pathogenesis of different cancers can help identify novel therapeutic targets or early detection approaches that allow better management of patients or monitoring of treatment response.
Collapse
|
8
|
Mitra T, Elangovan S. Cervical cancer development, chemoresistance, and therapy: a snapshot of involvement of microRNA. Mol Cell Biochem 2021; 476:4363-4385. [PMID: 34453645 DOI: 10.1007/s11010-021-04249-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022]
Abstract
Cervical cancer (CC) is one of the leading causes of death in women due to cancer and a major concern in the developing world. Persistent human papilloma virus (HPV) infection is the major causative agent for CC. Besides HPV infection, genetic and epigenetic factors including microRNA (miRNA) also contribute to the malignant transformation. Earlier studies have revealed that miRNAs participate in cell proliferation, invasion and metastasis, angiogenesis, and chemoresistance processes by binding and inversely regulating the target oncogenes or tumor suppressor genes. Based on functions and mechanistic insights, miRNAs have been identified as cellular modulators that have an enormous role in diagnosis, prognosis, and cancer therapy. Signatures of miRNA could be used as diagnostic markers which are necessary for early diagnosis and management of CC. The therapeutic potential of miRNAs has been shown in CC; however, more comprehensive clinical trials are required for the clinical translation of miRNA-based diagnostics and therapeutics. Understanding the molecular mechanism of miRNAs and their target genes has been useful to develop miRNA-based therapeutic strategies for CC and overcome chemoresistance. In this review, we summarize the role of miRNAs in the development, progression, and metastasis of CC as well as chemoresistance. Further, we discuss the diagnostic and therapeutic potential of miRNAs to overcome chemoresistance and treatment of CC.
Collapse
Affiliation(s)
- Tandrima Mitra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed To Be University, Bhubaneswar, Odisha, 751024, India
| | - Selvakumar Elangovan
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed To Be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
9
|
Jin A, Zhang L, Fang G, Chen Y. Receptor interacting protein kinase 4 promotes cell proliferation, migration, and invasion in ovarian cancer via targeting protein kinase C delta. Drug Dev Res 2021; 83:407-415. [PMID: 34414590 DOI: 10.1002/ddr.21871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/10/2022]
Abstract
Receptor interacting protein kinase 4 (RIPK4) has been reported to function as an oncogenic role in several types of cancers. The aim of this study was to evaluate the role of RIPK4 in ovarian cancer (OC) cells and to elucidate the mechanism behind this effect. In this study, the GEPIA database was used to analyze the RIPK4 expressions in OC tissues and overall survival. qRT-PCR and western blot assay were performed to detect the expressions of RIPK4 and protein kinase C delta (PRKCD) in OC cells. In addition, cell proliferation was assessed by CCK-8 and colony formation assay while cell invasion and migration were evaluated by transwell, wound healing and western blot assay. The interaction of RIPK4 and PRKCD was analyzed by the STRING database and the bioGRID database, and verified with co-immunoprecipitation. Herein, we describe that RIPK4 expression was upregulated in OC tissues and cells and was associated with poor overall survival. RIPK4 silencing repressed the proliferation, migration, and invasion of OC cells. Mechanistically, PRKCD was highly expressed in OC cells and was combined with RIPK4. PRKCD was highly positively associated with RIPK4 in OC and was regulated by RIPK4. Moreover, PRKCD overexpression reversed the inhibitory effects of RIPK4 silencing on OC cell proliferation, migration, and invasion. RIPK4 functions as an oncogene in OC cells via at least partially binding to PRKCD, which might represent a novel therapeutic strategy for improving survival for patients with OC.
Collapse
Affiliation(s)
- Aihong Jin
- Department of Gynecology, The Second People's Hospital of Shenzhen, Shenzhen, China
| | - Longhui Zhang
- Department of Gynecology, The Second People's Hospital of Shenzhen, Shenzhen, China
| | - Guangguang Fang
- Department of Gynecology, The Second People's Hospital of Shenzhen, Shenzhen, China
| | - Yinzi Chen
- Department of Obstetrics and Gynecology, Ruian People's Hospital of Zhejiang Province, Ruian, China
| |
Collapse
|
10
|
Karimi F, Mollaei H. Potential of miRNAs in cervical cancer chemoresistance. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Role of miRNAs in cervical cancer: A comprehensive novel approach from pathogenesis to therapy. J Gynecol Obstet Hum Reprod 2021; 50:102159. [PMID: 33965650 DOI: 10.1016/j.jogoh.2021.102159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/04/2021] [Accepted: 04/30/2021] [Indexed: 11/20/2022]
Abstract
Human papillomaviruses (HPV) infection is a major causative agent and strongly associated with the development of cervical cancer. Understanding the mechanisms of HPV-induced cervical cancer is extremely useful in therapeutic strategies for primary prevention (HPV vaccines) and secondary prevention (screening and diagnosis of precancerous lesions). However, due to the lack of proper implementation of screening programs in developing countries, cervical cancer is usually diagnosed at advanced stages that result in poor treatment responses. Nearly half of the patients will experience disease recurrence within two years post treatment. Therefore, it is vital to identify new tools for early diagnosis, prognosis, and treatment prediction. MicroRNAs (miRNAs) are small non-coding RNAs, implicated in posttranscriptional regulation of gene expression. Growing evidence has shown that abnormal miRNA expression is associated with cervical cancer progression, metastasis, and influences treatment outcomes. In this review, we provide comprehensive information about miRNA and their potential utility in cervical cancer diagnosis, prognosis, and clinical management to improve patient outcomes.
Collapse
|
12
|
Integrated Genomics Identifies miR-181/TFAM Pathway as a Critical Driver of Drug Resistance in Melanoma. Int J Mol Sci 2021; 22:ijms22041801. [PMID: 33670365 PMCID: PMC7918089 DOI: 10.3390/ijms22041801] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are attractive therapeutic targets and promising candidates as molecular biomarkers for various therapy-resistant tumors. However, the association between miRNAs and drug resistance in melanoma remains to be elucidated. We used an integrative genomic analysis to comprehensively study the miRNA expression profiles of drug-resistant melanoma patients and cell lines. MicroRNA-181a and -181b (miR181a/b) were identified as the most significantly down-regulated miRNAs in resistant melanoma patients and cell lines. Re-establishment of miR-181a/b expression reverses the resistance of melanoma cells to the BRAF inhibitor dabrafenib. Introduction of miR-181 mimics markedly decreases the expression of TFAM in A375 melanoma cells resistant to BRAF inhibitors. Furthermore, melanoma growth was inhibited in A375 and M14 resistant melanoma cells transfected with miR-181a/b mimics, while miR-181a/b depletion enhanced resistance in sensitive cell lines. Collectively, our study demonstrated that miR-181a/b could reverse the resistance to BRAF inhibitors in dabrafenib resistant melanoma cell lines. In addition, miR-181a and -181b are strongly down-regulated in tumor samples from patients before and after the development of resistance to targeted therapies. Finally, melanoma tissues with high miR-181a and -181b expression presented favorable outcomes in terms of Progression Free Survival, suggesting that miR-181 is a clinically relevant candidate for therapeutic development or biomarker-based therapy selection.
Collapse
|
13
|
Singh S, Raza W, Parveen S, Meena A, Luqman S. Flavonoid display ability to target microRNAs in cancer pathogenesis. Biochem Pharmacol 2021; 189:114409. [PMID: 33428895 DOI: 10.1016/j.bcp.2021.114409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are non-coding, conserved, single-stranded nucleotide sequences involved in physiological and developmental processes. Recent evidence suggests an association between miRNAs' deregulation with initiation, promotion, progression, and drug resistance in cancer cells. Besides, miRNAs are known to regulate the epithelial-mesenchymal transition, angiogenesis, autophagy, and senescence in different cancer types. Previous reports proposed that apart from the antioxidant potential, flavonoids play an essential role in miRNAs modulation associated with changes in cancer-related proteins, tumor suppressor genes, and oncogenes. Thus, flavonoids can suppress proliferation, help in the development of drug sensitivity, suppress metastasis and angiogenesis by modulating miRNAs expression. In the present review, we summarize the role of miRNAs in cancer, drug resistance, and the chemopreventive potential of flavonoids mediated by miRNAs. The potential of flavonoids to modulate miRNAs expression in different cancer types demonstrate their selectivity and importance as regulators of carcinogenesis. Flavonoids as chemopreventive agents targeting miRNAs are extensively studied in vitro, in vivo, and pre-clinical studies, but their efficiency in targeting miRNAs in clinical studies is less investigated. The evidence presented in this review highlights the potential of flavonoids in cancer prevention/treatment by regulating miRNAs, although further investigations are required to validate and establish their clinical usefulness.
Collapse
Affiliation(s)
- Shilpi Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Waseem Raza
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Jawahar Lal Nehru University, New Delhi 110067, India
| | - Shahnaz Parveen
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
14
|
Xing C, Sun SG, Yue ZQ, Bai F. Role of lncRNA LUCAT1 in cancer. Biomed Pharmacother 2020; 134:111158. [PMID: 33360049 DOI: 10.1016/j.biopha.2020.111158] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 02/09/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are RNA molecules with a transcript length of more than 200 nt and lack a protein-coding ability. They regulate gene expression by interacting with protein, RNA, and DNA. Their function is closely related to their subcellular localization. In the nucleus, lncRNAs regulate gene expression at the epigenetic and transcriptional levels, and in the cytoplasm, they regulate gene expression at the post-transcriptional and translational levels. Abnormalities in lncRNAs have been confirmed to exhibit tumor suppressor or carcinogenic effects and play an important role in the development of tumors. In particular, the lung cancer-related transcript 1 (LUCAT1) located in the antisense strand of the q14.3 region of chromosome 5 was first discovered in smoking-related lung cancer. Increasing evidence have showed that LUCAT1 is involved in breast cancer, ovarian cancer, thyroid cancer, renal cell carcinoma. It is highly expressed in liver cancer and other malignant tumors and has been confirmed to be induce various malignant tumors. It regulates tumor proliferation, invasion, and migration via various mechanisms and is related to the clinicopathological characteristics of tumor patients. Thus, LUCAT1 is a potential prognostic biological marker and therapeutic target for cancer. This article reviews its expression, function, and molecular mechanism in various malignant tumors.
Collapse
Affiliation(s)
- Ce Xing
- Lanzhou University Second Hospital, Department of Cardiology, 82 Cuiying Men, Lanzhou, 730030, PR China
| | - Shou-Gang Sun
- Lanzhou University Second Hospital, Department of Cardiology, 82 Cuiying Men, Lanzhou, 730030, PR China
| | - Zhi-Quan Yue
- Lanzhou University Second Hospital, Department of Cardiology, 82 Cuiying Men, Lanzhou, 730030, PR China
| | - Feng Bai
- Lanzhou University Second Hospital, Department of Cardiology, 82 Cuiying Men, Lanzhou, 730030, PR China.
| |
Collapse
|
15
|
Sen P, Ghosal S, Hazra R, Mohanty R, Arega S, Sahu B, Ganguly N. CRISPR-mediated knockdown of miR-214 modulates cell fate in response to anti-cancer drugs in HPV-negative and HPV-positive cervical cancer cells. J Biosci 2020. [DOI: 10.1007/s12038-020-00054-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Pisarska J, Baldy-Chudzik K. MicroRNA-Based Fingerprinting of Cervical Lesions and Cancer. J Clin Med 2020; 9:jcm9113668. [PMID: 33203149 PMCID: PMC7698009 DOI: 10.3390/jcm9113668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
The regulatory functions of microRNA (miRNA) are involved in all processes contributing to carcinogenesis and response to viral infections. Cervical cancer in most cases is caused by the persistence of high-risk human papillomavirus (HR-HPV) infection. While oncogenic human papillomaviruses induce aberrant expression of many cellular miRNAs, this dysregulation could be harnessed as a marker in early diagnosis of HR-HPV infection, cervical squamous intraepithelial lesions, and cancer. In recent years, growing data indicate that miRNAs show specific patterns at various stages of cervical pathology. The aim of this review is to systematize current reports on miRNA capacity that can be utilized in personalized diagnostics of cervical precancerous and cancerous lesions. The analysis of the resources available in online databases (National Center for Biotechnology Information—NCBI, PubMed, ScienceDirect, Scopus) was performed. To date, no standardized diagnostic algorithm using the miRNA pattern in cervical pathology has been defined. However, the high sensitivity and specificity of the reported assays gives hope for the development of non-invasive diagnostic tests that take into account the heterogeneity of tumor-related changes. Due to this variability resulting in difficult to predict clinical outcomes, precise molecular tools are needed to improve the diagnostic and therapeutic process.
Collapse
|
17
|
Liu J, Du F, Chen C, Li D, Chen Y, Xiao X, Hou X. CircRNA ITCH increases bortezomib sensitivity through regulating the miR-615-3p/PRKCD axis in multiple myeloma. Life Sci 2020; 262:118506. [PMID: 33031827 DOI: 10.1016/j.lfs.2020.118506] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 12/18/2022]
Abstract
AIMS Bortezomib (BTZ) is described as the first-line agent for multiple myeloma (MM) chemotherapy, but the emergence of BTZ resistance usually results in the failure of chemotherapy in MM. Circular RNA (circRNA) itchy E3 ubiquitin protein ligase (circITCH) is a novel identified circRNA that plays a vital role in the development of human cancers. However, the role of circITCH in the development of BTZ resistance in MM remains elusive. MATERIALS AND METHODS The expression of circITCH, miR-615-3p, and protein kinase C, delta (PRKCD) was detected with quantitative reverse transcription PCR and western blot. The effects of circITCH on the sensitivity of MM cells to BTZ were assessed using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, flow cytometry, and xenograft tumor assay. The interaction of circITCH, microRNA-615-3p, and PRKCD was explored using luciferase reporter assay and RNA immunoprecipitation assay. KEY FINDINGS circITCH was downregulated in MM bone marrow specimens and cell lines, as well as BTZ-resistant MM cells. Reduced expression of circITCH was indicative of poor prognosis in MM patients. Upregulation of circITCH enhanced the sensitivity of BTZ-resistant MM cells to BTZ in vitro and in vivo. Furthermore, circITCH was identified as a sponge for miR-615-3p, and PRKCD is confirmed as a direct target of miR-615-3p. Besides, circITCH overexpression enhanced the sensitivity of MM cells to BTZ through miR-615-3p/PRKCD axis. SIGNIFICANCE circITCH overexpression enhanced the sensitivity of MM cells to BTZ through miR-615-3p/PRKCD axis, providing a novel potential target for combating BTZ resistance in patients with MM.
Collapse
Affiliation(s)
- Jianhua Liu
- Orthopaedics Department, The First Affiliated Hospital of Henan University, Kaifeng, Henan, China
| | - Fang Du
- Department of Hematology and Oncology, No. 988 Hospital of Joint Logistic Support Force of the Chinese People's Liberation Army, Zhengzhou, Henan Province, China
| | - Chaohui Chen
- Orthopaedics Department, The First Affiliated Hospital of Henan University, Kaifeng, Henan, China
| | - Donghui Li
- Orthopaedics Department, The First Affiliated Hospital of Henan University, Kaifeng, Henan, China
| | - Yong Chen
- Orthopaedics Department, The First Affiliated Hospital of Henan University, Kaifeng, Henan, China
| | - Xia Xiao
- Orthopaedics Department, The First Affiliated Hospital of Henan University, Kaifeng, Henan, China
| | - Xiaodong Hou
- Ultrasound Department, The First Affiliated Hospital of Henan University, Kaifeng, Henan, China.
| |
Collapse
|
18
|
Miao J, Regenstein JM, Xu D, Zhou D, Li H, Zhang H, Li C, Qiu J, Chen X. The roles of microRNA in human cervical cancer. Arch Biochem Biophys 2020; 690:108480. [PMID: 32681832 DOI: 10.1016/j.abb.2020.108480] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/13/2022]
Abstract
Although a potentially preventable disease, cervical cancer (CC) is the second most commonly diagnosed gynaecological cancer with at least 530,000 new cases annually, and the prognosis with CC is still poor. Studies suggest that aberrant expression of microRNA (miRNA) contributes to the progression of CC. As a group of small non-coding RNA with 18-25 nucleotides, miRNA regulate about one-third of all human genes. They function by repressing translation or inducing mRNA cleavage or degradation, including genes involved in diverse and important cellular processes, including cell cycling, proliferation, differentiation, and apoptosis. Results showed that misexpression of miRNA is closely related to the onset and progression of CC. This review will provide an overview of the function of miRNA in CC and the mechanisms involved in cervical carcinogenesis.
Collapse
Affiliation(s)
- Jingnan Miao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, 570100, China; School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY, 14853-7201, USA
| | - Dan Xu
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China
| | - Dan Zhou
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China
| | - Haixia Li
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China
| | - Hua Zhang
- Department of Food Science, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150010, China
| | - Chunfeng Li
- Gastrointestinal Surgical Ward, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Junqiang Qiu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, 570100, China; School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China; Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou, Hainan, 570100, China.
| | - Xun Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, 570100, China; School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China; Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou, Hainan, 570100, China
| |
Collapse
|
19
|
Wang Q, Shang J, Zhang Y, Zhou Y, Tang L. MiR-451a restrains the growth and metastatic phenotypes of papillary thyroid carcinoma cells via inhibiting ZEB1. Biomed Pharmacother 2020; 127:109901. [DOI: 10.1016/j.biopha.2020.109901] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/11/2020] [Accepted: 01/17/2020] [Indexed: 12/15/2022] Open
|
20
|
Wen X, Liu S, Sheng J, Cui M. Recent advances in the contribution of noncoding RNAs to cisplatin resistance in cervical cancer. PeerJ 2020; 8:e9234. [PMID: 32523813 PMCID: PMC7263300 DOI: 10.7717/peerj.9234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer (CC) remains a major disease burden on the female population worldwide. Chemotherapy with cisplatin (cis-diamminedichloroplatinum (II); CDDP) and related drugs are the main treatment option for CC; however, their efficacy is limited by the development of drug resistance. Noncoding RNAs (ncRNAs) have been found to play critical roles in numerous physiological and pathological cellular processes, including drug resistance of cancer cells. In this review, we describe some of the ncRNAs, including miRNAs, lncRNAs and circRNAs, that are involved in the sensitivity/resistance of CC to CDDP-based chemotherapy and discuss their mechanisms of action. We also describe some ncRNAs that could be therapeutic targets to improve the sensitivity of CC to CDDP-based chemotherapy.
Collapse
Affiliation(s)
- Xin Wen
- The Second Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Shui Liu
- The Second Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Jiyao Sheng
- The Second Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Manhua Cui
- The Second Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
21
|
Role of microRNAs in epidermal growth factor receptor signaling pathway in cervical cancer. Mol Biol Rep 2020; 47:4553-4568. [PMID: 32383136 DOI: 10.1007/s11033-020-05494-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/03/2020] [Indexed: 12/18/2022]
Abstract
Cervical cancer is one of the most common disorders in females all around the world. Similar to other types of cancer, several signaling pathways are demonstrated to be involved in the progression of this cancer including ERK/MAPK, PI3K/AKT, apoptotic signaling pathways, Wnt, and epidermal growth factor receptor (EGFR). Various microRNAs (miRNAs) and their target genes involved in cervical cancer have been extracted from the kinds of literature of Scopus, Pubmed and Google scholar databases. Regarding the targets, some of them were found to belong in EGFR signaling pathways. The regulation patterns of these miRNA are different in cervical cancer; however, their main aim is to trigger EGFR signaling to proceed with cancer. Moreover, several predicted miRNAs were found to have some interactions with the differentially expressed genes of cervical cancer which are the members of the EGFR signaling pathway by using miRWalk 3.0 (https://mirwalk.umm.uni-heidelberg.de/) and TargetScan 7.1 (https://www.targetscan.org/vert_71/). Also, the microarray data were obtained from the NCBI-Gene Expression Omnibus (GEO) datasets of cervical cancer. In the present review, we highlight the miRNAs involved in cervical cancer and the role of their targets in the EGFR signaling pathway. Furthermore, some predicted miRNAs were the candidate to target EGFR signaling pathway members differentially expressed in cervical cancer samples compared to normal samples.
Collapse
|
22
|
Xu X, Yang K, Zhang F, Liu W, Wang Y, Yu C, Wang J, Zhang K, Zhang C, Nenadic G, Tao D, Zhou X, Shang H, Chen J. Identification of herbal categories active in pain disorder subtypes by machine learning help reveal novel molecular mechanisms of algesia. Pharmacol Res 2020; 156:104797. [PMID: 32278044 DOI: 10.1016/j.phrs.2020.104797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 02/06/2023]
Abstract
Chronic pain is highly prevalent and poorly controlled, of which the accurate underlying mechanisms need be further elucidated. Herbal drugs have been widely used for controlling various pain disorders. The systematic integration of pain herbal data resources might be promising to help investigate the molecular mechanisms of pain phenotypes. Here, we integrated large-scale bibliographic literatures and well-established data sources to obtain high-quality pain relevant herbal data (i.e. 426 pain related herbs with their targets). We used machine learning method to identify three distinct herb categories with their specific indications of symptoms, targets and enriched pathways, which were characterized by the efficacy of treatment to the chronic cough related neuropathic pain, the reproduction and autoimmune related pain, and the cancer pain, respectively. We further detected the novel pathophysiological mechanisms of the pain subtypes by network medicine approach to evaluate the interactions between herb targets and the pain disease modules. This work increased the understanding of the underlying molecular mechanisms of pain subtypes that herbal drugs are participating and with the ultimate aim of developing novel personalized drugs for pain disorders.
Collapse
Affiliation(s)
- Xue Xu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China; Marcus Institute for Aging Research, Hebrew SeniorLife and Harvard Medical School, Boston, MA, 02131, USA
| | - Kuo Yang
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China; MOE Key Laboratory of Bioinformatics, TCM-X Centre/Bioinformatics Division, BNRIST/Department of Automation, Tsinghua University, Beijing, 10084, China
| | - Feilong Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China; Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wenwen Liu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Yinyan Wang
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Changying Yu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Junyao Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Keke Zhang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chao Zhang
- School of Mathematical Sciences, Dalian University of Technology, DaLian, Liaoning, 116024, China
| | - Goran Nenadic
- Computer Science, Faculty of Engineering and Physical Sciences, University of Manchester, Manchester, UK
| | - Dacheng Tao
- School of Information Technologies, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Xuezhong Zhou
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China.
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Jianxin Chen
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
23
|
Jamal A, Shahid I, Naveed Shahid M, Saleh Alshmemri M, Saeed Bahwerth F. Human Papillomavirus, MicroRNA and their Role in Cervical Cancer Progression, Diagnosis and Treatment Response: A Comprehensive Review. Pak J Biol Sci 2020; 23:977-988. [PMID: 32700847 DOI: 10.3923/pjbs.2020.977.988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Human Papillomavirus (HPV) is sexually transmitted and linked with vaginal, vulvar and cervix cancers in females, penile cancer in male, while anal and oropharyngeal cancer in both genders. Cervical cancer is ranked as third most identified cancer among females globally and is the fourth leading reason of cancer related mortality. The main aim of current study is to highlight the key role of miRNA in cervical cancer development, progression and their therapeutic responses. Current study entailed more than 50 PubMed cited articles related to miRNA role in cervical cancer. Studies have elucidated the role of miRNAs regulation in gene expression at post-transcriptional and translational level by targeting significant genes and therefore involved in cervical cancer. miRNAs control several cellular pathways involved in development of pre-malignant to metastatic stage and proliferation to malignancy. Current review elucidated and elaborated the key role of miRNA their application, treatment and therapeutic responses in cervical cancer.
Collapse
|
24
|
Ma J, Zhang F, Sun P. miR-140-3p impedes the proliferation of human cervical cancer cells by targeting RRM2 to induce cell-cycle arrest and early apoptosis. Bioorg Med Chem 2019; 28:115283. [PMID: 31902649 DOI: 10.1016/j.bmc.2019.115283] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022]
Abstract
Cervical cancer is a critically malignant tumor with the second mortality of females worldwide. MicroRNAs (miRNAs) are short but regulatory non-coding RNAs playing a pivotal role in many biological processes including tumorigenesis. However, the exact role of miR-140-3p in cervical cancer remains to be elucidated. Here we identified that miR-140-3p was significantly reduced in cervical cancer tissues by comprehensive analysis of TCGA data, hinting that higher expression level of miR-140-3p predicted a good clinical prognosis. Quantitative real-time PCR (RT-qPCR) assay was performed to confirm the negative correlation between miR-140-3p expression level and human cervical cancer tissues as well as various cervical cancer cell lines. To clarify the certain role of miR-140-3p, forced expression by microRNA mimics was applied in Caski and C33A cells, showing that miR-140-3p overexpression significantly impeded the proliferation of cervical cancer cells by cell count kit (CCK-8) assay. Western blot analysis of cell cycle-related proteins Cyclin A, Cyclin B1 and Cyclin D1 have further confirmed the cell cycle arrest was induced by the ectopic expression of miR-140-3p. Annexin-V based FACS analysis also found the simultaneous appearance of early apoptotic cell population in miR-140-3p overexpression cells. The protein level of BCL-2 was attenuated in accompany with elevated Bax and Cleaved caspase-3 protein, indicating miR-140-3p overexpression induced early apoptosis. Mechanistically, we demonstrated that miR-140-3p could target the 3'UTR of RRM2 which has been proved to be highly involved in the onset of cancer. Furthermore, upregulation of miR-140-3p and RRM2 failed to inhibit the proliferation of human cervical cancer cells, revealing that RRM2 served as the target downstream gene of miR-140-3p abolishing its ability as a tumor suppressor. Overall, we figured out the new role of miR-140-3p in cervical cancer and concluded that miR-140-3p was a candidate of cancer control in preclinical.
Collapse
Affiliation(s)
- Jiajia Ma
- Department of Obstetrics and Gynaecology, XiJing Hospital, Air Force Military Medical University, China
| | - Fan Zhang
- Department of Gynaecology and Obstetrics, Beijing Chuiyangliu Hospital, ChuiYangLiu Hospital Affiliated to Tsinghua University, China
| | - Ping Sun
- Department of Gynaecology, Shaanxi Provincial Tumor Hospital, China.
| |
Collapse
|
25
|
Tong R, Zhang J, Wang C, Li Q, Wang L, Ju M. Inhibition of miR-574-5p suppresses cell growth and metastasis and enhances chemosensitivity by targeting RNA binding protein QKI in cervical cancer cells. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:951-966. [DOI: 10.1007/s00210-019-01772-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
|
26
|
Braicu C, Gulei D, Raduly L, Harangus A, Rusu A, Berindan-Neagoe I. Altered expression of miR-181 affects cell fate and targets drug resistance-related mechanisms. Mol Aspects Med 2019; 70:90-105. [PMID: 31703947 DOI: 10.1016/j.mam.2019.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are non-coding transcripts which regulate genetic and epigenetic events by interfering with mRNA translation. miRNAs are involved in regulation of cell fate due to their ability of interfering with physiological or pathological processes. In this review paper, we evaluate the role of miR-181 family members as prognostic or diagnostic markers or therapeutic targets in malignant pathologies in connection with the main hallmarks of cancer that are modulated by the family. Also, we take over the dual role of this family in dependency with the tumour suppressor and oncogenic features presented in cell and cancer type specific manner. Restoration of the altered expression levels contributes to the activation of cell death pathways or to a reduction in the invasion and migration mechanism; moreover, the mechanism of drug resistance is also modulated by miR-181 sequences with important applications in therapeutic strategies for malignant cells sensitisation. Overall, the main miR-181 family regulatory mechanisms are presented in a cancer specific context, emphasizing the possible clinical application of this family in terms of novel diagnosis and therapy approaches.
Collapse
Affiliation(s)
- Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Diana Gulei
- MedFuture Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Antonia Harangus
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania; "Leon Daniello" Pneumophtisiology Clinic, 6 Bogdan Petriceicu Hasdeu Street, 400332, Cluj-Napoca, Romania.
| | | | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania; MedFuture Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania.
| |
Collapse
|
27
|
Xu X, Jiang X, Chen L, Zhao Y, Huang Z, Zhou H, Shi M. MiR-181a Promotes Apoptosis and Reduces Cisplatin Resistance by Inhibiting Osteopontin in Cervical Cancer Cells. Cancer Biother Radiopharm 2019; 34:559-565. [PMID: 31436472 DOI: 10.1089/cbr.2019.2858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective: In this study, the authors established a cervical cancer cisplatin (DDP) drug-resistant cell line to explore the role of miR-181a in the regulation of osteopontin (OPN) expression and the proliferation, apoptosis, as well as DDP resistance of cervical cancer cells. Materials and Methods: Dual luciferase reporter gene assay was performed to validate the targeted relationship between miR-181a and OPN. The DDP-resistant cell line CaSki/DDP was established to compare the expressions of miR-181a and OPN. The cell proliferation activity was detected by CCK-8 assay. CaSki/DDP cells were divided into miR-NC group and miR-181a mimic group followed by analysis of cell apoptosis by flow cytometry, and the cell proliferation by EdU staining. Results: There was a targeted relationship between miR-181a and OPN mRNA. MiR-181a expression was significantly lower, while OPN mRNA and protein levels were significantly higher in CaSki/DDP cells than that in CaSki cells. Compared with the miR-NC group, OPN mRNA and protein were significantly decreased, cell apoptosis was significantly increased, and cell proliferation ability was significantly attenuated in miR-181a mimic transfection group. Conclusions: The decrease of miR-181a expression and the upregulation of OPN expression are related to the DDP resistance of cervical cancer cells. Overexpression of miR-181a can inhibit the expression of OPN, induce cell apoptosis cells, restrain cell proliferation, and reduce DDP resistance in cervical cancer cells.
Collapse
Affiliation(s)
- Xiaofei Xu
- Department of Obstetrics and Gynecology, Lishui Hospital of Traditional Chinese Medicine, Lishui, Zhejiang, China
| | - Xiaofei Jiang
- Department of Gynecology, Xuzhou Hospital of Traditional Chinese Medicine, Xuzhou, Jiangsu, China
| | - Liping Chen
- Department of Cardiology, Lishui Hospital of Traditional Chinese Medicine, Lishui, Zhejiang, China
| | - Yu Zhao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhihua Huang
- Department of Obstetrics and Gynecology, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Huifang Zhou
- Department of Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mingqing Shi
- Department of Obstetrics and Gynecology, Lishui Hospital of Traditional Chinese Medicine, Lishui, Zhejiang, China
| |
Collapse
|
28
|
Shi F, Su J, Liu Z, Wang J, Wang T. miR-144 reverses cisplatin resistance in cervical cancer via targeting LHX2. J Cell Biochem 2019; 120:15018-15026. [PMID: 31017720 DOI: 10.1002/jcb.28763] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 11/08/2022]
Abstract
Mounting evidence showed that microRNAs involve in development and chemoresistance of various human cancers. We explored the roles and mechanisms of miR-144 in resistance to cisplatin (CDDP) of cervical cancer cells. miR-144 and LIM homeobox 2 (LHX2) expression in CDDP-resistant and the parental cells was determined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis, respectively. The functions of miR-144 overexpression on cell viability, the incidence of apoptosis, the activity of caspase-3/7, the cleaved-caspase-3 expression, cell migration, and invasion were determined in Hela cells and Hela/CDDP cells. Overexpression of miR-144 reduced cell viability, induced cell apoptosis, and inhibited cell migration and invasion after CDDP treatment. Besides, a luciferase reporter system demonstrated that miR-144 could directly bind to the 3' untranslated region (3'-UTR) of LHX2 messenger RNA (mRNA). Gain expression of miR-144 decreased the expression of LHX2 both in mRNA and protein levels. Furthermore, restoration of LHX2 partly abolished the biological functions of miR-144 in resistance of cervical cancer cells. Taken together, miR-144 overcomes resistance to CDDP via promoting cell apoptosis and inhibiting invasion through targeting LHX2 in cervical cancer cells.
Collapse
Affiliation(s)
- Fan Shi
- Department of Radiation Oncology, First Hospital of Xi'an Jiaotong Univesity, Xi'an, Shaanxi, China
| | - Jin Su
- Department of Radiation Oncology, First Hospital of Xi'an Jiaotong Univesity, Xi'an, Shaanxi, China
| | - Zi Liu
- Department of Radiation Oncology, First Hospital of Xi'an Jiaotong Univesity, Xi'an, Shaanxi, China
| | - Jiquan Wang
- Department of Radiation Oncology, First Hospital of Xi'an Jiaotong Univesity, Xi'an, Shaanxi, China
| | - Tao Wang
- Department of Radiation Oncology, First Hospital of Xi'an Jiaotong Univesity, Xi'an, Shaanxi, China
| |
Collapse
|
29
|
Nahand JS, Taghizadeh-Boroujeni S, Karimzadeh M, Borran S, Pourhanifeh MH, Moghoofei M, Bokharaei-Salim F, Karampoor S, Jafari A, Asemi Z, Tbibzadeh A, Namdar A, Mirzaei H. microRNAs: New prognostic, diagnostic, and therapeutic biomarkers in cervical cancer. J Cell Physiol 2019; 234:17064-17099. [PMID: 30891784 DOI: 10.1002/jcp.28457] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
Cervical cancer is as a kind of cancer beginning from the cervix. Given that cervical cancer could be observed in women who infected with papillomavirus, regular oral contraceptives, and multiple pregnancies. Early detection of cervical cancer is one of the most important aspects of the therapy of this malignancy. Despite several efforts, finding and developing new biomarkers for cervical cancer diagnosis are required. Among various prognostic, diagnostic, and therapeutic biomarkers, miRNA have been emerged as powerful biomarkers for detection, treatment, and monitoring of response to therapy in cervical cancer. Here, we summarized various miRNAs as an employable platform for prognostic, diagnostic, and therapeutic biomarkers in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sima Taghizadeh-Boroujeni
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Brujen, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Jafari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Tbibzadeh
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Afshin Namdar
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
30
|
Zhang L, Liu SK, Song L, Yao HR. SP1-induced up-regulation of lncRNA LUCAT1 promotes proliferation, migration and invasion of cervical cancer by sponging miR-181a. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:556-564. [PMID: 30831032 DOI: 10.1080/21691401.2019.1575840] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Liang Zhang
- Department of Gynaecology and Obstetrics, Cangzhou Central Hospital, Cangzhou City, China
| | - Shi-Kai Liu
- Department of Gynaecology and Obstetrics, Cangzhou Central Hospital, Cangzhou City, China
| | - Lili Song
- Department of Gynaecology and Obstetrics, Cangzhou Central Hospital, Cangzhou City, China
| | - Hai-Rong Yao
- Department of Gynaecology and Obstetrics, Cangzhou Central Hospital, Cangzhou City, China
| |
Collapse
|
31
|
Du H, Chen Y. Competing endogenous RNA networks in cervical cancer: function, mechanism and perspective. J Drug Target 2019; 27:709-723. [PMID: 30052083 DOI: 10.1080/1061186x.2018.1505894] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the past several years, competing endogenous RNAs (ceRNAs) have emerged as a potential class of post-transcriptional regulators that alter gene expression through a microRNA (miRNA)-mediated mechanism. An increasing number of studies have found that ceRNAs play important roles in tumorigenesis. Cervical cancer is one of the most common cancers in female malignancies. Despite advances in our understanding of this neoplasm, patients with advanced cervical cancer still have poor prognosis. There is an urgent need to provide a new insight on the mechanism of cervical cancer development and may be acted as new anticancer therapeutic strategies. Here, we review the ceRNA studies and coherent researches in cervical cancer, especially in long non-coding RNA (lncRNA) and miRNAs in order to broaden horizons into mechanisms, selection biomarkers for diagnosis as well as predicting prognosis, and targeting treatment for cervical cancer in the future.
Collapse
Affiliation(s)
- Hui Du
- a Department of Obstetrics and Gynecology , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| | - Ying Chen
- b Department of Gynecologic Oncology , Tianjin Medical University Cancer Institute and Hospital , Tianjin , China.,c Key Laboratory of Cancer Prevention and Therapy , Tianjin , China.,d National Clinical Research Centre of Cancer , Tianjin , China
| |
Collapse
|
32
|
The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics 2019; 11:25. [PMID: 30744689 PMCID: PMC6371621 DOI: 10.1186/s13148-018-0587-8] [Citation(s) in RCA: 457] [Impact Index Per Article: 76.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 11/19/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with a length of about 19–25 nt, which can regulate various target genes and are thus involved in the regulation of a variety of biological and pathological processes, including the formation and development of cancer. Drug resistance in cancer chemotherapy is one of the main obstacles to curing this malignant disease. Statistical data indicate that over 90% of the mortality of patients with cancer is related to drug resistance. Drug resistance of cancer chemotherapy can be caused by many mechanisms, such as decreased antitumor drug uptake, modified drug targets, altered cell cycle checkpoints, or increased DNA damage repair, among others. In recent years, many studies have shown that miRNAs are involved in the drug resistance of tumor cells by targeting drug-resistance-related genes or influencing genes related to cell proliferation, cell cycle, and apoptosis. A single miRNA often targets a number of genes, and its regulatory effect is tissue-specific. In this review, we emphasize the miRNAs that are involved in the regulation of drug resistance among different cancers and probe the mechanisms of the deregulated expression of miRNAs. The molecular targets of miRNAs and their underlying signaling pathways are also explored comprehensively. A holistic understanding of the functions of miRNAs in drug resistance will help us develop better strategies to regulate them efficiently and will finally pave the way toward better translation of miRNAs into clinics, developing them into a promising approach in cancer therapy.
Collapse
|
33
|
Rezaei Z, Sebzari A, Kordi-Tamandani DM, Dastjerdi K. Involvement of the Dysregulation of miR-23b-3p, miR-195-5p, miR-656-5p, and miR-340-5p in Trastuzumab Resistance of HER2-Positive Breast Cancer Cells and System Biology Approach to Predict Their Targets Involved in Resistance. DNA Cell Biol 2019; 38:184-192. [PMID: 30702337 DOI: 10.1089/dna.2018.4427] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Resistance to trastuzumab has become a limiting factor for therapeutic efficacy of human epidermal growth factor 2 (HER2)-positive breast cancer. Different expression levels of miRNAs in cancer cells have been associated with poor prognosis and response to chemotherapy. The aim of this study was to evaluate miRNAs that were thought to be associated with HER2-positive breast cancer chemoresistance. In this study, the relative expression of candidate miRNAs to U6 RNA was evaluated in trastuzumab-resistant and trastuzumab-sensitive cells using relative real-time PCR. Our results demonstrated that miR-23b-3p, miR-195-5p, miR-656-5p, and miR-340-5p were significantly dysregulated. For the first time in this study, these miRNAs were identified to be involved in trastuzumab resistance. TargetScan and miRDB were then used for predicting the potential targets of the candidate miRNAs. Our results also revealed that the predicted potential targets of these miRNAs were strongly associated with drug resistance pathways. As a relative expression of candidate miRNAs was statistically different in trastuzumab-resistant and trastuzumab-sensitive cells, their potential targets were involved in drug resistance pathways. We strongly hypothesized the dysregulation of miRNAs as a possible mechanism of trastuzumab resistance. We also assumed that the strategic manipulation of these regulatory networks might be a possible therapeutic strategy to improve the results of chemotherapy for this resistance. However, more research is needed to evaluate the role of these miRNAs in the acquisition of trastuzumab resistance.
Collapse
Affiliation(s)
- Zohreh Rezaei
- 1 Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| | - Ahmadreza Sebzari
- 2 Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Kazem Dastjerdi
- 2 Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,3 Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
34
|
Braicu C, Gulei D, Cojocneanu R, Raduly L, Jurj A, Knutsen E, Calin GA, Berindan‐Neagoe I. miR-181a/b therapy in lung cancer: reality or myth? Mol Oncol 2019; 13:9-25. [PMID: 30548184 PMCID: PMC6322195 DOI: 10.1002/1878-0261.12420] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 12/24/2022] Open
Abstract
Despite substantial progress in oncology, lung cancer remains the number one malignancy in terms of both incidence and mortality rates, and there thus remains an urgent need for new therapeutic alternatives. MicroRNA (miRNA) have an important role in cancer initiation and progression due to their capacity to interfere with transcriptional signaling and regulate key cellular processes. miR-181a and miR-181b (miR-181a/b), which are located on chromosomes 1 and 9, are pathologically expressed in the tumor tissue and plasma of patients diagnosed with lung cancer. The miR-181a/b regulatory mechanisms are sophisticated and are directly related to different target genes. In recent years, an ever-increasing number of studies have focused on the biological relevance of miR-181a/b in key cellular processes. In this paper, we aim to discuss the challenging experimental data related to miR-181a/b and their potential use for the development of new therapeutic approaches in lung cancer. We will further present the ongoing issues regarding the regulation of their multiple target genes, and their potential use as biomarkers and therapeutic targets in this deadly malignancy.
Collapse
Affiliation(s)
- Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine‘Iuliu Hatieganu’ University of Medicine and PharmacyCluj‐NapocaRomania
| | - Diana Gulei
- MedFuture Research Center for Advanced Medicine‘Iuliu Hatieganu’ University of Medicine and PharmacyCluj‐NapocaRomania
| | - Roxana Cojocneanu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine‘Iuliu Hatieganu’ University of Medicine and PharmacyCluj‐NapocaRomania
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine‘Iuliu Hatieganu’ University of Medicine and PharmacyCluj‐NapocaRomania
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine‘Iuliu Hatieganu’ University of Medicine and PharmacyCluj‐NapocaRomania
| | - Erik Knutsen
- Department of Experimental TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - George Adrian Calin
- Department of Experimental TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Center for RNA Inference and Non‐Coding RNAThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Ioana Berindan‐Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine‘Iuliu Hatieganu’ University of Medicine and PharmacyCluj‐NapocaRomania
- MedFuture Research Center for Advanced Medicine‘Iuliu Hatieganu’ University of Medicine and PharmacyCluj‐NapocaRomania
- Department of Functional Genomics and Experimental PathologyThe Oncology Institute ‘Prof. Dr. Ion Chiricuta’Cluj‐NapocaRomania
| |
Collapse
|
35
|
Nazeri E, Gouran Savadkoohi M, Majidzadeh-A K, Esmaeili R. Chondrosarcoma: An overview of clinical behavior, molecular mechanisms mediated drug resistance and potential therapeutic targets. Crit Rev Oncol Hematol 2018; 131:102-109. [PMID: 30293700 DOI: 10.1016/j.critrevonc.2018.09.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/28/2018] [Accepted: 09/03/2018] [Indexed: 12/24/2022] Open
Abstract
Sarcomas are known as a heterogeneous class of cancers arisen in the connective tissues and demonstrated various histological subtypes including both soft tissue and bone origin. Chondrosarcoma is one of the main types of bone sarcoma that shows a considerable deficiency in response to chemotherapy and radiotherapy. While conventional treatment based on surgery, chemo-and radiotherapy are used in this tumor, high rate of death especially among children and adolescents are reported. Due to high resistance to current conventional therapies in chondrosarcoma, there is an urgent requirement to recognize factors causing resistance and discover new strategies for optimal treatment. In the past decade, dysregulation of genes associated with tumor development and therapy resistance has been studied to find potential therapeutic targets to overcome resistance. In this review, clinical aspects of chondrosarcoma are summarized. Moreover, it gives a summary of gene dysregulation, mutation, histone modifications and non-coding RNAs associated with tumor development and therapeutic response modulation. Finally, the probable role of tumor microenvironment in chondrosarcoma drug resistance and targeted therapies as a promising molecular therapeutic approach are summarized.
Collapse
Affiliation(s)
- Elahe Nazeri
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | | | - Keivan Majidzadeh-A
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
36
|
Corrà F, Agnoletto C, Minotti L, Baldassari F, Volinia S. The Network of Non-coding RNAs in Cancer Drug Resistance. Front Oncol 2018; 8:327. [PMID: 30211115 PMCID: PMC6123370 DOI: 10.3389/fonc.2018.00327] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have been implicated in most cellular functions. The disruption of their function through somatic mutations, genomic imprinting, transcriptional and post-transcriptional regulation, plays an ever-increasing role in cancer development. ncRNAs, including notorious microRNAs, have been thus proposed to function as tumor suppressors or oncogenes, often in a context-dependent fashion. In parallel, ncRNAs with altered expression in cancer have been reported to exert a key role in determining drug sensitivity or restoring drug responsiveness in resistant cells. Acquisition of resistance to anti-cancer drugs is a major hindrance to effective chemotherapy and is one of the most important causes of relapse and mortality in cancer patients. For these reasons, non-coding RNAs have become recent focuses as prognostic agents and modifiers of chemo-sensitivity. This review starts with a brief outline of the role of most studied non-coding RNAs in cancer and then highlights the modulation of cancer drug resistance via known ncRNAs based mechanisms. We identified from literature 388 ncRNA-drugs interactions and analyzed them using an unsupervised approach. Essentially, we performed a network analysis of the non-coding RNAs with direct relations with cancer drugs. Within such a machine-learning framework we detected the most representative ncRNAs-drug associations and groups. We finally discussed the higher integration of the drug-ncRNA clusters with the goal of disentangling effectors from downstream effects and further clarify the involvement of ncRNAs in the cellular mechanisms underlying resistance to cancer treatments.
Collapse
Affiliation(s)
- Fabio Corrà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Agnoletto
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Linda Minotti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Federica Baldassari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW We review the genetic foundations of different rare lymphomas to examine their shared origins. These data indicate the potential application of genomics to improve the diagnosis and treatment of these rare diseases. RECENT FINDINGS Next generation sequencing technologies have provided an important window into the genetic underpinnings of lymphomas. A growing body of evidence indicates that although some genetic alterations are specific to certain diseases, others are shared across different lymphomas. Many such genetic events have already demonstrated clinical utility, such as BRAF V600E that confers sensitivity to vemurafenib in patients with hairy cell leukemia. SUMMARY The rareness of many lymphoma subtypes makes the conduct of clinical trials and recruitment of significant numbers of patients impractical. However, a knowledge of the shared genetic origins of these rare lymphomas has the potential to inform 'basket' clinical trials in which multiple lymphoma subtypes are included. These trials would include patients based on the presence of alterations in targetable driver genes. Such approaches would be greatly strengthened by a systematic assessment of significant patient numbers from each subtype using next generation sequencing.
Collapse
|
38
|
Feng C, Ma F, Hu C, Ma JA, Wang J, Zhang Y, Wu F, Hou T, Jiang S, Wang Y, Feng Y. SOX9/miR-130a/CTR1 axis modulates DDP-resistance of cervical cancer cell. Cell Cycle 2018; 17:448-458. [PMID: 29099271 DOI: 10.1080/15384101.2017.1395533] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Cisplatin (DDP) -based chemotherapy is a standard strategy for cervical cancer, while chemoresistance remains a huge challenge. Copper transporter protein 1 (CTR1), a copper influx transporter required for high affinity copper (probably reduced Cu I) transport into the cell, reportedly promotes a significant fraction of DDP internalization in tumor cells. In the present study, we evaluated the function of CTR1 in the cell proliferation of cervical cancer upon DDP treatment. MicroRNAs (miRNAs) have been regarded as essential regulators of cell proliferation, apoptosis, migration, as well as chemoresistance. By using online tools, we screened for candidate miRNAs potentially regulate CTR1, among which miR-130a has been proved to promote cervical cancer cell proliferation through targeting PTEN in our previous study. In the present study, we investigated the role of miR-130a in cervical cancer chemoresistance to DDP, and confirmed the binding of miR-130a to CTR1. SOX9 also reportedly act on cancer chemoresistance. In the present study, we revealed that SOX9 inversely regulated miR-130a through direct targeting the promoter of miR-130a. Consistent with previous studies, SOX9 could affect cervical cancer chemoresistance to DDP. Taken together, we demonstrated a SOX9/miR-130a/CTR1 axis which modulated the chemoresistance of cervical cancer cell to DDP, and provided promising targets for dealing with the chemoresistance of cervical cancer.
Collapse
Affiliation(s)
- Chenzhe Feng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China,Xiangya School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Fang Ma
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jin-An Ma
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jingjing Wang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yang Zhang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Tao Hou
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shun Jiang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yapeng Wang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yeqian Feng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
39
|
Nguyen DD, Chang S. Development of Novel Therapeutic Agents by Inhibition of Oncogenic MicroRNAs. Int J Mol Sci 2017; 19:E65. [PMID: 29280958 PMCID: PMC5796015 DOI: 10.3390/ijms19010065] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/14/2017] [Accepted: 12/22/2017] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRs, miRNAs) are regulatory small noncoding RNAs, with their roles already confirmed to be important for post-transcriptional regulation of gene expression affecting cell physiology and disease development. Upregulation of a cancer-causing miRNA, known as oncogenic miRNA, has been found in many types of cancers and, therefore, represents a potential new class of targets for therapeutic inhibition. Several strategies have been developed in recent years to inhibit oncogenic miRNAs. Among them is a direct approach that targets mature oncogenic miRNA with an antisense sequence known as antimiR, which could be an oligonucleotide or miRNA sponge. In contrast, an indirect approach is to block the biogenesis of miRNA by genome editing using the CRISPR/Cas9 system or a small molecule inhibitor. The development of these inhibitors is straightforward but involves significant scientific and therapeutic challenges that need to be resolved. In this review, we summarize recent relevant studies on the development of miRNA inhibitors against cancer.
Collapse
Affiliation(s)
- Dinh-Duc Nguyen
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea.
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea.
| |
Collapse
|
40
|
MiR-181a contributes gefitinib resistance in non-small cell lung cancer cells by targeting GAS7. Biochem Biophys Res Commun 2017; 495:2482-2489. [PMID: 29269300 DOI: 10.1016/j.bbrc.2017.12.096] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/17/2017] [Indexed: 11/23/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) exert potent therapeutic efficacy in non-small cell lung cancers (NSCLC) harboring epidermal growth factor receptor (EGFR) activating mutations. However, a major impediment for the effective treatment is the development of drug resistance. Some evidence supports a role for miRNAs in modulating NSCLC TKIs resistance. Here we show that miR-181a is significantly up-regulated in gefitinib-resistant cells compared with gefitinib-sensitive cells. Upregulation of miR-181a caused resistance of gefitinib, whereas downregulation of miR-181a sensitized NSCLC cells to gefitinib. Furthermore, the miR-181a plasma levels were significantly increased in acquired gefitinib resistant NSCLC patients compared with the plasma levels prior to gefitinib treatment in each patient. Bioinformatics analysis and luciferase reporter assay showed that growth arrest-specific 7 (GAS7) was a direct target gene of miR-181a. A significant inverse correlation between the expression of miR-181a and GAS7 was identified in NSCLC tissues. Downregulation of GAS7 expression could antagonize gefitinib re-sensitivity in PC9GR mediated by knockdown of miR-181a via AKT/ERK pathways and epithelial-to-mesenchymal transition markers. Additionally, GAS7 expression was downregulated in a large cohort of NSCLC patients, and a high mRNA level of GAS7 was associated with improved overall survival. Collectively, our findings provide a novel basis for using miR-181a/GAS7-based therapeutic strategies to reverse gefitinib resistance in NSCLC.
Collapse
|
41
|
Wang P, Chen D, Ma H, Li Y. LncRNA SNHG12 contributes to multidrug resistance through activating the MAPK/Slug pathway by sponging miR-181a in non-small cell lung cancer. Oncotarget 2017; 8:84086-84101. [PMID: 29137407 PMCID: PMC5663579 DOI: 10.18632/oncotarget.20475] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/25/2017] [Indexed: 12/31/2022] Open
Abstract
Small nucleolar RNA host gene 12 (SNHG12), as one of the long non-coding RNAs (lncRNAs), plays an oncogenic role in various cancers, however, its role in the chemoresistance of non-small cell lung cancer (NSCLC) is unclear. In this study, we investigated the effect of SNHG12 on multidrug resistance (MDR) in NSCLC. The results showed that SNHG12 was high-expressed and miR-181a was low-expressed in NSCLC tumor tissues and cell lines. Knockdown of SNHG12 reversed the resistance to cisplatin, paclitaxel and gefitinib in A549/DDP, A549/PTX and PC9/AB2 cells through inducing cell apoptosis. Moreover, SNHG12 silencing suppressed MAPK1 and MAP2K1 expression by upregulating miR-181a, leading to inhibition of the MAPK/Slug pathway through decreasing phosphorylated MAPK1 (p-MAPK1), phosphorylated MAP2K1 (p-MAP2K1) and Slug levels. Furthermore, downregulation of SNHG12 enhanced the sensitivity of NSCLC cells to cisplatin in nude mice. Overall, our study is the first to identify a SNHG12-miR-181a-MAPK/Slug axis to elucidate in part how SNHG12 exert functions in NSCLC MDR, providing a novel therapeutic target to overcome MDR in NSCLC.
Collapse
Affiliation(s)
- Pei Wang
- Department of Cardiothoracic Surgery, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Dong Chen
- Department of Cardiothoracic Surgery, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Hongbing Ma
- Department of Cardiothoracic Surgery, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Yong Li
- Department of Cardiothoracic Surgery, Huaihe Hospital of Henan University, Kaifeng 475000, China
| |
Collapse
|
42
|
Zhang H, Hu B, Wang Z, Zhang F, Wei H, Li L. miR-181c contributes to cisplatin resistance in non-small cell lung cancer cells by targeting Wnt inhibition factor 1. Cancer Chemother Pharmacol 2017; 80:973-984. [PMID: 28956120 DOI: 10.1007/s00280-017-3435-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 09/15/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE miRNAs are implicated in drug resistance of multiple cancers including non-small cell lung cancer (NSCLC), highlighting the potential of miRNAs as chemoresistance regulators in cancer treatment. This study aims to explore the relationship between miR-181c and chemoresistance of NSCLC cells. METHODS qRT-PCR was conducted to examine the expression of miR-181c in NSCLC tissues, and parental and cisplatin (DDP)-resistant NSCLC cells. MTT assay and flow cytometry were performed to detect the survival rate and apoptosis in NSCLC cells. Luciferase reporter assay was performed to confirm the potential target of miR-181c. Xenograft tumor experiment was applied to confirm the effect of miR-181c on DDP sensitivity of DDP-resistant NSCLC cells in vivo. RESULTS miR-181c was upregulated in NSCLC tissues, and parental and DDP-resistant NSCLC cells. miR-181c downregulation or WIF1 overexpression increased DDP sensitivity of DDP-resistant NSCLC cells by decreasing survival rate and promoting DDP-induced apoptosis. miR-181c was demonstrated to be able to bind to WIF1 and negatively regulate the expression of WIF1. WIF1 knockdown abolished anti-miR-181c-induced DDP sensitivity. Moreover, anti-miR-181c suppressed the Wnt/β-catenin pathway by regulating WIF1. XAV939 treatment reversed miR-181c-induced increase in IC50 value and miR-181c-triggered decrease in apoptosis. Finally, anti-miR-181c improved DDP sensitivity of DDP-resistant NSCLC cells in vivo. CONCLUSION miR-181c contributed to DDP resistance in NSCLC cells through activation of the Wnt/β-catenin pathway by targeting WIF1, providing a potential therapeutic application for the treatment of patients with DDP-resistant NSCLC in the future.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Cardiothoracic Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Baoli Hu
- Department of Cardiothoracic Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Zuopei Wang
- Department of Cardiothoracic Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Feng Zhang
- Department of Cardiothoracic Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Haitao Wei
- Department of Cardiothoracic Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Li Li
- School of Nursing, Henan University, Jinming Campus, Kaifeng, 475000, China.
| |
Collapse
|
43
|
Armstrong CM, Liu C, Lou W, Lombard AP, Evans CP, Gao AC. MicroRNA-181a promotes docetaxel resistance in prostate cancer cells. Prostate 2017; 77:1020-1028. [PMID: 28485104 PMCID: PMC5448975 DOI: 10.1002/pros.23358] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Docetaxel is one of the primary drugs used for treating castration resistant prostate cancer (CRPC). Unfortunately, over time patients invariably develop resistance to docetaxel therapy and their disease will continue to progress. The mechanisms by which resistance develops are still incompletely understood. This study seeks to determine the involvement of miRNAs, specifically miR-181a, in docetaxel resistance in CRPC. METHODS Real-time PCR was used to measure miR-181a expression in parental and docetaxel resistant C4-2B and DU145 cells (TaxR and DU145-DTXR). miR-181a expression was modulated in parental or docetaxel resistant cells by transfecting them with miR-181a mimics or antisense, respectively. Following transfection, cell number was determined after 48 h with or without docetaxel. Cross resistance to cabazitaxel induced by miR-181a was also determined. Western blots were used to determine ABCB1 protein expression and rhodamine assays used to assess activity. Phospho-p53 expression was assessed by Western blot and apoptosis was measured by ELISA in C4-2B TaxR and PC3 cells with inhibited or overexpressed miR-181a expression with or without docetaxel. RESULTS miR-181a is significantly overexpressed in TaxR and DU145-DTXR cells compared to parental cells. Overexpression of miR-181a in parental cells confers docetaxel and cabazitaxel resistance and knockdown of miR-181a in TaxR cells re-sensitizes them to treatment with both docetaxel and cabazitaxel. miR-181a was not observed to impact ABCB1 expression or activity, a protein which was previously demonstrated to be highly involved in docetaxel resistance. Knockdown of miR-181a in TaxR cells induced phospho-p53 expression. Furthermore, miR-181a knockdown alone induced apoptosis in TaxR cells which could be further enhanced by the addition of DTX. CONCLUSIONS Overexpression of mir-181a in prostate cancer cells contributes to their resistance to docetaxel and cabazitaxel and inhibition of mir-181a expression can restore treatment response. This is due, in part, to modulation of p53 phosphorylation and apoptosis.
Collapse
Affiliation(s)
| | - Chengfei Liu
- Department of Urology, University of California Davis, CA, USA
| | - Wei Lou
- Department of Urology, University of California Davis, CA, USA
| | - Alan P. Lombard
- Department of Urology, University of California Davis, CA, USA
| | - Christopher P Evans
- Department of Urology, University of California Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California Davis, CA, USA
| | - Allen C. Gao
- Department of Urology, University of California Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California Davis, CA, USA
- VA Northern California Health Care System, Sacramento, CA, USA
| |
Collapse
|
44
|
Ayers D, Vandesompele J. Influence of microRNAs and Long Non-Coding RNAs in Cancer Chemoresistance. Genes (Basel) 2017; 8:genes8030095. [PMID: 28273813 PMCID: PMC5368699 DOI: 10.3390/genes8030095] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022] Open
Abstract
Innate and acquired chemoresistance exhibited by most tumours exposed to conventional chemotherapeutic agents account for the majority of relapse cases in cancer patients. Such chemoresistance phenotypes are of a multi-factorial nature from multiple key molecular players. The discovery of the RNA interference pathway in 1998 and the widespread gene regulatory influences exerted by microRNAs (miRNAs) and other non-coding RNAs have certainly expanded the level of intricacy present for the development of any single physiological phenotype, including cancer chemoresistance. This review article focuses on the latest research efforts in identifying and validating specific key molecular players from the two main families of non-coding RNAs, namely miRNAs and long non-coding RNAs (lncRNAs), having direct or indirect influences in the development of cancer drug resistance properties and how such knowledge can be utilised for novel theranostics in oncology.
Collapse
Affiliation(s)
- Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD2080, Malta.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M1 7DN, UK.
| | - Jo Vandesompele
- Center for Medical Genetics Ghent, Ghent University, Ghent 9000, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
45
|
Biersack B. Interactions between anticancer active platinum complexes and non-coding RNAs/microRNAs. Noncoding RNA Res 2017; 2:1-17. [PMID: 30159416 PMCID: PMC6096430 DOI: 10.1016/j.ncrna.2016.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 12/13/2022] Open
Abstract
Platinum(II) complexes such as cisplatin, carboplatin and oxaliplatin are clinically approved for the therapy of various solid tumors. Challenging pathogenic properties of cancer cells and the response of cancers towards platinum-based drugs are strongly influenced by non-coding small RNA molecules, the microRNAs (miRNAs). Both increased platinum activity and formation of tumor resistance towards platinum drugs are controlled by miRNAs. This review gives an overview of the interactions between platinum-based drugs and miRNAs, and their influence on platinum activity in various cancer types is discussed.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- Anticancer drugs
- CBDCA, cyclobutane-1,1-dicarboxylate
- Carboplatin
- Cisplatin
- DACH, 1,2-diaminocyclohexane
- DDP, cisplatin
- EGCG, (−)-epigallocatechin-3-gallate
- EOX, epirubicin/oxaliplatin/xeloda
- FOLFOX, folinate/5-FU/oxaliplatin
- GC, gemcitabine/cisplatin, gastric cancer
- LNA, locked nucleic acid
- MVAC, methotrexate/vinblastine/adriamycin/cisplatin
- MicroRNA
- Oxaliplatin
- Platinum complexes
- XELOX, xeloda/oxaliplatin
- dTTP, deoxythymidine triphosphate
Collapse
|
46
|
Granados-López AJ, Ruiz-Carrillo JL, Servín-González LS, Martínez-Rodríguez JL, Reyes-Estrada CA, Gutiérrez-Hernández R, López JA. Use of Mature miRNA Strand Selection in miRNAs Families in Cervical Cancer Development. Int J Mol Sci 2017; 18:ijms18020407. [PMID: 28216603 PMCID: PMC5343941 DOI: 10.3390/ijms18020407] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/03/2017] [Accepted: 02/08/2017] [Indexed: 12/25/2022] Open
Abstract
Aberrant miRNA expression is well recognized as a cancer hallmark, nevertheless miRNA function and expression does not always correlate in patients tissues and cell lines studies. In addition to this issue, miRNA strand usage conduces to increased cell signaling pathways modulation diversifying cellular processes regulation. In cervical cancer, 20 miRNA families are involved in carcinogenesis induction and development to this moment. These families have 5p and 3p strands with different nucleotide (nt) chain sizes. In general, mature 5p strands are larger: two miRNAs of 24 nt, 24 miRNAs of 23 nt, 35 miRNAs of 22 nt and three miRNAs of 21 nt. On the other hand, the 3p strands lengths observed are: seven miRNAs of 23 nt, 50 miRNAs of 22 nt, six miRNAs of 21 nt and four miRNAs of 20 nt. Based on the analysis of the 20 miRNA families associated with cervical cancer, 67 3p strands and 65 5p strands are selected suggesting selectivity and specificity mechanisms regulating cell processes like proliferation, apoptosis, migration, invasion, metabolism and Warburg effect. The insight reviewed here could be used in the miRNA based therapy, diagnosis and prognosis approaches.
Collapse
Affiliation(s)
- Angelica Judith Granados-López
- Laboratorio de microRNAs, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacateacs, Av. Preparatoria S/N, Zacatecas 98066, Mexico.
- Doctorado en Ciencias Básicas, Universidad Autónoma de Zacateacs, Av. Preparatoria S/N, Campus II, Zacatecas 98066, Mexico.
| | - José Luis Ruiz-Carrillo
- Laboratorio de microRNAs, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacateacs, Av. Preparatoria S/N, Zacatecas 98066, Mexico.
| | | | - José Luis Martínez-Rodríguez
- Laboratorio de microRNAs, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacateacs, Av. Preparatoria S/N, Zacatecas 98066, Mexico.
| | - Claudia Araceli Reyes-Estrada
- Doctorado en Ciencias Básicas en la Especialidad en Farmacología Médica y Molecular de la Unidad Académica de Medicina Humana y Ciencias de la Salud de la Universidad Autónoma de Zacateacas, Campus Siglo XXI, Kilómetro 6, Ejido la Escondida, Zacatecas CP 98160, Mexico.
| | - Rosalinda Gutiérrez-Hernández
- Doctorado en Ciencias Básicas en la Especialidad en Farmacología Médica y Molecular de la Unidad Académica de Medicina Humana y Ciencias de la Salud de la Universidad Autónoma de Zacateacas, Campus Siglo XXI, Kilómetro 6, Ejido la Escondida, Zacatecas CP 98160, Mexico.
| | - Jesús Adrián López
- Laboratorio de microRNAs, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacateacs, Av. Preparatoria S/N, Zacatecas 98066, Mexico.
- Doctorado en Ciencias Básicas, Universidad Autónoma de Zacateacs, Av. Preparatoria S/N, Campus II, Zacatecas 98066, Mexico.
| |
Collapse
|
47
|
Brozovic A. The relationship between platinum drug resistance and epithelial-mesenchymal transition. Arch Toxicol 2016; 91:605-619. [PMID: 28032148 DOI: 10.1007/s00204-016-1912-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/13/2016] [Indexed: 01/10/2023]
Abstract
One of the most commonly used chemotherapeutics, platinum drugs are used to treat a wide range of cancer types. Although many cancers initially respond well to those drugs, drug resistance occurs frequently and different molecular mechanisms have been associated with it. However, predictive biomarkers of cellular response in specific tumour types still do not exist. Epithelial-mesenchymal transition (EMT) is a malignant cancer phenotype characterized by aggressive invasion and metastasis, and resistance to apoptosis. Recent studies indicate that EMT accompanies the development of drug resistance to a number of cancer chemotherapies. The link between these two phenomena is still not elucidated, although several important molecules involved in both these complex processes, such as transcription factors (SNAIL, TWIST, ZEB, etc.) and miRNAs (miRNA-200 family, miR-15, miR-186, etc.) have been recognized as important. This article reviews numerous unresolved issues regarding platinum drugs resistance and EMT, the complexity of the signalling networks that regulate those two phenomena and their importance in tumour response and spreading which are becoming focuses of interest of many scientists. This article also presents molecules involved in platinum resistance and EMT as possible targets for new cancer therapy.
Collapse
Affiliation(s)
- Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia.
| |
Collapse
|
48
|
Arrighetti N, Cossa G, De Cecco L, Stucchi S, Carenini N, Corna E, Gandellini P, Zaffaroni N, Perego P, Gatti L. PKC-alpha modulation by miR-483-3p in platinum-resistant ovarian carcinoma cells. Toxicol Appl Pharmacol 2016; 310:9-19. [DOI: 10.1016/j.taap.2016.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/27/2016] [Accepted: 08/05/2016] [Indexed: 12/19/2022]
|
49
|
Xu H, Zhu J, Hu C, Song H, Li Y. Inhibition of microRNA-181a may suppress proliferation and invasion and promote apoptosis of cervical cancer cells through the PTEN/Akt/FOXO1 pathway. J Physiol Biochem 2016; 72:721-732. [PMID: 27534652 DOI: 10.1007/s13105-016-0511-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/01/2016] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous, non-coding, small RNAs, which play a critical role in regulating varieties of the biological and pathologic processes. miR-181a has been reported to participate in tumorigenic progression. However, the roles of miR-181a in cervical cancer (CC) are still unknown. The aim of this research was to explore the effects and molecular mechanism of miR-181a in CC cells. In this paper, the levels of miR-181a in CC cell lines were determined by real-time PCR. We found that the levels of miR-181a were evidently enhanced in CC cell lines compared with normal cervical epithelium cells. Then, the miR-181a inhibitor was transiently transfected into HeLa and CaSKi cells using Lipofectamine 2000 reagent. Subsequently, the Cell Counting Kit-8 (CCK-8) and BrdU-ELISA results showed that down-regulation of miR-181a inhibited the cell viability and proliferation. Our data also demonstrated that miR-181a inhibitor arrested cell cycle progression of HeLa and CaSKi cells by up-regulation of p21 and p27 expressions. In addition, inhibition of miR-181a promoted apoptosis of HeLa and CaSKi cells due to increasing Bax expression and decreasing Bcl-2 expression. Ultimately, the effect of miR-181a inhibitor on the PTEN/Akt/FOXO1 signaling pathway was investigated by Western blot. From our results, down-regulation of miR-181a increased the expression of PTEN and decreased phosphorylation of Akt and FOXO1. Altogether, miR-181a might be an oncogene in CC cells. The potential mechanism was that inhibition of miR-181a might suppress proliferation and invasion and promote apoptosis of HeLa and CaSKi cells by modulating the PTEN/Akt/FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Hongmei Xu
- Department of Obstetrics, the First Hospital of Jilin University, Changchun, 130021, China
| | - Jihong Zhu
- Section I, Department of General Gynecology, the First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, China
| | - Cong Hu
- Reproductive Center, the First Hospital of Jilin University, Changchun, 130021, China
| | - Hua Song
- Department of Gynecology and Obstetrics, Qianwei Hospital of Jilin Province, Changchun, 130012, China
| | - Yiyang Li
- Section I, Department of General Gynecology, the First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
50
|
Vishnoi K, Mahata S, Tyagi A, Pandey A, Verma G, Jadli M, Singh T, Singh SM, Bharti AC. Human papillomavirus oncoproteins differentially modulate epithelial-mesenchymal transition in 5-FU-resistant cervical cancer cells. Tumour Biol 2016; 37:13137-13154. [PMID: 27449048 DOI: 10.1007/s13277-016-5143-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/11/2016] [Indexed: 12/31/2022] Open
Abstract
Etiological role of viral proteins E6 and E7 of high-risk HPV in cervical carcinogenesis is well established. However, their contribution in chemoresistance and epithelial-mesenchymal transition (EMT) that leads to advanced metastatic lesions and chemoresistance is poorly defined. In the present study, contribution of viral oncoproteins in acquisition of EMT character during onset of chemoresistance was assessed. A chemoresistant cell line (SiHaCR) was developed from an established HPV16-positive cervical cancer cell line, SiHa, by escalating selection pressure of 5-fluorouracil (5-FU). Expression of Survivin, ABCG2, Snail, Slug, Twist, and Vimentin was examined in SiHa and SiHaCR cells by reverse transcriptase-PCR (RT-PCR) and immunoblotting assays. Mesenchymal phenotype in SiHaCR cells was confirmed by assessment of migration and invasion potentials. SiHaCR cells displayed elevated level of functional and molecular markers associated with chemoresistance (Survivin, ABCG2) and EMT (Snail, Slug, Twist, Vimentin) and reduced E-cadherin. SiHaCR also showed increased levels of HPV16 E6 and E7 transcripts. Specific silencing of HPV16 E6, but not E7 using corresponding siRNA, demonstrated a differential involvement of HPV oncogenes in manifestation of EMT. HPV16 E6 silencing resulted in reduction of Slug and Twist expression. However, the expression of Snail and Vimentin was only marginally affected. In contrast, there was an increase in the expression of E-cadherin. A reduced migration and invasion capabilities were observed only in E6-silenced SiHaCR cells, which further confirmed functional contribution of HPV16 E6 in manifestation of EMT. Taken together, our study demonstrated an active involvement of HPV16 E6 in regulation of EMT, which promotes chemoresistance in cervical cancer.
Collapse
Affiliation(s)
- Kanchan Vishnoi
- Division of Molecular Oncology, Institute of Cytology and Preventive Oncology (ICMR), Noida, Uttar Pradesh, India.,School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sutapa Mahata
- Division of Molecular Oncology, Institute of Cytology and Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Abhishek Tyagi
- Division of Molecular Oncology, Institute of Cytology and Preventive Oncology (ICMR), Noida, Uttar Pradesh, India.,Molecular Oncology Laboratory, B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, New Delhi, India.,Research Lab, Delhi State Cancer Institute, Delhi, India
| | - Arvind Pandey
- Division of Molecular Oncology, Institute of Cytology and Preventive Oncology (ICMR), Noida, Uttar Pradesh, India.,Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
| | - Gaurav Verma
- Division of Molecular Oncology, Institute of Cytology and Preventive Oncology (ICMR), Noida, Uttar Pradesh, India.,School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mohit Jadli
- Division of Molecular Oncology, Institute of Cytology and Preventive Oncology (ICMR), Noida, Uttar Pradesh, India.,Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Tejveer Singh
- Division of Molecular Oncology, Institute of Cytology and Preventive Oncology (ICMR), Noida, Uttar Pradesh, India.,Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Sukh Mahendra Singh
- School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Alok C Bharti
- Division of Molecular Oncology, Institute of Cytology and Preventive Oncology (ICMR), Noida, Uttar Pradesh, India. .,Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|