1
|
Schweiger B, Kievit FM. Glioblastoma induced blood-brain barrier dysfunction via a paracrine mechanism that increases claudin-1 expression. Exp Brain Res 2025; 243:70. [PMID: 39960547 DOI: 10.1007/s00221-025-07018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/31/2025] [Indexed: 03/08/2025]
Abstract
Blood-brain barrier (BBB) disruption is a well-known phenomenon in glioblastoma (GBM). However, the mechanism driving BBB dysfunction in previously established vasculature at the invasive edge of GBM is still unknown. In this study, we aimed to determine if GBM paracrine signaling is sufficient to induce BBB dysfunction and identify changes in the tight junctions of the BBB. An in vivo U-87 MG xenograft model and an in vitro primary brain endothelial cell BBB model were established for barrier dysfunction monitoring. Immunofluorescent staining revealed significantly higher claudin-1 expression and significantly lower claudin-5 expression in the tumor vs. normal brain tissue of our in vivo model (p < 0.01). Additionally, claudin-1 expression co-localized with brain cell type markers for endothelium, pericytes, and microglia. In vitro exposure of brain microvascular endothelial cells to GBM conditioned media resulted in a significant decrease in transendothelial electrical resistance as well as delocalization of claudin-5 from the tight junctions. These results suggest GBM cells secrete factors capable of inducing changes in the tight junction proteins of the BBB and decreasing barrier integrity. Future studies will aim to identify the mechanism in which these changes occur.
Collapse
Affiliation(s)
- Brittany Schweiger
- Department of Biological Systems Engineering, University of Nebraska, 4240 Fair St., 268 Morrison Center, Lincoln, NE, 68583, USA
| | - Forrest M Kievit
- Department of Biological Systems Engineering, University of Nebraska, 4240 Fair St., 268 Morrison Center, Lincoln, NE, 68583, USA.
| |
Collapse
|
2
|
García-García CA, Cruz-Gregorio A, Pedraza-Chaverri J, Montaño LF, Rendón-Huerta EP. NDMA enhances claudin-1 and -6 expression viaCYP2E1/ROS in AGS cells. Toxicol In Vitro 2025; 102:105952. [PMID: 39395750 DOI: 10.1016/j.tiv.2024.105952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Carcinogenic N-nitroso compounds, especially N-nitroso dimethylamine, increase the risk of gastric cancer development. Cytochrome P450-2E1 metabolizes this compound, thus generating an oxidant microenvironment. We aimed to evaluate in gastric adenocarcinoma cells if its effect on CYP2E1 and ROS affects signaling pathways associated with gastric cancer oncogenesis. The impact of N- nitroso dimethylamine upon CYP2E1 and ROS activation/secretion was evaluated by the DCFDA assay protocol, TER measurements, Stat3, pSTAT3, ERK1/2, and pERK1/2 expression, claudins-1 and -6 expression, and finally mRNA values of IL-1β IL-6, IL-8 and TNFα. Our results showed that exposure to N- N-nitroso dimethylamine disrupts the regulation of Stat3 and Erk1/2, alters the expression of claudin-1 and claudin-6 tight junction proteins, and increases the secretion of pro-inflammatory cytokines. These alterations induce a continuous local inflammatory process, an event identified as a gastric cancer promoter. In summary, N-nitroso dimethylamine can disrupt cell mechanisms associated with gastric cancer oncogenesis.
Collapse
Affiliation(s)
| | - Alfredo Cruz-Gregorio
- Departamento de Fisiología, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico
| | | | - Luis F Montaño
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico
| | - Erika P Rendón-Huerta
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico.
| |
Collapse
|
3
|
Jeon H, Sterpi M, Mo C, Bteich F. Claudins: from gatekeepers of epithelial integrity to potential targets in hepato-pancreato-biliary cancers. Front Oncol 2024; 14:1454882. [PMID: 39391254 PMCID: PMC11464258 DOI: 10.3389/fonc.2024.1454882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/22/2024] [Indexed: 10/12/2024] Open
Abstract
Claudins, a family of tetraspan transmembrane proteins, are critical to the integrity of tight junctions in epithelia and endothelia, influencing cellular processes such as development, differentiation, and apoptosis. Abnormal claudin expression is associated with various malignancies, particularly affecting tissue architecture and potentially facilitating tumor invasion and metastasis. In this comprehensive review, we explore the multifaceted functions of claudins: their expression, specific roles in cancer with a focus on hepato-pancreato-biliary malignancies and highlight their potential as therapeutic targets. We discuss current claudin-targeted therapies, including monoclonal antibodies, antibody-drug conjugates, bispecific T-cell engager and chimeric antigen receptor T-cell therapies. These approaches show promise in pre-clinical and clinical studies, particularly in hepato-pancreato-biliary cancers with large unmet needs. Despite these early signs of efficacy, challenges remain in effectively targeting these proteins due to their structural resemblance and overlapping functions.
Collapse
Affiliation(s)
- Hyein Jeon
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| | - Michelle Sterpi
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| | - Christiana Mo
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| | - Fernand Bteich
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
4
|
Romero-Estrada JH, Montaño LF, Rendón-Huerta EP. Binding of YY1/CREB to an Enhancer Region Triggers Claudin 6 Expression in H. pylori LPS-Stimulated AGS Cells. Int J Mol Sci 2023; 24:13974. [PMID: 37762277 PMCID: PMC10531490 DOI: 10.3390/ijms241813974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Aberrant expression of the tight junction protein claudin 6 (CLDN6) is a hallmark of gastric cancer progression. Its expression is regulated by the cAMP response element-binding protein (CREB). In gastric cancer induced by Helicobacter pylori (H. pylori) there is no information regarding what transcription factors induce/upregulate the expression of CLDN6. We aimed to identify whether CREB and Yin Yang1 (YY1) regulate the expression of CLDN6 and the site where they bind to the promoter sequence. Bioinformatics analysis, H. pylori lipopolysaccharide (LPS), YY1 and CREB silencing, Western blot, luciferase assays, and chromatin immunoprecipitation experiments were performed using the stomach gastric adenocarcinoma cell line AGS. A gen reporter assay suggested that the initial 2000 bp contains the regulatory sequence associated with CLDN6 transcription; the luciferase assay demonstrated three different regions with transcriptional activity, but the -901 to -1421 bp region displayed the maximal transcriptional activity in response to LPS. Fragment 1279-1421 showed CREB and, surprisingly, YY1 occupancy. Sequential Chromatin Immunoprecipitation (ChIP) experiments confirmed that YY1 and CREB interact in the 1279-1421 region. Our results suggest that CLDN6 expression is regulated by the binding of YY1 and CREB in the 901-1421 enhancer, in which a non-described interaction of YY1 with CREB was established in the 1279-1421 region.
Collapse
Affiliation(s)
| | - Luis F. Montaño
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, Ciudad Universitaria, Ciudad de México 04510, Mexico;
| | - Erika P. Rendón-Huerta
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, Ciudad Universitaria, Ciudad de México 04510, Mexico;
| |
Collapse
|
5
|
Simon AG, Lyu SI, Laible M, Wöll S, Türeci Ö, Şahin U, Alakus H, Fahrig L, Zander T, Buettner R, Bruns CJ, Schroeder W, Gebauer F, Quaas A. The tight junction protein claudin 6 is a potential target for patient-individualized treatment in esophageal and gastric adenocarcinoma and is associated with poor prognosis. J Transl Med 2023; 21:552. [PMID: 37592303 PMCID: PMC10436499 DOI: 10.1186/s12967-023-04433-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND The prognosis of esophageal adenocarcinoma (EAC) and gastric adenocarcinoma (GAC) remains poor, and new therapeutic approaches are urgently needed. Claudin 6 (CLDN6) is an oncofetal antigen that is largely absent in healthy tissues and upregulated in several cancers, making it a promising therapeutical target. In this study, the expression of CLDN6 was assessed in an large Caucasian EAC and GAC cohort. METHODS RNA-Seq data from 89 EACs and 371 GACs were obtained from The Cancer Genome Atlas project and EAC/GAC cases were stratified by CLDN6 mRNA expression based on a survival-associated cutoff. For groups with CLDN6 expression above or below this cutoff, differential gene expression analyses were performed using DESeq, and dysregulated biological pathways were identified using the Enrichr tool. Additionally, CLDN6 protein expression was assessed in more than 800 EACs and almost 600 GACs using a CLDN6-specific immunohistochemical antibody (clone 58-4B-2) that is currently used in Phase I/II trials to identify patients with CLDN6-positive tumors (NCT05262530; NCT04503278). The expression of CLDN6 was also correlated with histopathological parameters and overall survival (OS). RESULTS EACs and GACs with high CLDN6 mRNA levels displayed an overexpression of pathways regulating the cell cycle, DNA replication, and receptor / extracellular matrix interactions. CLDN6 protein expression was associated with shorter OS in EAC and GAC, both in treatment-naïve subgroups and cohorts receiving neoadjuvant therapy. In multivariate analysis, CLDN6 protein expression was an independent adverse prognostic factor in EAC associated with a shorter OS (HR: 1.75; p = 0.01) and GAC (HR: 2.74; p = 0.028). CONCLUSIONS High expression of CLDN6 mRNA is associated with the dysregulation of distinct biological pathways regulating cell growth, proliferation, and cell-matrix interactions. Clinically, the expression of CLDN6 protein is a valuable adverse prognostic marker in EAC and GAC.
Collapse
Affiliation(s)
- Adrian Georg Simon
- Institute of Pathology, University Hospital Cologne, Medical Faculty, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Su Ir Lyu
- Institute of Pathology, University Hospital Cologne, Medical Faculty, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | | | | | | | | | - Hakan Alakus
- Department of General, Visceral and Cancer Surgery, University Hospital Cologne, Medical Faculty, University of Cologne, Cologne, Germany
| | - Luca Fahrig
- Department of General, Visceral and Cancer Surgery, University Hospital Cologne, Medical Faculty, University of Cologne, Cologne, Germany
| | - Thomas Zander
- Department of Internal Medicine I, University Hospital Cologne, Medical Faculty, University of Cologne, Cologne, Germany
| | - Reinhard Buettner
- Institute of Pathology, University Hospital Cologne, Medical Faculty, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Christiane Josephine Bruns
- Department of General, Visceral and Cancer Surgery, University Hospital Cologne, Medical Faculty, University of Cologne, Cologne, Germany
| | - Wolfgang Schroeder
- Department of General, Visceral and Cancer Surgery, University Hospital Cologne, Medical Faculty, University of Cologne, Cologne, Germany
| | - Florian Gebauer
- Department of General, Visceral and Cancer Surgery, University Hospital Cologne, Medical Faculty, University of Cologne, Cologne, Germany
| | - Alexander Quaas
- Institute of Pathology, University Hospital Cologne, Medical Faculty, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| |
Collapse
|
6
|
So BR, Kim S, Jang SH, Kim MJ, Lee JJ, Kim SR, Jung SK. Dietary protocatechuic acid redistributes tight junction proteins by targeting Rho-associated protein kinase to improve intestinal barrier function. Food Funct 2023; 14:4777-4791. [PMID: 37128780 DOI: 10.1039/d3fo00605k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Inflammatory bowel disease (IBD) is continuously increasing globally and caused by intestinal barrier dysfunction. Although protocatechuic acid (PCA) has a protective effect on colitis, the molecular mechanisms underlying its contribution to intestinal barrier function remain unknown. Transepithelial electrical resistance (TEER) and FITC-dextran permeability measurements reveled that PCA suppresses lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-α-induced increase in intestinal permeability; zonula occludens (ZO)-1 and claudin-2 redistribution was also suppressed in the epithelial cell membranes of differentiated Caco-2 cells. PCA was found to directly bind Rho-associated coiled-coil containing protein kinase (ROCK), subsequently suppressing myosin light chain (MLC) phosphorylation. Notably, PCA binds ROCK to a similar degree as Y27632, a selective ROCK inhibitor. Orally administering PCA (5 or 25 mg per kg per day) to C57BL/6 mice alleviated the 3% dextran sulfate sodium (DSS)-induced colitis symptoms including reduced colon length, disrupted intestinal barrier structure, and increased proinflammatory cytokines expressions, such as interleukin (IL)-1β, TNF-α, and IL-6. Furthermore, orally administering PCA suppressed DSS-induced ZO-1 and claudin-2/4 redistribution in mice colon membrane fractions. Therefore, PCA may serve as a promising nutraceutical to improve gut health and alleviate IBD by maintaining intestinal barrier function in vitro and in vivo.
Collapse
Affiliation(s)
- Bo Ram So
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - San Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Se Hyeon Jang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Min Jeong Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jeong Jae Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
7
|
Nehme Z, Roehlen N, Dhawan P, Baumert TF. Tight Junction Protein Signaling and Cancer Biology. Cells 2023; 12:243. [PMID: 36672179 PMCID: PMC9857217 DOI: 10.3390/cells12020243] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Tight junctions (TJs) are intercellular protein complexes that preserve tissue homeostasis and integrity through the control of paracellular permeability and cell polarity. Recent findings have revealed the functional role of TJ proteins outside TJs and beyond their classical cellular functions as selective gatekeepers. This is illustrated by the dysregulation in TJ protein expression levels in response to external and intracellular stimuli, notably during tumorigenesis. A large body of knowledge has uncovered the well-established functional role of TJ proteins in cancer pathogenesis. Mechanistically, TJ proteins act as bidirectional signaling hubs that connect the extracellular compartment to the intracellular compartment. By modulating key signaling pathways, TJ proteins are crucial players in the regulation of cell proliferation, migration, and differentiation, all of which being essential cancer hallmarks crucial for tumor growth and metastasis. TJ proteins also promote the acquisition of stem cell phenotypes in cancer cells. These findings highlight their contribution to carcinogenesis and therapeutic resistance. Moreover, recent preclinical and clinical studies have used TJ proteins as therapeutic targets or prognostic markers. This review summarizes the functional role of TJ proteins in cancer biology and their impact for novel strategies to prevent and treat cancer.
Collapse
Affiliation(s)
- Zeina Nehme
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
| | - Natascha Roehlen
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, 68198 NE, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, 68105 NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, 68105-1850 NE, USA
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
- Institut Hospitalo-Universitaire (IHU), Pôle Hépato-Digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Institut Universitaire de France, 75006 Paris, France
| |
Collapse
|
8
|
Wang DW, Zhang WH, Danil G, Yang K, Hu JK. The role and mechanism of claudins in cancer. Front Oncol 2022; 12:1051497. [PMID: 36620607 PMCID: PMC9818346 DOI: 10.3389/fonc.2022.1051497] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Claudins are a tetraspan membrane protein multigene family that plays a structural and functional role in constructing tight junctions. Claudins perform crucial roles in maintaining cell polarity in epithelial and endothelial cell sheets and controlling paracellular permeability. In the last two decades, increasing evidence indicates that claudin proteins play a major role in controlling paracellular permeability and signaling inside cells. Several types of claudins are dysregulated in various cancers. Depending on where the tumor originated, claudin overexpression or underexpression has been shown to regulate cell proliferation, cell growth, metabolism, metastasis and cell stemness. Epithelial-to-mesenchymal transition is one of the most important functions of claudin proteins in disease progression. However, the exact molecular mechanisms and signaling pathways that explain why claudin proteins are so important to tumorigenesis and progression have not been determined. In addition, claudins are currently being investigated as possible diagnostic and treatment targets. Here, we discuss how claudin-related signaling pathways affect tumorigenesis, tumor progression, and treatment sensitivity.
Collapse
Affiliation(s)
- De-Wen Wang
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Han Zhang
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Galiullin Danil
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China,Central Research Laboratory, Bashkir State Medical University, Ufa, Russia
| | - Kun Yang
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jian-Kun Hu
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Jian-Kun Hu,
| |
Collapse
|
9
|
Chromosomally Unstable Gastric Cancers Overexpressing Claudin-6 Disclose Cross-Talk between HNF1A and HNF4A, and Upregulated Cholesterol Metabolism. Int J Mol Sci 2022; 23:ijms232213977. [PMID: 36430456 PMCID: PMC9694805 DOI: 10.3390/ijms232213977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/31/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Abnormally increased expression of claudin-6 in gastric cancer is considered a prognostic marker of the chromosomal unstable molecular subtype. However, a detailed molecular profile analysis of differentially expressed genes and affected pathways associated with claudin-6 increased (Cldn6high) expression has not been assessed. (2) The TCGA Stomach Adenocarcinoma Pan-Cancer Atlas Data was evaluated using Cytoscape's Gene Mania, MCODE, and Cytohubba bioinformatic software. (3) 96.88% of Cldn6high gastric cancer tumors belonging to the chromosomal unstable molecular subtype are associated with a worse prognosis. Cldn6expression coincided with higher mutations in TP53, MIEN1, STARD3, PGAP3, and CCNE1 genes compared to Cldn6low expression. In Cldn6high cancers, 1316 genes were highly expressed. Cholesterol metabolism was the most affected pathway as APOA1, APOA2, APOH, APOC2, APOC3, APOB-100, LDL receptor-related protein 1/2, Sterol O-acyltransferase, STARD3, MAGEA-2, -3, -4, -6, -9B, and -12 genes were overexpressed in Cldn6high gastric cancers; interestingly, APOA2 and MAGEA9b were identified as top hub genes. Functional enrichment of DEGs linked HNF-4α and HNF-1α genes as highly expressed in Cldn6high gastric cancer. (4) Our results suggest that APOA2 and MAGEA9b could be considered as prognostic markers for Cldn6high gastric cancers.
Collapse
|
10
|
Claudin-6 increases SNAI1, NANOG and SOX2 gene expression in human gastric adenocarcinoma AGS cells. Mol Biol Rep 2022; 49:11663-11674. [PMID: 36169897 DOI: 10.1007/s11033-022-07976-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Gastric cancer is a heterogeneous disease associated to deregulated gastric epithelia tight junction barrier function and di novo expression of claudin-6; these changes are associated with epithelial-mesenchymal transition, enhanced invasiveness, metastatic progression, resistance to chemotherapy, and poor prognosis. Gastric cancer stem cells represent a rare population of cells within the tumor implicated in tumor growth and higher tumorigenic capacity. The possible relation between claudin-6 expression and the expression of some markers associated to epithelial mesenchymal transition and cancer stem cells in gastric cancer cells have never been explored. METHODS AND RESULTS CD44, CD24, Twist, Villin, DCLK1, claudin-6, NANOG, E-Cadherin, SOX2, and SNAI1 expression was evaluated by immunofluorescence and cytofluorometry in wild type and Claudin-6 transfected AGS cells. Cell migration assays were also performed. Differentially expressed genes and biological processes analysis was performed to determine gene preponderance. The results showed that claudin-6 overexpression enriched the CD44 + /CD24- subpopulation with an overall increase in the expression and the number of CD44 + cells. A significant increase in NANOG, SOX2 and SNAI1 expression and enhanced cell migration was observed in claudin-6 transfected cells. Transcriptome analysis revealed 271 genes involved in enhanced biological processes with only 31 with a significantly p value; thirteen of those genes are closely associated to epithelial mesenchymal transition processes and folding and unfolding processes of proteins in the endoplasmic reticulum. CONCLUSIONS The pro-tumorigenic effect of claudin-6 in gastric cancer could be associated to dedifferentiation of epithelial cells and an increase in di novo cancer stem cell genesis.
Collapse
|
11
|
Peng W, Wu P, Yuan M, Yuan B, Zhu L, Zhou J, Li Q. Potential Molecular Mechanisms of Recurrent and Progressive Meningiomas: A Review of the Latest Literature. Front Oncol 2022; 12:850463. [PMID: 35712491 PMCID: PMC9196588 DOI: 10.3389/fonc.2022.850463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Meningiomas, the most frequent primary intracranial tumors of the central nervous system in adults, originate from the meninges and meningeal spaces. Surgical resection and adjuvant radiation are considered the preferred treatment options. Although most meningiomas are benign and slow-growing, some patients suffer from tumor recurrence and disease progression, eventually resulting in poorer clinical outcomes, including malignant transformation and death. It is thus crucial to identify these "high-risk" tumors early; this requires an in-depth understanding of the molecular and genetic alterations, thereby providing a theoretical foundation for establishing personalized and precise treatment in the future. Here, we review the most up-to-date knowledge of the cellular biological alterations involved in the progression of meningiomas, including cell proliferation, neo-angiogenesis, inhibition of apoptosis, and immunogenicity. Focused genetic alterations, including chromosomal abnormalities and DNA methylation patterns, are summarized and discussed in detail. We also present latest therapeutic targets and clinical trials for meningiomas' treatment. A further understanding of cellular biological and genetic alterations will provide new prospects for the accurate screening and treatment of recurrent and progressive meningiomas.
Collapse
Affiliation(s)
- Wenjie Peng
- Department of Pediatrics, Army Medical Center, Army Medical University, Chongqing, China
| | - Pei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Minghao Yuan
- Department of Neurology, Chongqing Medical University, Chongqing, China
| | - Bo Yuan
- Department of Nephrology, The Dazu District People’s Hospital, Chongqing, China
| | - Lian Zhu
- Department of Pediatrics, Army Medical Center, Army Medical University, Chongqing, China
| | - Jiesong Zhou
- Department of Plastic Surgery, Changhai Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Qian Li
- Department of Pediatrics, Army Medical Center, Army Medical University, Chongqing, China
| |
Collapse
|
12
|
Qu H, Jin Q, Quan C. CLDN6: From Traditional Barrier Function to Emerging Roles in Cancers. Int J Mol Sci 2021; 22:ijms222413416. [PMID: 34948213 PMCID: PMC8705207 DOI: 10.3390/ijms222413416] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 02/07/2023] Open
Abstract
Claudins (CLDNs) are the most important tight junction proteins, which are mainly expressed in endothelial cells or epithelial cells in a tissue-specific manner. As a member of the CLDNs family, CLDN6 is highly expressed in fetal tissues such as the stomach, pancreas, lung, and kidney, but is not expressed in corresponding adult tissues. The expression of CLDN6 is regulated by a variety of factors, including but not limited to stimuli and transcription factors, DNA methylation, and post-translational modifications. CLDN6 has been found to have a key role in the formation of barriers, especially the lung epithelial barrier and the epidermal permeability barrier (EPB). Importantly, the roles of CLDN6 in cancers have gained focus and are being investigated in recent years. Strong evidence indicates that the altered expression of CLDN6 is linked to the development of various cancers. Malignant phenotypes of tumors affected by CLDN6 include proliferation and apoptosis, migration and invasion, and drug resistance, which are regulated by CLDN6-mediated key signaling pathways. Given the important role in tumors and its low or no expression in normal tissues, CLDN6 is an ideal target for tumor therapy. This review aims to provide an overview of the structure and regulation of CLDN6, and its traditional barrier function, with a special emphasis on its emerging roles in cancers, including its impact on the malignant phenotypes, signal-modulating effects, the prognosis of tumor patients, and clinical applications in cancers.
Collapse
|
13
|
Čužić S, Antolić M, Ognjenović A, Stupin-Polančec D, Petrinić Grba A, Hrvačić B, Dominis Kramarić M, Musladin S, Požgaj L, Zlatar I, Polančec D, Aralica G, Banić M, Urek M, Mijandrušić Sinčić B, Čubranić A, Glojnarić I, Bosnar M, Eraković Haber V. Claudins: Beyond Tight Junctions in Human IBD and Murine Models. Front Pharmacol 2021; 12:682614. [PMID: 34867313 PMCID: PMC8635807 DOI: 10.3389/fphar.2021.682614] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Claudins are transmembrane proteins constituting one of three tight junction protein families. In patients with inflammatory bowel disease (IBD), disease activity–dependent changes in expression of certain claudins have been noted, thus making certain claudin family members potential therapy targets. A study was undertaken with the aim of exploring expression of claudins in human disease and two different animal models of IBD: dextrane sulfate sodium–induced colitis and adoptive transfer model of colitis. The expression of sealing claudin-1, claudin-3, claudin-4, and claudin-8, and pore-forming claudin-2 in humans and rodents has been evaluated by immunohistochemistry and quantitative polymerase chain reaction. Claudins were expressed by epithelial and cells of mesodermal origin and were found to be situated at the membrane, within the cytoplasm, or within the nuclei. Claudin expression by human mononuclear cells isolated from lamina propria has been confirmed by Western blot and flow cytometry. The claudin expression pattern in uninflamed and inflamed colon varied between species and murine strains. In IBD and both animal models, diverse alterations in claudin expression by epithelial and inflammatory cells were recorded. Tissue mRNA levels for each studied claudin reflected changes within cell lineage and, at the same time, mirrored the ratio between various cell types. Based on the results of the study, it can be concluded that 1) claudins are not expressed exclusively by epithelial cells, but by certain types of cells of mesodermal origin as well; 2) changes in the claudin mRNA level should be interpreted in the context of overall tissue alterations; and 3) both IBD animal models that were analyzed can be used for investigating claudins as a therapy target, respecting their similarities and differences highlighted in this study.
Collapse
Affiliation(s)
- Snježana Čužić
- Fidelta, Zagreb, Croatia
- *Correspondence: Snježana Čužić, ; Vesna Eraković Haber,
| | | | | | | | | | | | | | | | | | | | | | - Gorana Aralica
- School of Medicine, University Zagreb, Zagreb, Croatia
- Department of Pathology Clinical Hospital Dubrava, Zagreb, Croatia
| | - Marko Banić
- School of Medicine, University Zagreb, Zagreb, Croatia
- Department of Internal Medicine Clinical Hospital Dubrava, Zagreb, Croatia
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marija Urek
- School of Medicine, University Zagreb, Zagreb, Croatia
- Department of Pathology Clinical Hospital Dubrava, Zagreb, Croatia
| | - Brankica Mijandrušić Sinčić
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Internal Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Aleksandar Čubranić
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Internal Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | | | | | - Vesna Eraković Haber
- Fidelta, Zagreb, Croatia
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- *Correspondence: Snježana Čužić, ; Vesna Eraković Haber,
| |
Collapse
|
14
|
Kozieł MJ, Ziaja M, Piastowska-Ciesielska AW. Intestinal Barrier, Claudins and Mycotoxins. Toxins (Basel) 2021; 13:758. [PMID: 34822542 PMCID: PMC8622050 DOI: 10.3390/toxins13110758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023] Open
Abstract
The intestinal barrier is the main barrier against all of the substances that enter the body. Proper functioning of this barrier guarantees maintained balance in the organism. Mycotoxins are toxic, secondary fungi metabolites, that have a negative impact both on human and animal health. It was postulated that various mycotoxins may affect homeostasis by disturbing the intestinal barrier. Claudins are proteins that are involved in creating tight junctions between epithelial cells. A growing body of evidence underlines their role in molecular response to mycotoxin-induced cytotoxicity. This review summarizes the information connected with claudins, their association with an intestinal barrier, physiological conditions in general, and with gastrointestinal cancers. Moreover, this review also includes information about the changes in claudin expression upon exposition to various mycotoxins.
Collapse
|
15
|
Zhang C, Guo C, Li Y, Liu K, Zhao Q, Ouyang L. Identification of Claudin-6 as a Molecular Biomarker in Pan-Cancer Through Multiple Omics Integrative Analysis. Front Cell Dev Biol 2021; 9:726656. [PMID: 34409042 PMCID: PMC8365468 DOI: 10.3389/fcell.2021.726656] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Claudin-6 (CLDN6) is one of the 27 family members of claudins and majorly involved in the tight junction and cell-to-cell adhesion of epithelial cell sheets, playing a significant role in cancer initiation and progression. To provide a more systematic and comprehensive dimension of identifying the diverse significance of CLDN6 in a variety of malignant tumors, we explored CLDN6 through multiple omics data integrative analysis, including gene expression level in pan-cancer and comparison of CLDN6 expression in different molecular subtypes and immune subtypes of pan-cancer, targeted protein, biological functions, molecular signatures, diagnostic value, and prognostic value in pan-cancer. Furthermore, we focused on uterine corpus endometrial carcinoma (UCEC) and further investigated CLDN6 from the perspective of the correlations with clinical characteristics, prognosis in different clinical subgroups, co-expression genes, and differentially expressed genes (DEGs), basing on discussing the validation of its established monoclonal antibody by immunohistochemical staining and semi-quantification reported in the previous study. As a result, CLDN6 expression differs significantly not only in most cancers but also in different molecular and immune subtypes of cancers. Besides, high accuracy in predicting cancers and notable correlations with prognosis of certain cancers suggest that CLDN6 might be a potential diagnostic and prognostic biomarker of cancers. Additionally, CLDN6 is identified to be significantly correlated with age, stage, weight, histological type, histologic grade, and menopause status in UCEC. Moreover, CLDN6 high expression can lead to a worse overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) in UCEC, especially in different clinical subgroups of UCEC. Taken together, CLDN6 may be a remarkable molecular biomarker for diagnosis and prognosis in pan-cancer and an independent prognostic risk factor of UCEC, presenting to be a promising molecular target for cancer therapy.
Collapse
Affiliation(s)
- Chiyuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cuishan Guo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yan Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Ling Ouyang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Du H, Yang X, Fan J, Du X. Claudin 6: Therapeutic prospects for tumours, and mechanisms of expression and regulation (Review). Mol Med Rep 2021; 24:677. [PMID: 34296304 PMCID: PMC8335585 DOI: 10.3892/mmr.2021.12316] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
Tight junctions (TJs) are an important component of cell connectivity; they maintain cell polarity, permeability and adhesion, and participate in the regulation of cell proliferation and differentiation. The claudin (CLDN) family is integral to TJs, and CLDN6 is an important member of this family. Abnormal expression of CLDN6 can destroy the integrity of TJs through various mechanisms and can serve multiple roles in the occurrence and development of tumours. CLDN6 is widely expressed in various tumours but rarely expressed in healthy adult tissues. The aim of this review is to critically examine the recent literature on CLDN6, including its structure, expression in different tumours, regulatory mechanisms and therapeutic prospects. Although some conclusions are controversial, in certain tumours, such as liver, ovarian, endometrial and oesophageal cancer, and atypical teratoid/rhabdoid tumours, research consistently shows that CLDN6 is expressed in tumour tissues but is not expressed or is expressed at low levels in surrounding tissues. In these tumours, CLDN6 has potential as a carcinoembryonic antigen and a therapeutic target.
Collapse
Affiliation(s)
- Huan Du
- Department of Oncology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Xiyue Yang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Jinjia Fan
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiaobo Du
- Department of Oncology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| |
Collapse
|
17
|
Li J. Context-Dependent Roles of Claudins in Tumorigenesis. Front Oncol 2021; 11:676781. [PMID: 34354941 PMCID: PMC8329526 DOI: 10.3389/fonc.2021.676781] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
The barrier and fence functions of the claudin protein family are fundamental to tissue integrity and human health. Increasing evidence has linked claudins to signal transduction and tumorigenesis. The expression of claudins is frequently dysregulated in the context of neoplastic transformation. Studies have uncovered that claudins engage in nearly all aspects of tumor biology and steps of tumor development, suggesting their promise as targets for treatment or biomarkers for diagnosis and prognosis. However, claudins can be either tumor promoters or tumor suppressors depending on the context, which emphasizes the importance of taking various factors, including organ type, environmental context and genetic confounders, into account when studying the biological functions and targeting of claudins in cancer. This review discusses the complicated roles and intrinsic and extrinsic determinants of the context-specific effects of claudins in cancer.
Collapse
Affiliation(s)
- Jian Li
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| |
Collapse
|
18
|
Yang A, Yang X, Wang J, Wang X, Wu H, Fan L, Li H, Li J. Effects of the Tight Junction Protein CLDN6 on Cell Migration and Invasion in High-Grade Meningioma. World Neurosurg 2021; 151:e208-e216. [PMID: 33862296 DOI: 10.1016/j.wneu.2021.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/04/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Meningioma is a common tumor of the central nervous system, and malignant meningioma is highly aggressive and frequently recurs after surgical resection. Claudin 6 (CLDN6) is involved in cell proliferation, migration, and invasion and plays a role in maintaining tight junctions between cells and obstructing the movement of cells to neighboring tissues. METHODS In the present study, we evaluated the effect of tight junction protein CLDN6 expression levels on meningioma invasiveness using silencing and overexpression constructs in both in vitro and in vivo models. The expression of CLDN6 at the mRNA and protein levels was measured using quantitative reverse transcription polymerase chain reaction and Western blot assays. RESULTS We found that CLDN6 was expressed at higher levels in normal meningeal tissue and cell samples. Next, vectors with silenced and overexpressed CLDN6 were successfully established, and the expression of CLDN6 mRNA and protein in the IOMM-Lee and CH157-MN cell lines was downregulated after transfection with siRNA-CLDN6 and upregulated by transfection of the entire CLDN6 sequence vector. An in vitro assay revealed that abrogation of CLDN6 expression added to the capacity for tumor migration and invasion relative to the overexpression of CLDN6. In addition to the in vitro evidence, we observed a significant increase in tumor growth and invasion-associated gene expression, including matrix metalloproteinase-2, matrix metalloproteinase-9, vimentin, and N-cadherin, after silencing CLDN6 expression in vivo. CONCLUSIONS CLDN6 might play an important role in meningioma migration and invasion and, thus, might serve as a novel diagnostic and/or prognostic biomarker and as a potential therapeutic target.
Collapse
Affiliation(s)
- Anqiang Yang
- Department of Neurosurgery, The First People's Hospital of Yibin, Yibin, China
| | - Xiaobin Yang
- Department of Neurosurgery, The First People's Hospital of Yibin, Yibin, China
| | - Jianqiu Wang
- Department of Radiology, The First People's Hospital of Yibin, Yibin, China
| | - Xiaojun Wang
- Department of Anesthesiology, The First People's Hospital of Yibin, Yibin, China
| | - Hegang Wu
- Department of Pathology, The First People's Hospital of Yibin, Yibin, China
| | - Li Fan
- Department of Neurosurgery, The First People's Hospital of Yibin, Yibin, China
| | - Hao Li
- Department of Neurology, The First People's Hospital of Yibin, Yibin, China
| | - Jiangtao Li
- Central Laboratory, The First People's Hospital of Yibin, Yibin, China.
| |
Collapse
|
19
|
Lv Q, Xia Q, Li A, Wang Z. The Potential Role of IL1RAP on Tumor Microenvironment-Related Inflammatory Factors in Stomach Adenocarcinoma. Technol Cancer Res Treat 2021; 20:1533033821995282. [PMID: 33602046 PMCID: PMC7897808 DOI: 10.1177/1533033821995282] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study was performed to investigate the role of interleukin-1 receptor accessory protein (IL1RAP) in stomach carcinoma in vitro and in vivo, determine whether IL1RAP knockdown could regulate the development of stomach carcinoma, and elucidate the relationship between IL1RAP knockdown and inflammation by tumor microenvironment-related inflammatory factors in stomach carcinoma. We first used TCGA and GEPIA systems to predict the potential function of IL1RAP. Second, western blot and RT-PCR were used to analyze the expression, or mRNA level, of IL1RAP at different tissue or cell lines. Third, the occurrence and development of stomach carcinoma in vitro and in vivo were observed by using IL1RAP knockdown lentivirus. Finally, the inflammation of stomach carcinoma in vitro and in vivo was observed. Results show that in GEPIA and TCGA systems, IL1RAP expression in STAD tumor tissue was higher than normal, and high expression of IL1RAP in STAD patients had a worse prognostic outcome. Besides, GSEA shown IL1RAP was negative correlation of apopopsis, TLR4 and NF-κB signaling pathway. We also predicted that IL1RAP may related to IL-1 s, IL-33, and IL-36 s in STAD. The IL1RAP expression and mRNA level in tumor, or MGC803, cells were increased. Furthermore, IL1RAP knockdown by lentivirus could inhibit stomach carcinoma development in vitro and in vivo through weakening tumor cell proliferation, migration, invasion, therefore reducing tumor volume, weight, and biomarker levels, and increasing apoptotic level. Finally, we found IL1RAP knockdown could increase inflammation of tumor microenvironment-related inflammatory factors of stomach carcinoma, in vitro and in vivo. Our study demonstrates that IL1RAP is possibly able to regulate inflammation and apoptosis in stomach carcinoma. Furthermore, TLR4, NF-κB, IL-1 s, IL-33, and IL-36 s maybe the downstream target factor of IL1RAP in inflammation. These results may provide a new strategy for stomach carcinoma development by regulating inflammation.
Collapse
Affiliation(s)
- Qing Lv
- Department of Gastrointestinal Surgery, Wuhan Union Hospital, Wuhan, Hubei, China
| | - Qinghua Xia
- Department of Gastrointestinal Surgery, Wuhan Union Hospital, Wuhan, Hubei, China
| | - Anshu Li
- Department of Gastrointestinal Surgery, Wuhan Union Hospital, Wuhan, Hubei, China
| | - Zhiyong Wang
- Department of Gastrointestinal Surgery, Wuhan Union Hospital, Wuhan, Hubei, China
| |
Collapse
|
20
|
Role of tight junctions in the epithelial-to-mesenchymal transition of cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183503. [PMID: 33189716 DOI: 10.1016/j.bbamem.2020.183503] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is an essential step in cancer progression. Epithelial cells possess several types of cell-cell junctions, and tight junctions are known to play important roles in maintaining the epithelial program. EMT is characterized by a loss of epithelial markers, including E-cadherin and tight junction proteins. Somewhat surprisingly, the evidence is accumulating that upregulated expression of tight junction proteins plays an important role in the EMT of cancer cells. Tight junctions have distinct tissue-specific and cancer-specific regulatory mechanisms, enabling them to play different roles in EMT. Tight junctions and related signaling pathways are attractive targets for cancer treatments; signal transduction inhibitors and monoclonal antibodies for tight junction proteins may be used to suppress EMT, invasion, and metastasis. Here we review the role of bicellular and tricellular tight junction proteins during EMT. Further investigation of regulatory mechanisms of tight junctions during EMT in cancer cells will inform the development of biomarkers for predicting prognosis as well as novel therapies.
Collapse
|
21
|
Zhao A, Qi Y, Liu K. CLDN3 expression and function in pregnancy-induced hypertension. Exp Ther Med 2020; 20:3798-3806. [PMID: 32855729 PMCID: PMC7444375 DOI: 10.3892/etm.2020.9084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 06/20/2019] [Indexed: 12/11/2022] Open
Abstract
This aim of the present study was to investigate the expression and function of claudin 3 (CLDN3) in pregnancy-induced hypertension. The mRNA expression levels of CLDN3 in the placental tissue and peripheral blood of patients with pregnancy-induced hypertension were measured using reverse transcription-quantitative PCR. Human trophoblast HTR8/SVneo cells overexpressing CLDN3 were generated using a lentiviral vector. Cell Counting kit-8 (CCK-8) assay, flow cytometry, Transwell chamber assays, confocal laser scanning microscopy and western blot analysis were performed to detect cell proliferation, invasion, migration and apoptosis, in addition to matrix metalloproteinase (MMP) expression and ERK1/2 phosphorylation. The mRNA expression levels of CLDN3 were significantly reduced in the placental tissues and peripheral blood samples of patients with pregnancy-induced hypertension compared with healthy pregnant controls. CLDN3 overexpression significantly increased HTR8/SVneo cell proliferation, invasion and migration whilst reducing apoptosis. HTR8/SVneo cells overexpressing CLDN3 also exhibited increased myofiber levels, increased MMP-2 and MMP-9 expression and increased ERK1/2 signaling activity. CLDN3 downregulation may be associated with the pathogenesis of pregnancy-induced hypertension. In conclusion, CLDN3 promotes the proliferative and invasive capabilities of human trophoblast cells, with the underlying mechanisms possibly involving upregulation of MMP expression via the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Aixin Zhao
- Department of Obstetrics, Laiwu Maternal and Child Health Hospital, Laiwu, Shandong 271199, P.R. China
| | - Yunfang Qi
- Department of Obstetrics, Laiwu Maternal and Child Health Hospital, Laiwu, Shandong 271199, P.R. China
| | - Kun Liu
- Department of Obstetrics, Laiwu Maternal and Child Health Hospital, Laiwu, Shandong 271199, P.R. China
| |
Collapse
|
22
|
Jia Y, Guo Y, Jin Q, Qu H, Qi D, Song P, Zhang X, Wang X, Xu W, Dong Y, Liang Y, Quan C. A SUMOylation-dependent HIF-1α/CLDN6 negative feedback mitigates hypoxia-induced breast cancer metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:42. [PMID: 32093760 PMCID: PMC7038627 DOI: 10.1186/s13046-020-01547-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022]
Abstract
Background We have previously described CLDN6 as a tumor suppressor gene in breast cancer. Here, a new finding is that CLDN6 was upregulated under hypoxia, a commonly recognized factor that promotes tumor metastasis. In this study, we aim to explain this confusing finding and delineate the role of CLDN6 in the breast cancer metastasis induced by hypoxia. Methods RNAi and ChIP assays were used to confirm that CLDN6 is transcriptional regulated by HIF-1α. mRNA seq and KEGG analysis were performed to define the downstream pathways of CLDN6. The roles of the CLDN6/SENP1/HIF-1α signaling on tumor metastasis were evaluated by function experiments and clinical samples. Finally, the possible transcription factor of SENP1 was suspected and then validated by ChIP assay. Results We demonstrated a previously unrecognized negative feedback loop exists between CLDN6 and HIF-1α. CLDN6 was transcriptionally up-regulated by HIF-1α under hypoxia. On the other hand, in cytoplasm CLDN6 combines and retains β-catenin, a transcription factor of SENP1, causing β-catenin degradation and preventing its nuclear translocation. This process reduced SENP1 expression and prevented the deSUMOylation of HIF-1α, ultimately leading to HIF-1α degradation and breast cancer metastasis suppression. Conclusions Our data provide a molecular mechanistic insight indicating that CLDN6 loss may lead to elevated HIF-1α-driven breast cancer metastasis in a SUMOylation-dependent manner.
Collapse
Affiliation(s)
- Yiyang Jia
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China
| | - Yantong Guo
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China
| | - Qiu Jin
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China
| | - Huinan Qu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China
| | - Da Qi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China
| | - Peiye Song
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China
| | - Xiaoli Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China
| | - Xinqi Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China
| | - Wenhong Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China
| | - Yuan Dong
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China
| | - Yingying Liang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
23
|
Huang L, Zhao C, Sun K, Yang D, Yan L, Luo D, He J, Hu X, Wang R, Shen X, Xiao N, Zhong Z. Downregulation of CLDN6 inhibits cell proliferation, migration, and invasion via regulating EGFR/AKT/mTOR signalling pathway in hepatocellular carcinoma. Cell Biochem Funct 2020; 38:541-548. [PMID: 32056244 DOI: 10.1002/cbf.3489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022]
Abstract
Accumulating evidence showed that the claudin-6 (CLDN6) expression was abnormal in many cancers, while its expression and biological functions in hepatocellular carcinoma (HCC) is still unclear. The present study demonstrated that CLDN6 was upregulated in HCC tissues compared with tumour-adjacent tissues. CLDN6 silencing was significantly inhibited proliferation, migration, and invasion of HepG2 cells. Meanwhile, downregulation of CLDN6 remarkably inhibited the activation of EGFR/AKT/mTOR signalling pathway. Interestingly, the effect of CLDN6 overexpression on HepG2 cell proliferation and invasion could be inhibited by EGFR/AKT/mTOR signalling pathway inhibitor (AG1478). SIGNIFICANCE OF THE STUDY: These findings suggested that CLDN6 may act as an oncogene in HCC and improve HepG2 cell proliferation, migration, and invasion may via EGFR/AKT/mTOR signalling pathway.
Collapse
Affiliation(s)
| | - Chanjuan Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, SiChuan University, Chengdu, China
| | - Kai Sun
- Chengdu Lilai Biotechnology Co., Ltd, Chengdu, China
| | - Dandan Yang
- Chengdu Lilai Biotechnology Co., Ltd, Chengdu, China
| | - Linxia Yan
- Chengdu Lilai Biotechnology Co., Ltd, Chengdu, China
| | - Dan Luo
- Chengdu Lilai Biotechnology Co., Ltd, Chengdu, China
| | - Jinli He
- Chengdu Lilai Biotechnology Co., Ltd, Chengdu, China
| | - Xuemei Hu
- Chengdu Lilai Biotechnology Co., Ltd, Chengdu, China
| | - Rong Wang
- Chengdu Lilai Biotechnology Co., Ltd, Chengdu, China
| | - Xiaofei Shen
- Chengdu Lilai Biotechnology Co., Ltd, Chengdu, China
| | - Ning Xiao
- Health Management Center & Physical Examination Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhendong Zhong
- Institute of Laboratory Animals of Sichuan Academy of Medical Science, Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
24
|
Roehlen N, Roca Suarez AA, El Saghire H, Saviano A, Schuster C, Lupberger J, Baumert TF. Tight Junction Proteins and the Biology of Hepatobiliary Disease. Int J Mol Sci 2020; 21:ijms21030825. [PMID: 32012812 PMCID: PMC7038100 DOI: 10.3390/ijms21030825] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/24/2022] Open
Abstract
Tight junctions (TJ) are intercellular adhesion complexes on epithelial cells and composed of integral membrane proteins as well as cytosolic adaptor proteins. Tight junction proteins have been recognized to play a key role in health and disease. In the liver, TJ proteins have several functions: they contribute as gatekeepers for paracellular diffusion between adherent hepatocytes or cholangiocytes to shape the blood-biliary barrier (BBIB) and maintain tissue homeostasis. At non-junctional localizations, TJ proteins are involved in key regulatory cell functions such as differentiation, proliferation, and migration by recruiting signaling proteins in response to extracellular stimuli. Moreover, TJ proteins are hepatocyte entry factors for the hepatitis C virus (HCV)—a major cause of liver disease and cancer worldwide. Perturbation of TJ protein expression has been reported in chronic HCV infection, cholestatic liver diseases as well as hepatobiliary carcinoma. Here we review the physiological function of TJ proteins in the liver and their implications in hepatobiliary diseases.
Collapse
Affiliation(s)
- Natascha Roehlen
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Armando Andres Roca Suarez
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Houssein El Saghire
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Antonio Saviano
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-universitaire, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
| | - Catherine Schuster
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Joachim Lupberger
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Thomas F. Baumert
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-universitaire, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
- Correspondence: ; Tel.: +33-3688-53703
| |
Collapse
|
25
|
Gao F, Li M, Xiang R, Zhou X, Zhu L, Zhai Y. Expression of CLDN6 in tissues of gastric cancer patients: Association with clinical pathology and prognosis. Oncol Lett 2019; 17:4621-4625. [PMID: 30988820 PMCID: PMC6447906 DOI: 10.3892/ol.2019.10129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/22/2019] [Indexed: 01/12/2023] Open
Abstract
Expression of claudin-6 (CLDN6) in the tissues of gastric cancer patients and its association with clinical pathology and prognosis were investigated. A retrospective analysis was performed on 213 gastric cancer patients diagnosed and surgically treated in the Central Hospital of Zibo from January 2010 to January 2013. Cancer and normal adjacent tissues were obtained from the patients to detect the expression level of CLDN6 using reverse transcription-quantitative PCR (RT-qPCR). The association between the expression level of CLDN6 and the clinical and pathological features, as well as the prognosis of gastric cancer patients was analyzed. The expression level of CLDN6 was significantly lower in gastric cancer tissues than that in adjacent tissues (t=23.350, P<0.001). The expression level of CLDN6 was associated with age, lymph node metastasis, pathological staging, and distant metastasis (P<0.05). In this study, patients were separated into CLDN6 high-expression group (≥1.42) with 107 patients and CLDN6 low-expression group (<1.42) with 106 patients, with the median expression level of CLDN6 as the boundary. The 1-, 2- and 3-year survival rates of patients in the CLDN6 low-expression group were 80.19, 60.38 and 48.11%, respectively, and those in the CLDN6 high-expression group were 87.85, 73.83 and 66.36%, respectively. The survival rate was significantly better in the CLDN6 high-expression group than that in the CLDN6 low-expression group (P=0.009). In conclusion, the expression level of CLDN6 is low in the cancer tissues of gastric cancer patients, and associated with age, lymph node metastasis, pathological staging and distant metastasis. CLDN6 low expression has a certain negative impact on the prognosis of patients, and therefore, shows potential as an important indicator for the prognosis of gastric cancer patients.
Collapse
Affiliation(s)
- Fangmei Gao
- Department of Gastroenterology (I), Central Hospital of Zibo, Zibo, Shandong 255036, P.R. China
| | - Mingdong Li
- Department of Gastroenterology (II), Central Hospital of Zibo, Zibo, Shandong 255036, P.R. China
| | - Rui Xiang
- Department of Gastroenterology (II), Central Hospital of Zibo, Zibo, Shandong 255036, P.R. China
| | - Xin Zhou
- Department of Gastroenterology (II), Central Hospital of Zibo, Zibo, Shandong 255036, P.R. China
| | - Lianying Zhu
- Department of Gastroenterology (II), Central Hospital of Zibo, Zibo, Shandong 255036, P.R. China
| | - Yi Zhai
- Department of Oncology (I), Central Hospital of Zibo, Zibo, Shandong 255036, P.R. China
| |
Collapse
|
26
|
Bhat AA, Uppada S, Achkar IW, Hashem S, Yadav SK, Shanmugakonar M, Al-Naemi HA, Haris M, Uddin S. Tight Junction Proteins and Signaling Pathways in Cancer and Inflammation: A Functional Crosstalk. Front Physiol 2019; 9:1942. [PMID: 30728783 PMCID: PMC6351700 DOI: 10.3389/fphys.2018.01942] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 12/22/2018] [Indexed: 12/14/2022] Open
Abstract
The ability of epithelial cells to organize through cell-cell adhesion into a functioning epithelium serves the purpose of a tight epithelial protective barrier. Contacts between adjacent cells are made up of tight junctions (TJ), adherens junctions (AJ), and desmosomes with unique cellular functions and a complex molecular composition. These proteins mediate firm mechanical stability, serves as a gatekeeper for the paracellular pathway, and helps in preserving tissue homeostasis. TJ proteins are involved in maintaining cell polarity, in establishing organ-specific apical domains and also in recruiting signaling proteins involved in the regulation of various important cellular functions including proliferation, differentiation, and migration. As a vital component of the epithelial barrier, TJs are under a constant threat from proinflammatory mediators, pathogenic viruses and bacteria, aiding inflammation and the development of disease. Inflammatory bowel disease (IBD) patients reveal loss of TJ barrier function, increased levels of proinflammatory cytokines, and immune dysregulation; yet, the relationship between these events is partly understood. Although TJ barrier defects are inadequate to cause experimental IBD, mucosal immune activation is changed in response to augmented epithelial permeability. Thus, the current studies suggest that altered barrier function may predispose or increase disease progression and therapies targeted to specifically restore the barrier function may provide a substitute or supplement to immunologic-based therapies. This review provides a brief introduction about the TJs, AJs, structure and function of TJ proteins. The link between TJ proteins and key signaling pathways in cell proliferation, transformation, and metastasis is discussed thoroughly. We also discuss the compromised intestinal TJ integrity under inflammatory conditions, and the signaling mechanisms involved that bridge inflammation and cancer.
Collapse
Affiliation(s)
- Ajaz A. Bhat
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Srijayaprakash Uppada
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Iman W. Achkar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Sheema Hashem
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Santosh K. Yadav
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | | | - Hamda A. Al-Naemi
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
| | - Mohammad Haris
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
27
|
Hagen SJ. Non-canonical functions of claudin proteins: Beyond the regulation of cell-cell adhesions. Tissue Barriers 2017; 5:e1327839. [PMID: 28548895 PMCID: PMC5501131 DOI: 10.1080/21688370.2017.1327839] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/30/2017] [Accepted: 05/03/2017] [Indexed: 12/19/2022] Open
Abstract
Tight junctions form a barrier to the diffusion of apical and basolateral membrane proteins thus regulating membrane polarity. They also regulate the paracellular movement of ions and water across epithelial and endothelial cells so that functionally they constitute an important permselective barrier. Permselectivity at tight junctions is regulated by claudins, which confer anion or cation permeability, and tightness or leakiness, by forming several highly regulated pores within the apical tight junction complex. One interesting feature of claudins is that they are, more often than not, localized to the basolateral membrane, in intracellular cytoplasmic vesicles, or in the nucleus rather than to the apical tight junction complex. These intracellular pools of claudin molecules likely serve important functions in the epithelium. This review will address the widespread prevalence of claudins that are not associated with the apical tight junction complex and discuss the important and emerging non-traditional functions of these molecules in health and disease.
Collapse
Affiliation(s)
- Susan J. Hagen
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|