1
|
Johnson S, Karpova Y, Guo D, Ghatak A, Markov DA, Tulin AV. PARG suppresses tumorigenesis and downregulates genes controlling angiogenesis, inflammatory response, and immune cell recruitment. BMC Cancer 2022; 22:557. [PMID: 35585513 PMCID: PMC9118775 DOI: 10.1186/s12885-022-09651-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/09/2022] [Indexed: 12/20/2022] Open
Abstract
Chemokines are highly expressed in tumor microenvironment and play a critical role in all aspects of tumorigenesis, including the recruitment of tumor-promoting immune cells, activation of cancer-associated fibroblasts, angiogenesis, metastasis, and growth. Poly (ADP-ribose) polymerase (PARP) is a multi-target transcription regulator with high levels of poly(ADP-ribose) (pADPr) being reported in a variety of cancers. Furthermore, poly (ADP-ribose) glycohydrolase (PARG), an enzyme that degrades pADPr, has been reported to be downregulated in tumor tissues with abnormally high levels of pADPr. In conjunction to this, we have recently reported that the reduction of pADPr, by either pharmacological inhibition of PARP or PARG's overexpression, disrupts renal carcinoma cell malignancy in vitro. Here, we use 3 T3 mouse embryonic fibroblasts, a universal model for malignant transformation, to follow the effect of PARG upregulation on cells' tumorigenicity in vivo. We found that the overexpression of PARG in mouse allografts produces significantly smaller tumors with a delay in tumor onset. As downregulation of PARG has also been implicated in promoting the activation of pro-inflammatory genes, we also followed the gene expression profile of PARG-overexpressing 3 T3 cells using RNA-seq approach and observed that chemokine transcripts are significantly reduced in those cells. Our data suggest that the upregulation of PARG may be potentially useful for the tumor growth inhibition in cancer treatment and as anti-inflammatory intervention.
Collapse
Affiliation(s)
- Sarah Johnson
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202 USA
| | - Yaroslava Karpova
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202 USA
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, 119334 Russia
| | - Danping Guo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202 USA
| | - Atreyi Ghatak
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202 USA
| | - Dmitriy A. Markov
- Department of Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084 USA
| | - Alexei V. Tulin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202 USA
| |
Collapse
|
2
|
Cao J, Chan WC, Chow MSS. Use of conditional reprogramming cell, patient derived xenograft and organoid for drug screening for individualized prostate cancer therapy: Current and future perspectives (Review). Int J Oncol 2022; 60:52. [PMID: 35322860 DOI: 10.3892/ijo.2022.5342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/14/2022] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer mortality is ranked second among all cancer mortalities in men worldwide. There is a great need for a method of efficient drug screening for precision therapy, especially for patients with existing drug‑resistant prostate cancer. Based on the concept of bacterial cell culture and drug sensitivity testing, the traditional approach of cancer drug screening is inadequate. The current and more innovative use of cancer cell culture and in vivo tumor models in drug screening for potential individualization of anti‑cancer therapy is reviewed and discussed in the present review. An ideal screening model would have the ability to identify drug activity for the targeted cells resembling what would have occurred in the in vivo environment. Based on this principle, three available cell culture/tumor screening models for prostate cancer are reviewed and considered. The culture conditions, advantages and disadvantages for each model together with ideas to best utilize these models are discussed. The first screening model uses conditional reprogramed cells derived from patient cancer cells. Although these cells are convenient to grow and use, they are likely to have different markers and characteristics from original tumor cells and thus not likely to be informative. The second model employs patient derived xenograft (PDX) which resembles an in vivo approach, but its main disadvantages are that it cannot be easily genetically modified and it is not suitable for high‑throughput drug screening. Finally, high‑throughput screening is more feasible with tumor organoids grown from patient cancer cells. The last system still needs a large number of tumor cells. It lacks in situ blood vessels, immune cells and the extracellular matrix. Based on these current models, future establishment of an organoid data bank would allow the selection of a specific organoid resembling that of an individual's prostate cancer and used for screening of suitable anticancer drugs. This can be further confirmed using the PDX model. Thus, this combined organoid‑PDX approach is expected to be able to provide the drug sensitivity testing approach for individualization of prostate cancer therapy in the near future.
Collapse
Affiliation(s)
- Jessica Cao
- College of Osteopathic Medicine of The Pacific, Western University of Health Sciences, Pomona, CA 91766‑1854, USA
| | - Wing C Chan
- City of Hope Comprehensive Cancer Center, City of Hope Medical Center, Duarte, CA 91010‑3012, USA
| | - Moses S S Chow
- College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766‑1854, USA
| |
Collapse
|
3
|
Wu X, Wang S, Li M, Li J, Shen J, Zhao Y, Pang J, Wen Q, Chen M, Wei B, Kaboli PJ, Du F, Zhao Q, Cho CH, Wang Y, Xiao Z, Wu X. Conditional reprogramming: next generation cell culture. Acta Pharm Sin B 2020; 10:1360-1381. [PMID: 32963937 PMCID: PMC7488362 DOI: 10.1016/j.apsb.2020.01.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Long-term primary culture of mammalian cells has been always difficult due to unavoidable senescence. Conventional methods for generating immortalized cell lines usually require manipulation of genome which leads to change of important biological and genetic characteristics. Recently, conditional reprogramming (CR) emerges as a novel next generation tool for long-term culture of primary epithelium cells derived from almost all origins without alteration of genetic background of primary cells. CR co-cultures primary cells with inactivated mouse 3T3-J2 fibroblasts in the presence of RHO-related protein kinase (ROCK) inhibitor Y-27632, enabling primary cells to acquire stem-like characteristics while retain their ability to fully differentiate. With only a few years' development, CR shows broad prospects in applications in varied areas including disease modeling, regenerative medicine, drug evaluation, drug discovery as well as precision medicine. This review is thus to comprehensively summarize and assess current progress in understanding mechanism of CR and its wide applications, highlighting the value of CR in both basic and translational researches and discussing the challenges faced with CR.
Collapse
Key Words
- 3T3-J2 fibroblast
- AACR, American Association for Cancer Research
- ACC, adenoid cystic carcinoma
- AR, androgen receptor
- CFTR, cystic fibrosis transmembrane conductance regulators
- CR, conditional reprogramming
- CYPs, cytochrome P450 enzymes
- Conditional reprogramming
- DCIS, ductal carcinoma in situ
- ECM, extracellular matrix
- ESC, embryonic stem cell
- HCMI, human cancer model initiatives
- HGF, hepatocyte growth factor
- HNE, human nasal epithelial
- HPV, human papillomaviruses
- ICD, intracellular domain
- LECs, limbal epithelial cells
- NCI, National Cancer Institute
- NGFR, nerve growth factor receptor
- NSCLC, non-small cell lung cancer
- NSG, NOD/SCID/gamma
- PDAC, pancreatic ductal adenocarcinoma
- PDX, patient derived xenograft
- PP2A, protein phosphatase 2A
- RB, retinoblastoma-associated protein
- ROCK
- ROCK, Rho kinase
- SV40, simian virus 40 large tumor antigen
- Senescence
- UVB, ultraviolet radiation b
- Y-27632
- dECM, decellularized extracellular matrix
- hASC, human adipose stem cells
- hTERT, human telomerase reverse transcriptase
- iPSCs, induction of pluripotent stem cells
- ΔNP63α, N-terminal truncated form of P63α
Collapse
Affiliation(s)
- Xiaoxiao Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Jun Pang
- Center of Radiation Oncology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Qinglian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| |
Collapse
|
4
|
Non-malignant epithelial cells preferentially proliferate from nasopharyngeal carcinoma biopsy cultured under conditionally reprogrammed conditions. Sci Rep 2017; 7:17359. [PMID: 29234119 PMCID: PMC5727117 DOI: 10.1038/s41598-017-17628-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/28/2017] [Indexed: 11/09/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an invasive cancer with particularly high incidence in Southern China and Southeast Asia. The study of NPC is greatly hampered by the lack of reliable cell lines due to the loss of EBV genome and HeLa cell contamination. Conditional reprogramming (CR) cell culture technique has been reported for rapid and efficient establishment of patient-derived normal and tumor cell cultures. The purpose of this study was to assess this method to culture NPC patient-derived primary tumor cells. Using CR protocol, we demonstrated that epithelial cells could be efficiently cultured from normal (70%) and cancerous nasopharyngeal (46%) biopsies. However, by comparing with original tumors in terms of mutation and methylation profiles, epithelial cells derived from cancerous biopsy represented non-malignant cells. Further, they exhibited stem-like characteristics based on their cell surface proteins and could differentiate into pseudostratified epithelium in an air-liquid interface culture system. We conclude that CR method is a highly selective and useful method for growing non-malignant nasopharyngeal epithelial cells.
Collapse
|
5
|
DAI XINGLIANG, CHEN HUA, CHEN YANMING, WU JINDING, WANG HAIYANG, SHI JIA, FEI XIFENG, WANG ZHIMIN, WANG AIDONG, DONG JUN, LAN QING, HUANG QIANG. Malignant transformation of host stromal fibroblasts derived from the bone marrow traced in a dual-color fluorescence xenograft tumor model. Oncol Rep 2015; 34:2997-3006. [DOI: 10.3892/or.2015.4281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/03/2015] [Indexed: 11/06/2022] Open
|
6
|
Wang A, Dai X, Cui B, Fei X, Chen Y, Zhang J, Zhang Q, Zhao Y, Wang Z, Chen H, Lan Q, Dong J, Huang Q. Experimental research of host macrophage canceration induced by glioma stem progenitor cells. Mol Med Rep 2014; 11:2435-42. [PMID: 25483261 PMCID: PMC4337511 DOI: 10.3892/mmr.2014.3032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 11/03/2014] [Indexed: 12/21/2022] Open
Abstract
The involvement of tumor-associated macrophages in tumor progression is an indisputable fact. However, whether the growth-promotion effects of macrophages towards tumors in the aggressive stage affect their own canceration remains unknown. In the present study, human glioma stem/progenitor cells transfected with red fluorescent protein gene (SU3-RFP) were seeded inside the abdominal cavity of transgenic nude mice, of which all nucleated cells could express green fluorescent protein (GFP), forming a tumor model with a double-color RFP/GFP fluorescent tracer. Ascites and tumor nodules from tumor-bearing mice were cultured, then the GFP+ cells were separated for clonal culture and further related phenotypic characterization and tumorigenicity tests. It was observed that the GFP+ cells isolated from ascites and solid tumors exhibited unlimited proliferative potential; the monoclonal cells were mouse-original, had a cancer cell phenotype and expressed the macrophage marker protein CD68. Thus, in the abdominal tumor model with double-color fluorescent tracer, macrophages recruited by tumor cells not only promoted tumor cell growth, but also exhibited their own canceration. This discovery is significant for the further study of tumor tissue remodeling and the tumor microenvironment.
Collapse
Affiliation(s)
- Aidong Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Xingliang Dai
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Baoqian Cui
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Xifeng Fei
- Department of Neurosurgery, Suzhou Kowloon Hospital, School of Medicine, Shanghai Jiaotong University, Suzhou, Jiangsu 215021, P.R. China
| | - Yanming Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jinshi Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Quanbin Zhang
- Department of Neurosurgery, Shanghai 10th People's Hospital, Shanghai Tongji University, Shanghai, Jiangsu 200072, P.R. China
| | - Yaodong Zhao
- Department of Neurosurgery, Shanghai 10th People's Hospital, Shanghai Tongji University, Shanghai, Jiangsu 200072, P.R. China
| | - Zhimin Wang
- Department of Neurosurgery, Suzhou Kowloon Hospital, School of Medicine, Shanghai Jiaotong University, Suzhou, Jiangsu 215021, P.R. China
| | - Hua Chen
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Qiang Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|