1
|
Nurmagambetova A, Mustyatsa V, Saidova A, Vorobjev I. Morphological and cytoskeleton changes in cells after EMT. Sci Rep 2023; 13:22164. [PMID: 38092761 PMCID: PMC10719275 DOI: 10.1038/s41598-023-48279-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Epithelial cells undergoing EMT experience significant alterations at transcriptional and morphological levels. However, changes in the cytoskeleton, especially cytoskeleton dynamics are poorly described. Addressing the question we induced EMT in three cell lines (MCF-7, HaCaT and A-549) and analyzed morphological and cytoskeletal changes there using immunostaining and life cell imaging of cells transfected with microtubule and focal adhesion markers. In all studied cell lines, cell area after EMT increased, MCF-7 and A-549 cells became elongated, while HaCaT cells kept the aspect ratio the same. We next analyzed three components of the cytoskeleton: microtubules, stress fibers and focal adhesions. The following changes were observed after EMT in cultured cells: (i) Organization of microtubules becomes more radial; and the growth rate of microtubule plus ends was accelerated; (ii) Actin stress fibers become co-aligned forming the longitudinal cell axis; and (iii) Focal adhesions had decreased area in all cancer cell lines studied and became more numerous in HaCaT cells. We conclude that among dynamic components of the cytoskeleton, the most significant changes during EMT happen in the regulation of microtubules.
Collapse
Affiliation(s)
- Assel Nurmagambetova
- School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Avenue, 53, 010000, Astana, Kazakhstan.
- School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Avenue, 53, 010000, Astana, Kazakhstan.
| | - Vadim Mustyatsa
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Avenue, 53, 010000, Astana, Kazakhstan
| | - Aleena Saidova
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Avenue, 53, 010000, Astana, Kazakhstan
| | - Ivan Vorobjev
- School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Avenue, 53, 010000, Astana, Kazakhstan.
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Avenue, 53, 010000, Astana, Kazakhstan.
| |
Collapse
|
2
|
Rosen ME, Dallon JC. A mathematical analysis of focal adhesion lifetimes and their effect on cell motility. Biophys J 2022; 121:1070-1080. [PMID: 35143774 PMCID: PMC8943753 DOI: 10.1016/j.bpj.2022.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/07/2021] [Accepted: 02/03/2022] [Indexed: 11/02/2022] Open
Abstract
By analyzing the distributions of focal adhesion (FA) lifetimes from different cell types, we found that a gamma distribution best matched the experimental distributions. In all but one case, it was a unimodal, non-symmetric gamma distribution. We used a mathematical model of cell motion to help understand the mechanics and data behind the FA lifetime distributions. The model uses a detach-rate function to determine how long an FA will persist before it detaches. The detach-rate function that produced distributions with a best-fit gamma curve that closely matched that of the data was both force and time dependent. Using the data gathered from the matching simulations, we calculated both the cell speed and mean FA lifetime and compared them. Where available, we also compared this relationship to that of the experimental data and found that the simulation reasonably matches it in most cases. In both the simulations and experimental data, the cell speed and mean FA lifetime are related, with longer mean lifetimes being indicative of slower speeds. We suspect that one of the main predictors of cell speed for migrating cells is the distribution of the FA lifetimes.
Collapse
Affiliation(s)
- Mary Ellen Rosen
- Department of Mathematics, Brigham Young University, Provo, Utah
| | - J C Dallon
- Department of Mathematics, Brigham Young University, Provo, Utah.
| |
Collapse
|
3
|
Dumas JP, Jiang JY, Gates EM, Hoffman BD, Pierce MC, Boustany NN. FRET efficiency measurement in a molecular tension probe with a low-cost frequency-domain fluorescence lifetime imaging microscope. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 31884745 PMCID: PMC6935677 DOI: 10.1117/1.jbo.24.12.126501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
We demonstrate the possibility of measuring FRET efficiency with a low-cost frequency-domain fluorescence lifetime imaging microscope (FD-FLIM). The system utilizes single-frequency-modulated excitation, which enables the use of cost-effective laser sources and electronics, simplification of data acquisition and analysis, and a dual-channel detection capability. Following calibration with coumarin 6, we measured the apparent donor lifetime in mTFP1-mVenus FRET standards expressed in living cells. We evaluated the system's sensitivity by differentiating the short and long lifetimes of mTFP1 corresponding to the known standards' high and low FRET efficiency, respectively. Furthermore, we show that the lifetime of the vinculin tension sensor, VinTS, at focal adhesions (2.30 ± 0.16 ns) is significantly (p < 10 - 6) longer than the lifetime of the unloaded TSMod probe (2.02 ± 0.16 ns). The pixel dwell time was 6.8 μs for samples expressing the FRET standards, with signal typically an order of magnitude higher than VinTS. The apparent FRET efficiency (<inline-formula>EFRETapp</inline-formula>) of the standards, calculated from the measured apparent lifetime, was linearly related to their known FRET efficiency by a factor of 0.92 to 0.99 (R2 = 0.98). This relationship serves as a calibration curve to convert apparent FRET to true FRET and circumvent the need to measure multiexponential lifetime decays. This approach yielded a FRET efficiency of 18% to 19.5%, for VinTS, in agreement with published values. Taken together, our results demonstrate a cost-effective, fast, and sensitive FD-FLIM approach with the potential to facilitate applications of FLIM in mechanobiology and FRET-based biosensing.
Collapse
Affiliation(s)
- John-Paul Dumas
- Rutgers University, Department of Biomedical Engineering, Piscataway, New Jersey, United States
- Thorlabs Inc., Newton, New Jersey, United States
| | | | - Evan M. Gates
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Brenton D. Hoffman
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Mark C. Pierce
- Rutgers University, Department of Biomedical Engineering, Piscataway, New Jersey, United States
| | - Nada N. Boustany
- Rutgers University, Department of Biomedical Engineering, Piscataway, New Jersey, United States
| |
Collapse
|
4
|
Meijering E, Carpenter AE, Peng H, Hamprecht FA, Olivo-Marin JC. Imagining the future of bioimage analysis. Nat Biotechnol 2018; 34:1250-1255. [PMID: 27926723 DOI: 10.1038/nbt.3722] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 11/10/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Erik Meijering
- Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Hanchuan Peng
- Allen Institute for Brain Science, Seattle, Washington, USA
| | - Fred A Hamprecht
- Heidelberg Collaboratory for Image Processing, Heidelberg University, Heidelberg, Germany
| | - Jean-Christophe Olivo-Marin
- Institut Pasteur, Unité d'Analyse d'Images Biologiques, Centre National de la Recherche Scientifique Unité de Recherche Mixte, Paris, France
| |
Collapse
|
5
|
An automated quantitative analysis of cell, nucleus and focal adhesion morphology. PLoS One 2018; 13:e0195201. [PMID: 29601604 PMCID: PMC5877879 DOI: 10.1371/journal.pone.0195201] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/19/2018] [Indexed: 11/19/2022] Open
Abstract
Adherent cells sense the physical properties of their environment via focal adhesions. Improved understanding of how cells sense and response to their physical surroundings is aided by quantitative evaluation of focal adhesion size, number, orientation, and distribution in conjunction with the morphology of single cells and the corresponding nuclei. We developed a fast, user-friendly and automated image analysis algorithm capable of capturing and characterizing these individual components with a high level of accuracy. We demonstrate the robustness and applicability of the algorithm by quantifying morphological changes in response to a variety of environmental changes as well as manipulations of cellular components of mechanotransductions. Finally, as a proof-of-concept we use our algorithm to quantify the effect of Rho-associated kinase inhibitor Y-27632 on focal adhesion maturation. We show that a decrease in cell contractility leads to a decrease in focal adhesion size and aspect ratio.
Collapse
|
6
|
Abstract
The study of intracellular dynamic processes is of fundamental importance for understanding a wide variety of diseases and developing effective drugs and therapies. Advanced fluorescence microscopy imaging systems nowadays allow the recording of virtually any type of process in space and time with super-resolved detail and with high sensitivity and specificity. The large volume and high information content of the resulting image data, and the desire to obtain objective, quantitative descriptions and biophysical models of the processes of interest, require a high level of automation in data analysis. Two key tasks in extracting biologically meaningful information about intracellular dynamics from image data are particle tracking and particle trajectory analysis. Here we present state-of-the-art software tools for these tasks and describe how to use them.
Collapse
|
7
|
Gladkikh A, Kovaleva A, Tvorogova A, Vorobjev IA. Heterogeneity of Focal Adhesions and Focal Contacts in Motile Fibroblasts. Methods Mol Biol 2018; 1745:205-218. [PMID: 29476471 DOI: 10.1007/978-1-4939-7680-5_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cell-extracellular matrix (ECM) adhesion is an important property of virtually all cells in multicellular organisms. Cell-ECM adhesion studies, therefore, are very significant both for biology and medicine. Over the last three decades, biomedical studies resulted in a tremendous advance in our understanding of the molecular basis and functions of cell-ECM adhesion. Based on morphological and molecular criteria, several different types of model cell-ECM adhesion structures including focal adhesions, focal complexes, fibrillar adhesions, podosomes, and three-dimensional matrix adhesions have been described. All the subcellular structures that mediate cell-ECM adhesion are quite heterogeneous, often varying in size, shape, distribution, dynamics, and, to a certain extent, molecular constituents. The morphological "plasticity" of cell-ECM adhesion perhaps reflects the needs of cells to sense, adapt, and respond to a variety of extracellular environments. In addition, cell type (e.g., differentiation status, oncogenic transformation, etc.) often exerts marked influence on the structure of cell-ECM adhesions. Although molecular, genetic, biochemical, and structural studies provide important maps or "snapshots" of cell-ECM adhesions, the area of research that is equally valuable is to study the heterogeneity of FA subpopulations within cells. Recently time-lapse observations on the FA dynamics become feasible, and behavior of individual FA gives additional information on cell-ECM interactions. Here we describe a robust method of labeling of FA using plasmids with fluorescent markers for paxillin and vinculin and quantifying the morphological and dynamical parameters of FA.
Collapse
Affiliation(s)
- Aleena Gladkikh
- Department of Cell Biology and Histology, School of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.
| | - Anastasia Kovaleva
- Department of Cell Biology and Histology, School of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Anna Tvorogova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Ivan A Vorobjev
- Department of Biology, School of Sciences and Technology, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
8
|
Patel A, Bains A, Millet R, Elul T. Visualizing Morphogenesis with the Processing Programming Language. THE JOURNAL OF BIOCOMMUNICATION 2017; 41:e4. [PMID: 36405413 PMCID: PMC9138804 DOI: 10.5210/jbc.v41i1.7314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We used Processing, a visual artists' programming language developed at MIT Media Lab, to simulate cellular mechanisms of morphogenesis - the generation of form and shape in embryonic tissues. Based on observations of in vivo time-lapse image sequences, we created animations of neural cell motility responsible for elongating the spinal cord, and of optic axon branching dynamics that establish primary visual connectivity. These visual models underscore the significance of the computational decomposition of cellular dynamics underlying morphogenesis.
Collapse
|
9
|
Zhang K, Wang YW, Ma R. Bioinformatics analysis of dysregulated microRNAs in the nipple discharge of patients with breast cancer. Oncol Lett 2017; 13:3100-3108. [PMID: 28521415 PMCID: PMC5431374 DOI: 10.3892/ol.2017.5801] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/13/2017] [Indexed: 01/18/2023] Open
Abstract
MicroRNAs (miRNAs/miRs) have been reported to be associated with the tumorigenesis and progression of various types of human cancer; however, the underlying mechanisms of this association remain unclear. The aim of the present study was to explore the potential functions of miRNAs in the development of breast cancer using bioinformatics analysis, based on the miRNA expression profile in nipple discharge. A previous study demonstrated the upregulation of miR-3646 and miR-4484, and the downregulation of miR-4732-5p in the nipple discharge of patients with breast cancer, compared with patients with benign breast lesions. In the present study, the target genes of miR-3646, −4484 and −4732-5p were predicted using TargetScan and the MicroRNA Target Prediction and Functional Study Database. The predicted target genes were further analyzed by Gene Ontology term enrichment analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis and protein-protein interaction analysis. Numerous carcinoma-associated genes, including ADIPOQ, CPEB1, DNAJB4, EIF4E, APP and BCLAF1, were revealed to be putative targets of miR-3646, −4484 and −4732-5p. Bioinformatics analysis associated miR-3646 with the Rap1 and TGF-β signaling pathways, miR-4484 with the ErbB, estrogen and focal adhesion signaling pathways, and miR-4732-5p with the proteoglycan signaling pathway. Notably, protein-protein interaction analysis identified that numerous predicted targets of these miRNAs were associated with one other. In addition, the target genes of the miRNAs were identified to be under the regulation of a number of transcription factors (TFs). The predicted target genes of miR-3646, −4484 and −4732-5p were identified to serve a role in cancer-associated signaling pathways and TF-mRNA networks, indicating that they serve a role in breast carcinogenesis and progression. These results provide a comprehensive view of the functions and molecular mechanisms of miR-3646, −4484 and −4732-5p, and will aid in future studies.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ya-Wen Wang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Rong Ma
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
10
|
Odenthal J, Takes R, Friedl P. Plasticity of tumor cell invasion: governance by growth factors and cytokines. Carcinogenesis 2016; 37:1117-1128. [PMID: 27664164 DOI: 10.1093/carcin/bgw098] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/15/2016] [Accepted: 09/22/2016] [Indexed: 01/01/2023] Open
Abstract
Tumor cell migration, the basis for metastatic dissemination, is an adaptive process which depends upon coordinated cell interaction with the environment, influencing cell-matrix and cell-cell adhesion, cytoskeletal dynamics and extracellular matrix remodeling. Growth factors and cytokines, released within the reactive tumor microenvironment and their intracellular effector signals strongly impact mechanocoupling functions in tumor cells and thereby control the mode and extent of tumor invasion, including collective and single-cell migration and their interconversions. Besides their role in controlling tumor cell growth and survival, cytokines and growth factors thus provide complex orchestration of the metastatic cascade and tumor cell adaptation to environmental challenge. We here review the mechanisms by which growth factors and cytokines control the reciprocal interactions between tumor cells and their microenvironment, and the consequences for the efficacy and plasticity of invasion programs and metastasis.
Collapse
Affiliation(s)
- Julia Odenthal
- Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands.,Department of Cell Biology, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Robert Takes
- Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands, .,Department of Genitourinary Medical Oncology - Research, Houston, TX 77030, USA and.,Cancer Genomics Center, 3584 CG Utrecht, The Netherlands
| |
Collapse
|