1
|
Gao L, Meng F, Yang Z, Lafuente-Merchan M, Fernández LM, Cao Y, Kusamori K, Nishikawa M, Itakura S, Chen J, Huang X, Ouyang D, Riester O, Deigner HP, Lai H, Pedraz JL, Ramalingam M, Cai Y. Nano-drug delivery system for the treatment of multidrug-resistant breast cancer: Current status and future perspectives. Biomed Pharmacother 2024; 179:117327. [PMID: 39216449 DOI: 10.1016/j.biopha.2024.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Breast cancer (BC) is one of the most frequently diagnosed cancers in women. Chemotherapy continues to be the treatment of choice for clinically combating it. Nevertheless, the chemotherapy process is frequently hindered by multidrug resistance, thereby impacting the effectiveness of the treatment. Multidrug resistance (MDR) refers to the phenomenon in which malignant tumour cells develop resistance to anticancer drugs after one single exposure. It can occur with a broad range of chemotherapeutic drugs with distinct chemical structures and mechanisms of action, and it is one of the major causes of treatment failure and disease relapse. Research has long been focused on overcoming MDR by using multiple drug combinations, but this approach is often associated with serious side effects. Therefore, there is a pressing need for in-depth research into the mechanisms of MDR, as well as the development of new drugs to reverse MDR and improve the efficacy of breast cancer chemotherapy. This article reviews the mechanisms of multidrug resistance and explores the application of nano-drug delivery system (NDDS) to overcome MDR in breast cancer. The aim is to offer a valuable reference for further research endeavours.
Collapse
Affiliation(s)
- Lanwen Gao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Lab of Traditional Chinese Medicine Information Technology / International Science and Technology Cooperation Base of Guangdong Province / School of Pharmacy, Jinan University, Guangdong, Guangzhou 510632, China.
| | - Fansu Meng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China.
| | - Zhenjiang Yang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China.
| | - Markel Lafuente-Merchan
- NanoBioCel Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain.
| | - Laura Merino Fernández
- NanoBioCel Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain.
| | - Ye Cao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Lab of Traditional Chinese Medicine Information Technology / International Science and Technology Cooperation Base of Guangdong Province / School of Pharmacy, Jinan University, Guangdong, Guangzhou 510632, China.
| | - Kosuke Kusamori
- Laboratory of Cellular Drug Discovery and Development, Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan.
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Shoko Itakura
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Junqian Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Xiaoxun Huang
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China.
| | - Dongfang Ouyang
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Charlestown, Boston, MA 02129, USA.
| | - Oliver Riester
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Villingen-Schwenningen 78054, Germany.
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Villingen-Schwenningen 78054, Germany.
| | - Haibiao Lai
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China.
| | - Jose Luis Pedraz
- NanoBioCel Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain; Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joint Venture of TECNALIA (Basque Research and Technology Alliance), Centro de Investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, Vitoria-Gasteiz 01006, Spain.
| | - Murugan Ramalingam
- NanoBioCel Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain; Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joint Venture of TECNALIA (Basque Research and Technology Alliance), Centro de Investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, Vitoria-Gasteiz 01006, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain; School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Yu Cai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Lab of Traditional Chinese Medicine Information Technology / International Science and Technology Cooperation Base of Guangdong Province / School of Pharmacy, Jinan University, Guangdong, Guangzhou 510632, China.
| |
Collapse
|
2
|
Strzelecka M, Wiatrak B, Jawień P, Czyżnikowska Ż, Świątek P. New Schiff bases derived from dimethylpyridine-1,2,4-triazole hybrid as cytotoxic agents targeting gastrointestinal cancers: Design, synthesis, biological evaluation and molecular docking studies. Bioorg Chem 2023; 139:106758. [PMID: 37540951 DOI: 10.1016/j.bioorg.2023.106758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
In this research, a series of novel hybrid structures of dimethylpyridine-1,2,4-triazole Schiff bases were designed, synthesized, and evaluated for their in vitro cytotoxic potency on several human gastrointestinal cancer cells (EPG, Caco-2, LoVo, LoVo/Dx, HT29) and normal colonic epithelial cells (CCD 841 CoN). Schiff base 4h was the most potent compound against gastric EPG cancer cells (CC50 = 12.10 ± 3.10 μM), being 9- and 21-fold more cytotoxic than 5-FU and cisplatin, respectively. Moreover, it was not toxic to normal cells. Regarding the cytotoxicity against colorectal cancer cells, compounds 4d and 4l exhibited good activity against HT29 cells (CC50 = 52.80 ± 2.80 μM and 61.40 ± 10.70 μM, respectively), and were comparable to or more potent than cisplatin and 5-FU. Also, they were less toxic to normal cells with a higher selectivity index (SI, CCD 841 CoN/HT29 = 4.20 and 2.85, respectively) than reference drugs (SI, CCD 841 CoN/HT29 < 1). Selected Schiff bases were subjected to the P-glycoprotein inhibition assay. Schiff bases 4d, 4e, and 4l influenced P-gp efflux function, significantly increasing the accumulation of rhodamine 123 in colon cancer cell lines. Further mechanistic studies showed that compound 4l induced apoptotic cell death through a caspase-dependent mechanism and by regulating the p53-MDM2 signaling pathway in HT29 cells. Also, physicochemical predictions of compounds 4d, 4e, 4h, and 4i were examined in silico. The results revealed that the compounds possessed promising drug-likeness profiles.
Collapse
Affiliation(s)
- Małgorzata Strzelecka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Paulina Jawień
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25/27, 50-375 Wroclaw, Poland
| | - Żaneta Czyżnikowska
- Department of Basic Chemical Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| | - Piotr Świątek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
| |
Collapse
|
3
|
Al Saihati HA, Rabaan AA. Cellular resistance mechanisms in cancer and the new approaches to overcome resistance mechanisms chemotherapy. Saudi Med J 2023; 44:329-344. [PMID: 37062547 PMCID: PMC10153614 DOI: 10.15537/smj.2023.44.4.20220600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Despite major advancements in cancer healing approaches over the last few decades, chemotherapy remains the most popular malignancy treatment. Chemotherapeutic drugs are classified into many kinds based on their mechanism of action. Multidrug resistance (MDR) is responsible for approximately 90% of fatalities in malignancy cases treated with standard chemotherapeutics or innovative targeted medicines. Many innovative prospective anti-cancer medicines displayed high anti-cancer efficacy in a single application. However, combining them with other medications improves cancer treatment efficacy. This supports the belief that a combination of drugs is significantly more effective than a single medicine. Due to the intricacy of MDR processes and the diversity of tumor illnesses, there will rarely be a single medicine that can be utilized to treat all types of cancer. Finding new medications that can reverse MDR in malignancy cells will augment efficacy of chemotherapeutic agents and allow us to treat cancers that are now incurable.
Collapse
Affiliation(s)
- Hajir A. Al Saihati
- From the Department of Clinical Laboratory Science (Al Saihati), Applied Medical College, University of Hafr Al Batin, Hafr Al Batin, and from the Depatment of Molecular Diagnostic Laboratory (Rabaan), Johns Hopkins Aramco Healthcare, Dhahran, Kingdom of Saudi Arabia.
| | - Ali A. Rabaan
- From the Department of Clinical Laboratory Science (Al Saihati), Applied Medical College, University of Hafr Al Batin, Hafr Al Batin, and from the Depatment of Molecular Diagnostic Laboratory (Rabaan), Johns Hopkins Aramco Healthcare, Dhahran, Kingdom of Saudi Arabia.
| |
Collapse
|
4
|
The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future? Life (Basel) 2023; 13:life13020466. [PMID: 36836823 PMCID: PMC9965924 DOI: 10.3390/life13020466] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer is a fatal disease with a complex pathophysiology. Lack of specificity and cytotoxicity, as well as the multidrug resistance of traditional cancer chemotherapy, are the most common limitations that often cause treatment failure. Thus, in recent years, significant efforts have concentrated on the development of a modernistic field called nano-oncology, which provides the possibility of using nanoparticles (NPs) with the aim to detect, target, and treat cancer diseases. In comparison with conventional anticancer strategies, NPs provide a targeted approach, preventing undesirable side effects. What is more, nanoparticle-based drug delivery systems have shown good pharmacokinetics and precise targeting, as well as reduced multidrug resistance. It has been documented that, in cancer cells, NPs promote reactive oxygen species (ROS) production, induce cell cycle arrest and apoptosis, activate ER (endoplasmic reticulum) stress, modulate various signaling pathways, etc. Furthermore, their ability to inhibit tumor growth in vivo has also been documented. In this paper, we have reviewed the role of silver NPs (AgNPs) in cancer nanomedicine, discussing numerous mechanisms by which they render anticancer properties under both in vitro and in vivo conditions, as well as their potential in the diagnosis of cancer.
Collapse
|
5
|
Kalındemirtaş FD, Kariper İA, Sert E, Okşak N, Kuruca SE. The evaluation of anticancer activity by synthesizing 5FU loaded albumin nanoparticles by exposure to UV light. Toxicol In Vitro 2022; 84:105435. [PMID: 35817265 DOI: 10.1016/j.tiv.2022.105435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/29/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
In this study, as a new synthesis method, UV light was employed as a type of cross-linking agent to control drug storage and to produce nanoparticles of different sizes and to stabilize the nanoparticles for the first time. We showed that the exposure time of the 5FU albumin solution to UV light produces differences in the size and characterization of the nanoparticles and also produces different cytotoxic effects on MCF-7 breast cancer cells. While the 5FU-A1 nanoparticles we synthesized with 1 h UV storage were approximately 43 nm, the 5FU-A2 nanoparticles we synthesized with UV storage for 3 h increased to an average of 300 nm. 5FU-A1 (IC50 value: 2.5 μg/mL) was approximately 16 times more cytotoxic than free 5FU (IC50 value 39.39 μg/mL) on MCF-7 cancer cells. Moreover, when normal HUVEC cells are treated with 5FU-A1 at a concentration of 2.5 μg/mL, more than 80% of these normal cells remain viable. In addition, we examined the rate of early-to-late apoptosis and necrosis in MCF-7 cancer cells using the Annexin V/PI flow cytometry assay. According to our results, 5FU-A1 promoted the apoptosis pathway. Finally, we examined P-gp activity with MDR1/ABCB1 antibody by flow cytometry and Rhodamine123 with fluorescent dye.
Collapse
Affiliation(s)
| | - İshak Afşin Kariper
- Erciyes University, Education Faculty, Department of Sience Education, Kayseri, Turkey.
| | - Esra Sert
- Istanbul University, Istanbul Faculty of Medicine, Department of Hematology, Istanbul, Turkey
| | - Nilgün Okşak
- Istanbul University, Istanbul Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| | - Serap Erdem Kuruca
- Istanbul University, Istanbul Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| |
Collapse
|
6
|
Ferrer RE, Ong MC, Jacinto S. Extract of Codiaeum luzonicum Merr. overcomes multidrug resistance in human colon cancer cells by modulating P-glycoprotein. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.354431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Famta P, Shah S, Chatterjee E, Singh H, Dey B, Guru SK, Singh SB, Srivastava S. Exploring new Horizons in overcoming P-glycoprotein-mediated multidrug-resistant breast cancer via nanoscale drug delivery platforms. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100054. [PMID: 34909680 PMCID: PMC8663938 DOI: 10.1016/j.crphar.2021.100054] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
The high probability (13%) of women developing breast cancer in their lifetimes in America is exacerbated by the emergence of multidrug resistance after exposure to first-line chemotherapeutic agents. Permeation glycoprotein (P-gp)-mediated drug efflux is widely recognized as the major driver of this resistance. Initial in vitro and in vivo investigations of the co-delivery of chemotherapeutic agents and P-gp inhibitors have yielded satisfactory results; however, these results have not translated to clinical settings. The systemic delivery of multiple agents causes adverse effects and drug-drug interactions, and diminishes patient compliance. Nanocarrier-based site-specific delivery has recently gained substantial attention among researchers for its promise in circumventing the pitfalls associated with conventional therapy. In this review article, we focus on nanocarrier-based co-delivery approaches encompassing a wide range of P-gp inhibitors along with chemotherapeutic agents. We discuss the contributions of active targeting and stimuli responsive systems in imparting site-specific cytotoxicity and reducing both the dose and adverse effects.
Collapse
Affiliation(s)
- Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Essha Chatterjee
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Hoshiyar Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Biswajit Dey
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Santosh Kumar Guru
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
8
|
Tras B, Eser Faki H, Ozdemir Kutahya Z, Bahcivan E, Dik B, Bozkurt B, Uney K. Treatment and protective effects of metalloproteinase inhibitors alone and in combination with N-Acetyl cysteine plus vitamin E in rats exposed to aflatoxin B 1. Toxicon 2021; 194:79-85. [PMID: 33617885 DOI: 10.1016/j.toxicon.2021.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 11/19/2022]
Abstract
This study was conducted to investigate the effects of matrix metalloproteinase (MMP) inhibitors dexamethasone and minocycline administrations -both single and in combination with N-acetylcysteine (NAC) and vitamin E-on the tissue distribution and lethal dose (LD)50 of aflatoxin (AF)B1 in rats. We performed this study on male Wistar rats (8-10 weeks) in two phases. In the first phase, rats were administered dexamethasone (5 and 20 mg/kg) and minocycline (45 and 90 mg/kg), both as single treatments and in combination with NAC (200 mg/kg) and vitamin E (600 mg/kg); these treatments followed AFB1 administration (2 mg/kg). In the second phase, the therapeutic effect value (TEV) was calculated to determine the treatment effect on the LD50 level of AFB1. The tissue affinity of AFB1 from high to low was liver, kidney, intestine, brain, heart, spleen, lung, testis, and vitreous humor, respectively. Dexamethasone at the 20 mg/kg dose significantly reduced AFB1 concentrations in the plasma and the other tissues, except for the vitreous humor. The effects of minocycline on the plasma and tissue concentrations of AFB1 varied by dose and tissue. The combinations of dexamethasone or minocycline with NAC and vitamin E increased the AFB1 concentrations in the plasma and all tissues, except for vitreous humor and liver. In male rats, the LD50 value of AFB1 was 11.86 mg/kg. The TEV of dexamethasone (20 mg/kg) was calculated to be 1.5. Dexamethasone can be administered in repeated doses at ≥20 mg/kg to increase survival in AFB1 poisoning.
Collapse
Affiliation(s)
- Bunyamin Tras
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, 42031, Konya, Turkey
| | - Hatice Eser Faki
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, 42031, Konya, Turkey
| | - Zeynep Ozdemir Kutahya
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Cukurova, 01930, Adana, Turkey
| | - Emre Bahcivan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Kafkas, 36000, Kars, Turkey
| | - Burak Dik
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, 42031, Konya, Turkey.
| | - Banu Bozkurt
- Department of Ophthalmology, Faculty of Medicine, University of Selcuk, 42031, Konya, Turkey
| | - Kamil Uney
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, 42031, Konya, Turkey
| |
Collapse
|
9
|
Molecular Profiling of Docetaxel-Resistant Prostate Cancer Cells Identifies Multiple Mechanisms of Therapeutic Resistance. Cancers (Basel) 2021; 13:cancers13061290. [PMID: 33799432 PMCID: PMC7998254 DOI: 10.3390/cancers13061290] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Therapeutic options for the treatment of men with metastatic castration-resistant prostate cancer are limited. Docetaxel—a taxane-based chemotherapeutic agent—was the first treatment to demonstrate significant efficacy in the treatment of this disease. However, responses to docetaxel are frequently curtailed by development of drug resistance, and patients eventually succumb to disease progression due to acquisition of drug resistance. In this study, we established drug-resistant prostate cancer cell lines and identified several mechanisms that may be associated with the development of drug resistance in prostate cancer. Actioning these mechanisms could provide a potential approach to re-sensitize drug-resistant cancer cells to docetaxel treatment and thereby further add to the life-prolonging effects of this drug in men with metastatic castration-resistant prostate cancer. Abstract Docetaxel—a taxane-based chemotherapeutic agent—was the first treatment to demonstrate significant improvements in overall survival in men with metastatic castration-resistant prostate cancer (mCRPC). However, the response to docetaxel is generally short-lived, and relapse eventually occurs due to the development of resistance. To explore the mechanisms of acquired docetaxel resistance in prostate cancer (PCa) and set these in the context of androgen deprivation therapy, we established docetaxel-resistant PCa cell lines, derived from the androgen-dependent LNCaP cell line, and from the LNCaP lineage-derived androgen-independent C4-2B sub-line. We generated two docetaxel-resistant LNCaPR and C4-2BR sub-lines, with IC50 values 77- and 50-fold higher than those of the LNCaP and C4-2B parental cells, respectively. We performed gene expression analysis of the matched sub-lines and found several alterations that may confer docetaxel resistance. In addition to increased expression of ABCB1, an ATP-binding cassette (ABC) transporter, and a well-known gene associated with development of docetaxel resistance, we identified genes associated with androgen signaling, cell survival, and overexpression of ncRNAs. In conclusion, we identified multiple mechanisms that may be associated with the development of taxane drug resistance in PCa. Actioning these mechanisms could provide a potential approach to re-sensitization of docetaxel-resistant PCa cells to docetaxel treatment and thereby further add to the life-prolonging effects of this drug in men with mCRPC.
Collapse
|
10
|
Ni J, Wang X, Shang Y, Li Y, Chen S. CD13 inhibition augments DR4-induced tumor cell death in a p-ERK1/2-independent manner. Cancer Biol Med 2021; 18:569-586. [PMID: 33710811 PMCID: PMC8185856 DOI: 10.20892/j.issn.2095-3941.2020.0196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/18/2020] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE Death receptor 4 (DR4; TRAIL-R1) critically mediates extrinsic apoptosis cascades via binding to TNF-related apoptosis-inducing ligand (TRAIL). However, intrinsic and/or acquired resistance are observed in the clinical application of TRAIL. The aim of this study was to investigate the function and molecular mechanism of CD13 in the TRAIL/DR4 pathway against tumor cells, and provide a new strategy for improving therapeutic efficacy or overcoming TRAIL-resistance. METHODS TRAIL protein was expressed as a secretory protein in a Pichia pastoris expression system and was isolated and purified by affinity chromatography. The cell viability and apoptosis were evaluated with MTT (thiazolyl blue tetrazolium bromide) assays and annexin V-FITC/PI staining with flow cytometry analysis, respectively. Western blot analysis was used to detect the levels of the indicated proteins in tumor cells. DR4 degradation or stability was examined with cycloheximide chase assays, and cell surface DR4 was assessed with flow cytometric analysis after staining with a FITC-conjugated antibody. The effects of cell migration were determined with Transwell and gelatin zymography assays. A xenograft nude mouse model was used to detect the anti-tumor effect in vivo, and the proliferation in tumor tissues was examined with immunohistochemical staining. RESULTS CD13 inhibition potently sensitized tumor cells to TRAIL-induced killing, including proliferation inhibition, increased apoptosis, and migration suppression. In addition, the inhibition of CD13 elevated both total cellular expression and cell surface DR4 through stabilizing DR4 by suppressing its degradation. DR4 siRNA attenuated the enhanced anti-tumor effects of TRAIL plus CD13 inhibition. Interestingly, these phenomena were p-ERK1/2 independent, although p-ERK1/2 down-regulation was tightly correlated with the cooperation of TRAIL and CD13 inhibition. Moreover, a synergistic decrease in tumor growth was surprisingly achieved in the xenograft model by treatment of TRAIL with a CD13 inhibitor (**P < 0.01, CDI = 0.47). CONCLUSIONS CD13 inhibition cooperates with TRAIL in enhancing DR4-mediated cell death, through the up-regulation and stabilization of DR4 in a p-ERK1/2-independent manner. Thus CD13 inhibition has emerged as an effective strategy for TRAIL/DR4-based therapy.
Collapse
Affiliation(s)
- Jun Ni
- Department of Cancer Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaofei Wang
- Department of Cancer Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yue Shang
- Department of Cancer Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yi Li
- Department of Cancer Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuzhen Chen
- Department of Cancer Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
11
|
Vaidya FU, Sufiyan Chhipa A, Mishra V, Gupta VK, Rawat SG, Kumar A, Pathak C. Molecular and cellular paradigms of multidrug resistance in cancer. Cancer Rep (Hoboken) 2020; 5:e1291. [PMID: 33052041 PMCID: PMC9780431 DOI: 10.1002/cnr2.1291] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The acquisition of resistance to chemotherapy is a major hurdle in the successful application of cancer therapy. Several anticancer approaches, including chemotherapies, radiotherapy, surgery and targeted therapies are being employed for the treatment of cancer. However, cancer cells reprogram themselves in multiple ways to evade the effect of these therapies, and over a period of time, the drug becomes inactive due to the development of multi-drug resistance (MDR). MDR is a complex phenomenon where malignant cells become insensitive to anticancer drugs and attain the ability to survive even after several exposures of anticancer drugs. In this review, we have discussed the molecular and cellular paradigms of multidrug resistance in cancer. RECENT FINDINGS An Extensive research in cancer biology revealed that drug resistance in cancer is the result of perpetuated intracellular and extracellular mechanisms such as drug efflux, drug inactivation, drug target alteration, oncogenic mutations, altered DNA damage repair mechanism, inhibition of programmed cell death signaling, metabolic reprogramming, epithelial mesenchymal transition (EMT), inherent cell heterogeneity, epigenetic changes, redox imbalance, or any combination of these mechanisms. An inevitable cross-link between inflammation and drug resistance has been discussed. This review provided insight molecular mechanism to understand the vulnerabilities of cancer cells to develop drug resistance. CONCLUSION MDR is an outcome of interplays between multiple intricate pathways responsible for the inactivation of drug and development of resistance. MDR is a major obstacle in regimens of successful application of anti-cancer therapy. An improved understanding of the molecular mechanism of multi drug resistance and cellular reprogramming can provide a promising opportunity to combat drug resistance in cancer and intensify anti-cancer therapy for the upcoming future.
Collapse
Affiliation(s)
- Foram U. Vaidya
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| | - Abu Sufiyan Chhipa
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| | - Vinita Mishra
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| | | | | | - Ajay Kumar
- Department of ZoologyBanaras Hindu UniversityVaranasiIndia
| | - Chandramani Pathak
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| |
Collapse
|
12
|
Singh D, Khan MA, Siddique HR. Emerging role of long non-coding RNAs in cancer chemoresistance: unravelling the multifaceted role and prospective therapeutic targeting. Mol Biol Rep 2020; 47:5569-5585. [PMID: 32601922 DOI: 10.1007/s11033-020-05609-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/20/2020] [Indexed: 12/11/2022]
Abstract
Chemotherapy is one of the important treatment modules in early as well as advanced stages of cancer. However, the major limitation of chemotherapy is the development of chemoresistance in the transformed cells of cancer patients, which leads to cancer recurrence. Long non-coding RNAs (lncRNA) are the transcripts longer than 200 nucleotides in length, which are reported to associate with the initiation, progression, recurrence, and metastasis of different cancers. Several lncRNAs have been implicated in the prevalence of chemoresistant phenotypes and also in the restoration of drug sensitivity in chemoresistant cells. LncRNAs such as HOTAIR, H19, and a lot more are involved in the chemoresistance of cancer cells. Therefore, targeting the lncRNAs may serve as a novel strategy for treating chemoresistant cancer. This review throws light on the role of lncRNA in chemoresistance along with the perspective of the therapeutic targets for the treatment of multiple cancers.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
13
|
Bukowski K, Kciuk M, Kontek R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int J Mol Sci 2020; 21:E3233. [PMID: 32370233 PMCID: PMC7247559 DOI: 10.3390/ijms21093233] [Citation(s) in RCA: 952] [Impact Index Per Article: 190.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer is one of the main causes of death worldwide. Despite the significant development of methods of cancer healing during the past decades, chemotherapy still remains the main method for cancer treatment. Depending on the mechanism of action, commonly used chemotherapeutic agents can be divided into several classes (antimetabolites, alkylating agents, mitotic spindle inhibitors, topoisomerase inhibitors, and others). Multidrug resistance (MDR) is responsible for over 90% of deaths in cancer patients receiving traditional chemotherapeutics or novel targeted drugs. The mechanisms of MDR include elevated metabolism of xenobiotics, enhanced efflux of drugs, growth factors, increased DNA repair capacity, and genetic factors (gene mutations, amplifications, and epigenetic alterations). Rapidly increasing numbers of biomedical studies are focused on designing chemotherapeutics that are able to evade or reverse MDR. The aim of this review is not only to demonstrate the latest data on the mechanisms of cellular resistance to anticancer agents currently used in clinical treatment but also to present the mechanisms of action of novel potential antitumor drugs which have been designed to overcome these resistance mechanisms. Better understanding of the mechanisms of MDR and targets of novel chemotherapy agents should provide guidance for future research concerning new effective strategies in cancer treatment.
Collapse
Affiliation(s)
- Karol Bukowski
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (R.K.)
| | | | | |
Collapse
|
14
|
Ruan T, Liu W, Tao K, Wu C. A Review of Research Progress in Multidrug-Resistance Mechanisms in Gastric Cancer. Onco Targets Ther 2020; 13:1797-1807. [PMID: 32184615 PMCID: PMC7053652 DOI: 10.2147/ott.s239336] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/15/2020] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is one of the most common malignant tumors, and it is also one of the leading causes of cancer death worldwide. Because of its insidious symptoms and lack of early dictation screening, many cases of gastric cancer are at late stages which make it more complicated to cure. For these advanced-stage gastric cancers, combination therapy of surgery, chemotherapy, radiotherapy and target therapy would bring more benefit to the patients. However, the drug-resistance to the chemotherapy restricts its effect and might lead to treatment failure. In this review article, we discuss the mechanisms which have been found in recent years of drug resistance in gastric cancer. And we also want to find new approaches to counteract chemotherapy resistance and bring more benefits to the patients.
Collapse
Affiliation(s)
- Tuo Ruan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chuanqing Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
15
|
Lee SR, Quan KT, Byun HS, Park I, Kang K, Piao X, Ju E, Ro H, Na M, Hur GM. Accelerated degradation of cFLIP L and sensitization of the TRAIL DISC-mediated apoptotic cascade by pinoresinol, a lignan isolated from Rubia philippinensis. Sci Rep 2019; 9:13505. [PMID: 31534206 PMCID: PMC6751165 DOI: 10.1038/s41598-019-49909-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/29/2019] [Indexed: 02/08/2023] Open
Abstract
Plant-derived lignans have numerous biological effects including anti-tumor and anti-inflammatory activities. Screening of purified constituents of Rubia philippinensis from human glioblastoma cells resistant to TNF-related apoptosis-inducing ligand (TRAIL) has suggested that the lignan pinoresinol was a highly active TRAIL sensitizer. Here we show that treatment with nontoxic doses of pinoresinol in combination with TRAIL induced rapid apoptosis and caspase activation in many types of glioblastoma cells, but not in normal astrocytes. Analyses of apoptotic signaling events revealed that pinoresinol enhanced the formation of TRAIL-mediated death-inducing signaling complex (DISC) and complete processing of procaspase-8 within the DISC in glioblastoma cells, in which caspase-8 was inactivated. Mechanistically, pinoresinol downregulated the expression of cellular FLICE-inhibitory protein (cFLIPL) and survivin through proteasome-mediated degradation, without affecting death receptors or downstream intracellular apoptosis-related proteins. Furthermore, the sensitization of TRAIL-mediated apoptosis by pinoresinol strictly depended on the expression level of cFLIPL, which was regulated through de novo protein synthesis, rather than by NF-κB or p53 signaling. Taken together, our results indicate that pinoresinol facilitates DISC-mediated caspase-8 activation by targeting cFLIPL in an early event in apoptotic signaling, which provides a potential therapeutic module for TRAIL-based chemotherapy.
Collapse
Affiliation(s)
- So-Ra Lee
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon, 35015, Republic of Korea
| | - Khong Trong Quan
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hee Sun Byun
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon, 35015, Republic of Korea
| | - InWha Park
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kidong Kang
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon, 35015, Republic of Korea
| | - Xuezhe Piao
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon, 35015, Republic of Korea
| | - Eunjin Ju
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon, 35015, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Biosciences and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Gang Min Hur
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
16
|
Berguetti T, Quintaes LSP, Hancio T, Robaina MC, Cruz ALS, Maia RC, de Souza PS. TNF-α Modulates P-Glycoprotein Expression and Contributes to Cellular Proliferation via Extracellular Vesicles. Cells 2019; 8:cells8050500. [PMID: 31137684 PMCID: PMC6562596 DOI: 10.3390/cells8050500] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022] Open
Abstract
P-glycoprotein (Pgp/ABCB1) overexpression is associated with multidrug resistance (MDR) phenotype and, consequently, failure in cancer chemotherapy. However, molecules involved in cell death deregulation may also support MDR. Tumor necrosis factor-alpha (TNF-α) is an important cytokine that may trigger either death or tumor growth. Here, we examined the role of cancer cells in self-maintenance and promotion of cellular malignancy through the transport of Pgp and TNF-α molecules by extracellular vesicles (membrane microparticles (MP)). By using a classical MDR model in vitro, we identified a positive correlation between endogenous TNF-α and Pgp, which possibly favored a non-cytotoxic effect of recombinant TNF-α (rTNF-α). We also found a positive feedback involving rTNF-α incubation and TNF-α regulation. On the other hand, rTNF-α induced a reduction in Pgp expression levels and contributed to a reduced Pgp efflux function. Our results also showed that parental and MDR cells spontaneously released MP containing endogenous TNF-α and Pgp. However, these MP were unable to transfer their content to non-cancer recipient cells. Nevertheless, MP released from parental and MDR cells elevated the proliferation index of non-tumor cells. Collectively, our results suggest that Pgp and endogenous TNF-α positively regulate cancer cell malignancy and contribute to changes in normal cell behavior through MP.
Collapse
Affiliation(s)
- Tandressa Berguetti
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil.
- Programa de Pós-Graduação Strictu Sensu em Oncologia, INCA, Rio de Janeiro 20231-050, Brazil.
| | - Lucas S P Quintaes
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil.
| | - Thais Hancio
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil.
- Programa de Pós-Graduação Strictu Sensu em Oncologia, INCA, Rio de Janeiro 20231-050, Brazil.
| | - Marcela C Robaina
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil.
| | - André L S Cruz
- Laboratório de Fisiopatologia, Polo Novo Cavaleiros, Campus UFRJ-Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil.
| | - Raquel C Maia
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil.
| | - Paloma Silva de Souza
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil.
| |
Collapse
|
17
|
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that can initiate the apoptosis pathway by binding to its associated death receptors DR4 and DR5. The activation of the TRAIL pathway in inducing tumor-selective apoptosis leads to the development of TRAIL-based cancer therapies, which include recombinant forms of TRAIL, TRAIL receptor agonists, and other therapeutic agents. Importantly, TRAIL, DR4, and DR5 can all be induced by synthetic and natural agents that activate the TRAIL apoptosis pathway in cancer cells. Thus, understanding the regulation of the TRAIL apoptosis pathway can aid in the development of TRAIL-based therapies for the treatment of human cancer.
Collapse
|
18
|
Stavrovskaya AA, Rybalkina EY. Recent Advances in the Studies of Molecular Mechanisms Regulating Multidrug Resistance in Cancer Cells. BIOCHEMISTRY (MOSCOW) 2018; 83:779-786. [PMID: 30200862 DOI: 10.1134/s0006297918070015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here we present new approaches to better understanding multidrug resistance (MDR) development in cancer cells, such as identification of components of a complex process of MDR evolution. Recent advances in the studies of MDR are discussed: 1) chemotherapy agents might be involved in the selection of cancer stem cells resulting in the elevated drug resistance and enhanced tumorigenicity; 2) cell-cell interactions have a great effect on the MDR emergence and evolution; 3) mechanotransduction is an important signaling mechanism in cell-cell interactions; 4) proteins of the ABC transporter family which are often involved in MDR might be transferred between cells via microvesicles (epigenetic MDR regulation); 5) proteins providing cell-to-cell transfer of functional P-glycoprotein (MDR1 protein) via microvesicles have been investigated; 6) P-glycoprotein may serve to regulate apoptosis, as well as transcription and translation of target genes/proteins. Although proving once again that MDR is a complex multi-faceted process, these data open new approaches to overcoming it.
Collapse
Affiliation(s)
- A A Stavrovskaya
- Blokhin Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia.
| | - E Yu Rybalkina
- Blokhin Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| |
Collapse
|
19
|
Guo X, Fu Z, Bi Y, Zheng J, Wang L, He X, Li F, Lei X, Ren Q. [Chinese herbal medicine Euphorbia esula extract induces apoptosis and inhibits the proliferation, migration and invasion of multidrug resistant gastric carcinoma cells]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2018; 35:244-251. [PMID: 29745530 PMCID: PMC9935092 DOI: 10.7507/1001-5515.201609009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Indexed: 11/03/2022]
Abstract
This paper aims to study the effects of traditional Chinese medicine Euphorbia esula on multidrug resistant human gastric cancer cells in the cell proliferation, migration, invasion and apoptosis, and to study the apoptosis-inducing pathway. Different dilutions of Euphorbia esula extract were used to process human multidrug resistant gastric cancer SGC7901/ADR cells. Cell proliferation inhibition phenomenon was determined by MTT experiment. Nuclear morphological changes of apoptotic cells and apoptotic indexes were observed and determined by Hochest33528 staining followed with fluorescence microscope observing. Flow cytometry was used to detect cell apoptosis rate. Cell migration and invasion ability were observed and determined by Transwell method. Spectrophotometry was used to detect caspase-3 and caspase-9 enzyme activity. Western blotting was used to detect subcellular distribution of cytochrome c. The results showed that Euphorbia esula extract had obvious inhibition effect on proliferation of gastric cancer multidrug resistant SGC7901/ADR cells, which was time- and concentration-dependent. After processing multidrug resistant gastric cancer SGC7901/ADR cells with Euphorbia esula extract, the apoptotic index and apoptosis rate were significantly increased than those in the control group, which showed a time- and dose-dependent mode; but if a caspase inhibitor was added, apoptosis index was not obviously increased. Transwell method showed that migration and invasion ability of the Euphorbia esula extract-processed SGC7901/ADR cells dropped significantly. Spectrophotometry showed that in Euphorbia esula extract-processed SGC7901/ADR cells, caspase-3 and caspase-9 expression were increased, which had significant differences with the control group. Western blotting test showed that the distribution of cytochrome c decreased in mitochondria, while increased in the cytoplasm (i.e., cytochrome c escaped from mitochondria to the cytoplasm). In conclusion, Euphorbia esula extract could inhibit the proliferation, migration and invasion, and induce apoptosis in human gastric cancer multidrug resistant SGC7901/ADR cells; and cytochrome c, caspase-9 and caspase-3 might be involved in cell apoptosis induced by Euphorbia esula extract, suggesting endogenous or mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Xianli Guo
- Department of Biochemistry and Molecular Biology, Yan'an University, Yan'an, Shaanxi 716000, P.R.China
| | - Zhaoying Fu
- Department of Biochemistry and Molecular Biology, Yan'an University, Yan'an, Shaanxi 716000, P.R.China;Institute of Molecular Biology and Immunology, Yan'an University, Yan'an, Shaanxi 716000, P.R.China
| | - Yun Bi
- First Affiliated Hospital, Yan'an University, Yan'an, Shaanxi 716000,
| | - Jun Zheng
- First Affiliated Hospital, Yan'an University, Yan'an, Shaanxi 716000, P.R.China
| | - Lei Wang
- First Affiliated Hospital, Yan'an University, Yan'an, Shaanxi 716000, P.R.China
| | - Xiaolong He
- First Affiliated Hospital, Yan'an University, Yan'an, Shaanxi 716000, P.R.China
| | - Fei Li
- First Affiliated Hospital, Yan'an University, Yan'an, Shaanxi 716000, P.R.China
| | - Xing Lei
- First Affiliated Hospital, Yan'an University, Yan'an, Shaanxi 716000, P.R.China
| | - Qingquan Ren
- First Affiliated Hospital, Yan'an University, Yan'an, Shaanxi 716000, P.R.China
| |
Collapse
|
20
|
Maia RC, Vasconcelos FC, Souza PS, Rumjanek VM. Towards Comprehension of the ABCB1/P-Glycoprotein Role in Chronic Myeloid Leukemia. Molecules 2018; 23:molecules23010119. [PMID: 29316665 PMCID: PMC6017716 DOI: 10.3390/molecules23010119] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/25/2017] [Accepted: 01/05/2018] [Indexed: 12/22/2022] Open
Abstract
Abstract: The introduction of imatinib (IM), a BCR-ABL1 tyrosine kinase inhibitor (TKI), has represented a significant advance in the first-line treatment of chronic myeloid leukemia (CML). However, approximately 30% of patients need to discontinue IM due to resistance or intolerance to this drug. Both resistance and intolerance have also been observed in treatment with the second-generation TKIs-dasatinib, nilotinib, and bosutinib-and the third-generation TKI-ponatinib. The mechanisms of resistance to TKIs may be BCR-ABL1-dependent and/or BCR-ABL1-independent. Although the role of efflux pump P-glycoprotein (Pgp), codified by the ABCB1 gene, is unquestionable in drug resistance of many neoplasms, a longstanding question exists about whether Pgp has a firm implication in TKI resistance in the clinical scenario. The goal of this review is to offer an overview of ABCB1/Pgp expression/activity/polymorphisms in CML. Understanding how interactions, associations, or cooperation between Pgp and other molecules-such as inhibitor apoptosis proteins, microRNAs, or microvesicles-impact IM resistance risk may be critical in evaluating the response to TKIs in CML patients. In addition, new non-TKI compounds may be necessary in order to overcome the resistance mediated by Pgp in CML.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/physiology
- Animals
- Drug Resistance, Neoplasm
- Genetic Predisposition to Disease
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Polymorphism, Single Nucleotide
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Raquel C Maia
- Laboratório de Hemato-Oncologia Celular e Molecular and Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23, 6° andar, CEP 20230-130 Rio de Janeiro, Brazil.
| | - Flavia C Vasconcelos
- Laboratório de Hemato-Oncologia Celular e Molecular and Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23, 6° andar, CEP 20230-130 Rio de Janeiro, Brazil.
| | - Paloma S Souza
- Laboratório de Hemato-Oncologia Celular e Molecular and Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23, 6° andar, CEP 20230-130 Rio de Janeiro, Brazil.
| | - Vivian M Rumjanek
- Laboratório de Imunologia Tumoral, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Cidade Universitária, CEP 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
21
|
Hennenberg EM, Eyking A, Reis H, Cario E. MDR1A deficiency restrains tumor growth in murine colitis-associated carcinogenesis. PLoS One 2017; 12:e0180834. [PMID: 28686677 PMCID: PMC5501609 DOI: 10.1371/journal.pone.0180834] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/21/2017] [Indexed: 12/13/2022] Open
Abstract
Patients with Ulcerative Colitis (UC) have an increased risk to develop colitis-associated colorectal cancer (CAC). Here, we found that protein expression of ABCB1 (ATP Binding Cassette Subfamily B Member 1) / MDR1 (multidrug resistance 1) was diminished in the intestinal mucosa of patients with active UC with or without CAC, but not in non-UC patients with sporadic colon cancer. We investigated the consequences of ABCB1/MDR1 loss-of-function in a common murine model for CAC (AOM/DSS). Mice deficient in MDR1A (MDR1A KO) showed enhanced intratumoral inflammation and cellular damage, which were associated with reduced colonic tumor size and decreased degree of dysplasia, when compared to wild-type (WT). Increased cell injury correlated with reduced capacity for growth of MDR1A KO tumor spheroids cultured ex-vivo. Gene expression analysis by microarray demonstrated that MDR1A deficiency shaped the inflammatory response towards an anti-tumorigenic microenvironment by downregulating genes known to be important mediators of cancer progression (PTGS2 (COX2), EREG, IL-11). MDR1A KO tumors showed increased gene expression of TNFSF10 (TRAIL), a known inducer of cancer cell death, and CCL12, a strong trigger of B cell chemotaxis. Abundant B220+ B lymphocyte infiltrates with interspersed CD138+ plasma cells were recruited to the MDR1A KO tumor microenvironment, concomitant with high levels of immunoglobulin light chain genes. In contrast, MDR1A deficiency in RAG2 KO mice that lack both B and T cells aggravated colonic tumor progression. MDR1A KO CD19+ B cells, but not WT CD19+ B cells, suppressed growth of colonic tumor-derived spheroids from AOM/DSS-WT mice in an ex-vivo co-culture system, implying that B-cell regulated immune responses contributed to delayed tumor development in MDR1A deficiency. In conclusion, we provide first evidence that loss of ABCB1/MDR1 function may represent an essential tumor-suppressive host defense mechanism in CAC.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/deficiency
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/immunology
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Carcinogenesis/genetics
- Carcinogenesis/immunology
- Carcinogenesis/pathology
- Chemotaxis
- Colitis, Ulcerative/complications
- Colitis, Ulcerative/genetics
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/pathology
- Colorectal Neoplasms/complications
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/pathology
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/immunology
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- Disease Models, Animal
- Epiregulin/genetics
- Epiregulin/immunology
- Gene Expression Regulation, Neoplastic
- Genes, Immunoglobulin Light Chain/genetics
- Humans
- Interleukin-11/genetics
- Interleukin-11/immunology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/pathology
- Leukocyte Common Antigens/genetics
- Leukocyte Common Antigens/immunology
- Male
- Mice
- Mice, Knockout
- Monocyte Chemoattractant Proteins/genetics
- Monocyte Chemoattractant Proteins/immunology
- Signal Transduction
- TNF-Related Apoptosis-Inducing Ligand/genetics
- TNF-Related Apoptosis-Inducing Ligand/immunology
Collapse
Affiliation(s)
- Eva Maria Hennenberg
- Experimental Gastroenterology, Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
- Medical School, University of Duisburg-Essen, Essen, Germany
| | - Annette Eyking
- Experimental Gastroenterology, Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
- Medical School, University of Duisburg-Essen, Essen, Germany
| | - Henning Reis
- Medical School, University of Duisburg-Essen, Essen, Germany
- Institute of Pathology, University Hospital Essen, Essen, Germany
| | - Elke Cario
- Experimental Gastroenterology, Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
- Medical School, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
22
|
Chen QN, Wei CC, Wang ZX, Sun M. Long non-coding RNAs in anti-cancer drug resistance. Oncotarget 2017; 8:1925-1936. [PMID: 27713133 PMCID: PMC5352108 DOI: 10.18632/oncotarget.12461] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 09/16/2016] [Indexed: 12/20/2022] Open
Abstract
Chemotherapy is one of the basic treatments for cancers; however, drug resistance is mainly responsible for the failure of clinical treatment. The mechanism of drug resistance is complicated because of interaction among various factors including drug efflux, DNA damage repair, apoptosis and targets mutation. Long non-coding RNAs (lncRNAs) have been a focus of research in the field of bioscience, and the latest studies have revealed that lncRNAs play essential roles in drug resistance in breast cancer, gastric cancer and lung cancer, et al. Dysregulation of multiple targets and pathways by lncRNAs results in the occurrence of chemoresistance. In this review, we will discuss the mechanisms underlying lncRNA-mediated resistance to chemotherapy and the therapeutic potential of lncRNAs in future cancer treatment.
Collapse
Affiliation(s)
- Qin-nan Chen
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chen-chen Wei
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhao-xia Wang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ming Sun
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
23
|
Mechanisms of tumor cell resistance to the current targeted-therapy agents. Tumour Biol 2016; 37:10021-39. [PMID: 27155851 DOI: 10.1007/s13277-016-5059-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/01/2016] [Indexed: 12/25/2022] Open
|
24
|
Zhang J, Luo Y, Zhao X, Li X, Li K, Chen D, Qiao M, Hu H, Zhao X. Co-delivery of doxorubicin and the traditional Chinese medicine quercetin using biotin–PEG2000–DSPE modified liposomes for the treatment of multidrug resistant breast cancer. RSC Adv 2016. [DOI: 10.1039/c6ra24173e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
At present, multidrug resistance (MDR) in cancer therapy is an international problem, which is caused mostly by the overexpressed P-glycoprotein (P-gp) efflux pump.
Collapse
Affiliation(s)
- Jiulong Zhang
- Department of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang
- P. R. China
| | - Yue Luo
- Department of Pharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- P. R. China
| | - Xiufeng Zhao
- Department of Pharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- P. R. China
| | - Xiaowei Li
- Department of Pharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- P. R. China
| | - Kexin Li
- Department of Pharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- P. R. China
| | - Dawei Chen
- Department of Pharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- P. R. China
| | - Mingxi Qiao
- Department of Pharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- P. R. China
| | - Haiyang Hu
- Department of Pharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- P. R. China
| | - Xiuli Zhao
- Department of Pharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- P. R. China
| |
Collapse
|