1
|
Wen W, Yang L, Wang X, Zhang H, Wu F, Xu K, Chen S, Liao Z. Fucoidan promotes angiogenesis and accelerates wound healing through AKT/Nrf2/HIF-1α signalling pathway. Int Wound J 2023; 20:3606-3618. [PMID: 37203309 PMCID: PMC10588368 DOI: 10.1111/iwj.14239] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023] Open
Abstract
After skin injury, wound repair involves a complex process in which angiogenesis plays a crucial role. Previous research has indicated that fucoidan may aid in wound healing; we therefore hypothesised that fucoidan may speed up the process by promoting angiogenesis. In this study, we investigated the potential molecular mechanism underlying fucoidan's ability to accelerate wound healing by promoting angiogenesis. Using a full-cut wound model, we observed that fucoidan significantly intensified wound closure and promoted granulation formation and collagen deposition. Immunofluorescence staining revealed that fucoidan also promoted wound angiogenesis, specifically by accelerating the migration of new blood vessels to the middle area of the wound. Furthermore, fucoidan demonstrated the ability to enhance the proliferation of human umbilical vein endothelial cells (HUVECs) damaged by hydrogen peroxide (H2 O2 ) and to improve the formation of endothelial tubes. Mechanistic studies revealed that fucoidan upregulated the protein levels of the AKT/Nrf2/HIF-1α signalling pathway, which plays a crucial role in angiogenesis. This was further confirmed using the inhibitor LY294002, which reversed the promotion of endothelial tube formation by fucoidan. Overall, our findings suggest that fucoidan can promote angiogenesis via the AKT/Nrf2/HIF-1α signalling pathway and accelerate wound healing.
Collapse
Affiliation(s)
- Wenting Wen
- College of Life and Environmental SciencesWenzhou UniversityZhejiangChina
| | - Liangliang Yang
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research InstituteWenzhou Medical UniversityZhejiangChina
| | - Xin Wang
- Dpartment of Plastic and Reconstructive Surgery, Hand and MicrosurgeryNingbo NO.6 HospitalZhejiangChina
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research InstituteWenzhou Medical UniversityZhejiangChina
| | - Fangfang Wu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's HospitalWenzhou Medical UniversityWenzhouChina
| | - Ke Xu
- College of Life and Environmental SciencesWenzhou UniversityZhejiangChina
| | - Shaodong Chen
- Department of OrthopaedicsLishui People's HospitalZhejiangChina
| | - Zhiyong Liao
- College of Life and Environmental SciencesWenzhou UniversityZhejiangChina
| |
Collapse
|
2
|
Boorman E, Killick R, Aarsland D, Zunszain P, Mann GE. NRF2: An emerging role in neural stem cell regulation and neurogenesis. Free Radic Biol Med 2022; 193:437-446. [PMID: 36272667 DOI: 10.1016/j.freeradbiomed.2022.10.301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
The birth of new neurons from neural stem cells (NSC)s during developmental and adult neurogenesis arises from a myriad of highly complex signalling cascades. Emerging as one of these is the nuclear factor erythroid 2-related factor (NRF2)-signaling pathway. Regulation by NRF2 is reported to span the neurogenic process from early neural lineage specification and NSC regulation to neuronal fate commitment and differentiation. Here, we review these reports selecting only those where NRF2 signaling was directly manipulated to provide a clearer case for a direct role of NRF2 in embryonic and adult neurogenesis. With few studies providing mechanistic insight into this relationship, we lastly discuss key pathways linking NRF2 and stem cell regulation outside the neural lineage to shed light on mechanisms that may also be relevant to NSCs and neurogenesis.
Collapse
Affiliation(s)
- Emily Boorman
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; King's BHF Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Richard Killick
- Department of Old Age Psychiatry Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Dag Aarsland
- Department of Old Age Psychiatry Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Patricia Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Giovanni E Mann
- King's BHF Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
3
|
Lu C, Wei J. Nestin Regulates Keap1-Nrf2-HO-1-Mediated Antioxidant Responses during Stress and Malignant Hematopoiesis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1706585. [PMID: 35669731 PMCID: PMC9167119 DOI: 10.1155/2022/1706585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 11/20/2022]
Abstract
Objective To investigate the role of nestin in regulating Keap1-nuclear factor erythroid-2-related factor 2 (Nrf2)-heme oxygenase-1-(HO-1-) mediated antioxidant responses in stress and malignant hematopoiesis. Methods The mRNA of peripheral blood mononuclear cells was extracted from 20 leukemia patients and 20 healthy people who were hospitalized in the Hematology Department of our hospital from September 2020 to December 2021, and the mRNA levels of nestin, Keap1, Nrf2, and HO-1 were detected by real-time- (RT-) PCR. Results Compared with healthy controls, the mRNA of nestin, Keap1, Nrf2, and HO-1 in peripheral blood mononuclear cells of leukemia patients was significantly upregulated. Conclusion The occurrence and development of leukemia are closely related to nestin regulating Keap1-Nrf2-Ho-1 signal pathway. Research Significance. This study determined the effect of nestin on the biological behavior of leukemia cells and its possible mechanism and confirmed that nestin may be a marker of tumor and tumor blood vessels.
Collapse
Affiliation(s)
- Chunjuan Lu
- Department of Blood Transfusion, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, China
| | - Jin Wei
- Department of Nutrition, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, China
| |
Collapse
|
4
|
Local Treatment of Hydrogen-Rich Saline Promotes Wound Healing In Vivo by Inhibiting Oxidative Stress via Nrf-2/HO-1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2949824. [PMID: 35300173 PMCID: PMC8923808 DOI: 10.1155/2022/2949824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/30/2022] [Accepted: 02/18/2022] [Indexed: 11/26/2022]
Abstract
Wound healing is a complex dynamic process involving a large number of biological events. Excessive oxidative stress is a key factor delaying wound healing. Hydrogen is an antioxidant, anti-inflammatory, and antiapoptotic medical gas with safety, effectiveness, and penetrability. However, the effects of local treatment of hydrogen on wound healing and its potential mechanisms remain unclear. In this study, Kunming (KM) mice were used to set up a wound model. All the mice were randomly divided into the control, the local treatment with saline group, the local treatment with the hydrogen-rich saline group, and the intraperitoneal injection of the hydrogen-rich saline group. To evaluate the impact of hydrogen-rich saline on wound healing, we assessed the wound healing rate, wound closure time, histomorphology, oxidative stress indicators, inflammatory cytokines, the apoptosis index, and the expression of the nuclear factor-erythroid-related factor 2(Nrf-2). Furthermore, the immortalized nontumorigenic human epidermal (HaCaT) cells were chosen to investigate the therapeutic effects of hydrogen-rich medium on oxidative stress and its underlying mechanisms. The results showed that local treatment of hydrogen-rich saline shortened wound closure time and reduced the level of proinflammatory cytokines and lipid peroxidation. Meanwhile, it decreased the cell apoptosis index and increased the Nrf-2 expression. Besides, hydrogen-rich medium relieved the oxidative stress via the activation of the Nrf-2/heme oxygenase-1 (HO-1) pathway. In conclusion, local treatment of hydrogen-rich saline exhibits the healing-promoting function through antioxidant, anti-inflammatory, and antiapoptotic effects. Hydrogen relieves the oxidative stress in the wound microenvironment via Nrf-2/HO-1 signaling pathway. This study may offer a new strategy to promote wound healing and a new perspective to illustrate the mechanism of wound healing.
Collapse
|
5
|
Zhang J, Huang J, Gu Y, Xue M, Qian F, Wang B, Yang W, Yu H, Wang Q, Guo X, Ding X, Wang J, Jin M, Zhang Y. Inflammation-induced inhibition of chaperone-mediated autophagy maintains the immunosuppressive function of murine mesenchymal stromal cells. Cell Mol Immunol 2021; 18:1476-1488. [PMID: 31900460 PMCID: PMC8167126 DOI: 10.1038/s41423-019-0345-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Macroautophagy has been implicated in modulating the therapeutic function of mesenchymal stromal cells (MSCs). However, the biological function of chaperone-mediated autophagy (CMA) in MSCs remains elusive. Here, we found that CMA was inhibited in MSCs in response to the proinflammatory cytokines interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). In addition, suppression of CMA by knocking down the CMA-related lysosomal receptor lysosomal-associated membrane protein 2 (LAMP-2A) in MSCs significantly enhanced the immunosuppressive effect of MSCs on T cell proliferation, and as expected, LAMP-2A overexpression in MSCs exerted the opposite effect on T cell proliferation. This effect of CMA on the immunosuppressive function of MSCs was attributed to its negative regulation of the expression of chemokine C-X-C motif ligand 10 (CXCL10), which recruits inflammatory cells, especially T cells, to MSCs, and inducible nitric oxide synthase (iNOS), which leads to the subsequent inhibition of T cell proliferation via nitric oxide (NO). Mechanistically, CMA inhibition dramatically promoted IFN-γ plus TNF-α-induced activation of NF-κB and STAT1, leading to the enhanced expression of CXCL10 and iNOS in MSCs. Furthermore, we found that IFN-γ plus TNF-α-induced AKT activation contributed to CMA inhibition in MSCs. More interestingly, CMA-deficient MSCs exhibited improved therapeutic efficacy in inflammatory liver injury. Taken together, our findings established CMA inhibition as a critical contributor to the immunosuppressive function of MSCs induced by inflammatory cytokines and highlighted a previously unknown function of CMA.
Collapse
Affiliation(s)
- Jie Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiefang Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuting Gu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingxing Xue
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fengtao Qian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bei Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wanlin Yang
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Hongshuang Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiwei Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Guo
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Xinyuan Ding
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Jina Wang
- Department of Urology and Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Min Jin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Yanyun Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China.
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Shen C, Lu Y, Zhang J, Li Y, Zhang Y, Fan D. c-Casitas b-Lineage Lymphoma Downregulation Improves the Ability of Long-term Cultured Mesenchymal Stem Cells for Promoting Angiogenesis and Diabetic Wound Healing. Cell Transplant 2021; 30:963689721989605. [PMID: 33588607 PMCID: PMC7894690 DOI: 10.1177/0963689721989605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The chronic wound induced by diabetes has poor efficacy and could lead to amputation. The repair function of mesenchymal stem cells (MSCs) impaired after long-term culture in vitro. Studies have shown that the proto-oncogene c-Casitas b-lineage lymphoma (c-Cbl) can regulate receptor- and non-receptor tyrosine kinase, which was also involved in the angiogenesis process. This study aimed to explore the regulative effect of c-Cbl on the proangiogenic functions of long-term cultured MSCs and evaluate its pro-healing effect on diabetic wounds. In this study, the c-Cbl level was downregulated by locked nucleic acid–modified antisense oligonucleotide gapmers (LNA Gapmers). We detected the effect of c-Cbl downregulation on long-term cultured MSCs in terms of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signal, cellular proliferation, senescence, migration, and angiogenic factors paracrine activity in vitro. In vivo, we observed the pro-healing effect of long-term cultured MSCs, with or without c-Cbl downregulation, on the diabetic wound. We found that the phosphorylation level of c-Cbl increased and that of Akt decreased in passage 10 (P10) MSCs compared with passage 3 (P3) MSCs (P < 0.05). Additionally, the proliferation, paracrine, and migration capacity of P10 MSCs decreased significantly, accompanied by the increase of cellular senescence (P < 0.05). However, these functions, including PI3K/Akt activity of P10 MSCs, have been improved by c-Cbl downregulation (P < 0.05). Compared with P10 MSCs treatment, treatment with c-Cbl downregulated P10 MSCs accelerated diabetic wound healing, as defined by a more rapid wound closure (P < 0.05), more neovascularization (P < 0.05), and higher scores of wound histological assessment (P < 0.05) in a diabetic rat model. Our findings suggested that c-Cbl downregulation could attenuate the impairment of proangiogenic functions in MSCs induced by long-term culture in vitro and improve the effect of long-term cultured MSCs in promoting diabetic wound healing.
Collapse
Affiliation(s)
- Chengcheng Shen
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuangang Lu
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jianghe Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yujie Li
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yiming Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Dongli Fan
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
7
|
Zhang J, Yan Y, Li Y, Shen C, Zhang Y. Topical effect of benzalkonium bromide on wound healing and potential cellular and molecular mechanisms. Int Wound J 2021; 18:566-576. [PMID: 33512783 PMCID: PMC8450784 DOI: 10.1111/iwj.13555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/15/2021] [Indexed: 12/31/2022] Open
Abstract
Benzalkonium bromide (BB) has been widely used as a skin antiseptic for wound management. However, BB had proinflammation and reactive oxygen species (ROS) induction effect, making its role in wound healing complex and unclear. A rat full-thickness skin defect wound model was established. The effects of BB, povidone iodine (PVP-I), chlorhexidine gluconate (CHG), and normal saline (NS) on wound healing and infection control were then evaluated based on wound healing rate (WHr) and bacterial killing. The wound tissues were sectioned for histopathological evaluation and nuclear factor E2 related factor 2 (Nrf2) expression determination. The ROS production, Nrf2 activation, and heme oxygenase 1 (HO-1) expression of the HaCat cells and the cytotoxicity treated with BB were further explored. Compared with NS, PVP-I, and CHG, BB showed the best wound infection control efficiency while delayed wound healing with the WHr of 91.42 ± 5.12% at day 20. The wound tissue of the BB group showed many inflammatory cells but few granulation tissue and capillaries and no obvious collagen deposition, resulting in the lowest histopathological scores of 4.17 ± 0.75 for BB group. BB showed higher cytotoxicity on HaCat cells with the lowest IC25, IC50, and IC75 of 1.90, 4.16, and 9.09 g/mL compared with PVP-I and CHG. TUNEL staining evaluated the cytotoxicity of BB on wound tissue, which indicates the high apoptosis index BB group (5.05 ± 1.77). Compared with PVP-I and CHG, BB induced much more cell apoptosis. The results of flow cytometry and fluorescence staining showed that PVP-I, CHG, and BB induced ROS production in a concentration-dependent manner and cells treated with BB had the highest ROS production at the same inhibition concentration. The cells and the wound tissues treated with BB showed highest Nrf2 activation and HO-1 expression than PVP-I and CHG. BB was highly efficient in wound infection control while delayed wound healing. The prolonged and strengthened inflammation and the raised ROS production originating from BB administration may contribute to delayed wound healing.
Collapse
Affiliation(s)
- Jianghe Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yan Yan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujie Li
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chengcheng Shen
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yiming Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
8
|
Nammian P, Asadi-Yousefabad SL, Daneshi S, Sheikhha MH, Tabei SMB, Razban V. Comparative analysis of mouse bone marrow and adipose tissue mesenchymal stem cells for critical limb ischemia cell therapy. Stem Cell Res Ther 2021; 12:58. [PMID: 33436054 PMCID: PMC7805174 DOI: 10.1186/s13287-020-02110-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Critical limb ischemia (CLI) is the most advanced form of peripheral arterial disease (PAD) characterized by ischemic rest pain and non-healing ulcers. Currently, the standard therapy for CLI is the surgical reconstruction and endovascular therapy or limb amputation for patients with no treatment options. Neovasculogenesis induced by mesenchymal stem cells (MSCs) therapy is a promising approach to improve CLI. Owing to their angiogenic and immunomodulatory potential, MSCs are perfect candidates for the treatment of CLI. The purpose of this study was to determine and compare the in vitro and in vivo effects of allogeneic bone marrow mesenchymal stem cells (BM-MSCs) and adipose tissue mesenchymal stem cells (AT-MSCs) on CLI treatment. METHODS For the first step, BM-MSCs and AT-MSCs were isolated and characterized for the characteristic MSC phenotypes. Then, femoral artery ligation and total excision of the femoral artery were performed on C57BL/6 mice to create a CLI model. The cells were evaluated for their in vitro and in vivo biological characteristics for CLI cell therapy. In order to determine these characteristics, the following tests were performed: morphology, flow cytometry, differentiation to osteocyte and adipocyte, wound healing assay, and behavioral tests including Tarlov, Ischemia, Modified ischemia, Function and the grade of limb necrosis scores, donor cell survival assay, and histological analysis. RESULTS Our cellular and functional tests indicated that during 28 days after cell transplantation, BM-MSCs had a great effect on endothelial cell migration, muscle restructure, functional improvements, and neovascularization in ischemic tissues compared with AT-MSCs and control groups. CONCLUSIONS Allogeneic BM-MSC transplantation resulted in a more effective recovery from critical limb ischemia compared to AT-MSCs transplantation. In fact, BM-MSC transplantation could be considered as a promising therapy for diseases with insufficient angiogenesis including hindlimb ischemia.
Collapse
Affiliation(s)
- Pegah Nammian
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sajad Daneshi
- Postdoctoral Researcher, Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hasan Sheikhha
- Biotechnology Research Center, International Campus, Shahid Sadoughi University of MedicalSciences, Yazd, Iran
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mohammad Bagher Tabei
- Department of Genetics, Shiraz University of Medical Science, Shiraz, Iran.
- Maternal-fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Stem Cells Technology Research center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Effect of the Abnormal Expression of BMP-4 in the Blood of Diabetic Patients on the Osteogenic Differentiation Potential of Alveolar BMSCs and the Rescue Effect of Metformin: A Bioinformatics-Based Study. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7626215. [PMID: 32596370 PMCID: PMC7298258 DOI: 10.1155/2020/7626215] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023]
Abstract
The success rate of oral implants is lower in type 2 diabetes mellitus (T2DM) patients than in nondiabetic subjects; functional impairment of bone marrow-derived mesenchymal stem cells (BMSCs) is an important underlying cause. Many factors in the blood can act on BMSCs to regulate their biological functions and influence implant osseointegration, but which factors play important negative roles in T2DM patients is still unclear. This study is aimed at screening differentially expressed genes in the blood from T2DM and nondiabetic patients, identifying which genes impact the osteogenic differentiation potential of alveolar BMSCs in T2DM patients, exploring drug intervention regimens, and providing a basis for improving implant osseointegration. Thus, a whole-blood gene expression microarray dataset (GSE26168) of T2DM patients and nondiabetic controls was analyzed. Based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) results, differentially expressed genes and signaling pathways related to BMSC osteogenic differentiation were screened, and major risk genes were extracted based on the mean decrease Gini coefficient calculated using the random forest method. Bone morphogenetic protein-4 (BMP-4), with significantly low expression in T2DM blood, was identified as the most significant factor affecting BMSC osteogenic differentiation potential. Subsequently, metformin, a first-line clinical drug for T2DM treatment, was found to improve the osteogenic differentiation potential of BMSCs from T2DM patients via the BMP-4/Smad/Runx2 signaling pathway. These results demonstrate that low BMP-4 expression in the blood of T2DM patients significantly hinders the osteogenic function of BMSCs and that metformin is effective in counteracting the negative impact of BMP-4 deficiency.
Collapse
|
10
|
Paracrine Mechanisms of Mesenchymal Stromal Cells in Angiogenesis. Stem Cells Int 2020; 2020:4356359. [PMID: 32215017 PMCID: PMC7085399 DOI: 10.1155/2020/4356359] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
The role of the mesenchymal stromal cell- (MSC-) derived secretome is becoming increasingly intriguing from a clinical perspective due to its ability to stimulate endogenous tissue repair processes as well as its effective regulation of the immune system, mimicking the therapeutic effects produced by the MSCs. The secretome is a composite product secreted by MSC in vitro (in conditioned medium) and in vivo (in the extracellular milieu), consisting of a protein soluble fraction (mostly growth factors and cytokines) and a vesicular component, extracellular vesicles (EVs), which transfer proteins, lipids, and genetic material. MSC-derived secretome differs based on the tissue from which the MSCs are isolated and under specific conditions (e.g., preconditioning or priming) suggesting that clinical applications should be tailored by choosing the tissue of origin and a priming regimen to specifically correct a given pathology. MSC-derived secretome mediates beneficial angiogenic effects in a variety of tissue injury-related diseases. This supports the current effort to develop cell-free therapeutic products that bring both clinical benefits (reduced immunogenicity, persistence in vivo, and no genotoxicity associated with long-term cell cultures) and manufacturing advantages (reduced costs, availability of large quantities of off-the-shelf products, and lower regulatory burden). In the present review, we aim to give a comprehensive picture of the numerous components of the secretome produced by MSCs derived from the most common tissue sources for clinical use (e.g., AT, BM, and CB). We focus on the factors involved in the complex regulation of angiogenic processes.
Collapse
|
11
|
Vu NB, Phi LT, Dao TTT, Le HTN, Ta VT, Pham PV. Adipose derived stem cell transplantation is better than bone marrow mesenchymal stem cell transplantation in treating hindlimb ischemia in mice. BIOMEDICAL RESEARCH AND THERAPY 2019. [DOI: 10.7603/s40730-016-0046-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Proteomic analysis of human mesenchymal stromal cell secretomes: a systematic comparison of the angiogenic potential. NPJ Regen Med 2019; 4:8. [PMID: 31016031 PMCID: PMC6467904 DOI: 10.1038/s41536-019-0070-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/15/2019] [Indexed: 12/23/2022] Open
Abstract
Human mesenchymal stromal cell (hMSC) secretomes have shown to influence the microenvironment upon injury, promoting cytoprotection, angiogenesis, and tissue repair. The angiogenic potential is of particular interest for the treatment of ischemic diseases. Interestingly, hMSC secretomes isolated from different tissue sources have shown dissimilarities with respect to their angiogenic profile. This study compares angiogenesis of hMSC secretomes from adipose tissue (hADSCs), bone marrow (hBMSCs), and umbilical cord Wharton’s jelly (hWJSCs). hMSC secretomes were obtained under xenofree conditions and analyzed by liquid chromatography tandem mass spectrometry (LC/MS-MS). Biological processes related to angiogenesis were found to be enriched in the proteomic profile of hMSC secretomes. hWJSC secretomes revealed a more complete angiogenic network with higher concentrations of angiogenesis related proteins, followed by hBMSC secretomes. hADSC secretomes lacked central angiogenic proteins and expressed most detected proteins to a significantly lower level. In vivo all secretomes induced vascularization of subcutaneously implanted Matrigel plugs in mice. Differences in secretome composition were functionally analyzed with monocyte and endothelial cell (EC) in vitro co-culture experiments using vi-SNE based multidimensional flow cytometry data analysis. Functional responses between hBMSC and hWJSC secretomes were comparable, with significantly higher migration of CD14++ CD16− monocytes and enhanced macrophage differentiation compared with hADSC secretomes. Both secretomes also induced a more profound pro-angiogenic phenotype of ECs. These results suggest hWJSCs secretome as the most potent hMSC source for inflammation-mediated angiogenesis induction, while the potency of hADSC secretomes was lowest. This systematic analysis may have implication on the selection of hMSCs for future clinical studies.
Collapse
|