1
|
Simoes RV, Henriques RN, Olesen JL, Cardoso BM, Fernandes FF, Monteiro MAV, Jespersen SN, Carvalho T, Shemesh N. Deuterium metabolic imaging phenotypes mouse glioblastoma heterogeneity through glucose turnover kinetics. eLife 2025; 13:RP100570. [PMID: 40035743 PMCID: PMC11879113 DOI: 10.7554/elife.100570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Glioblastomas are aggressive brain tumors with dismal prognosis. One of the main bottlenecks for developing more effective therapies for glioblastoma stems from their histologic and molecular heterogeneity, leading to distinct tumor microenvironments and disease phenotypes. Effectively characterizing these features would improve the clinical management of glioblastoma. Glucose flux rates through glycolysis and mitochondrial oxidation have been recently shown to quantitatively depict glioblastoma proliferation in mouse models (GL261 and CT2A tumors) using dynamic glucose-enhanced (DGE) deuterium spectroscopy. However, the spatial features of tumor microenvironment phenotypes remain hitherto unresolved. Here, we develop a DGE Deuterium Metabolic Imaging (DMI) approach for profiling tumor microenvironments through glucose conversion kinetics. Using a multimodal combination of tumor mouse models, novel strategies for spectroscopic imaging and noise attenuation, and histopathological correlations, we show that tumor lactate turnover mirrors phenotype differences between GL261 and CT2A mouse glioblastoma, whereas recycling of the peritumoral glutamate-glutamine pool is a potential marker of invasion capacity in pooled cohorts, linked to secondary brain lesions. These findings were validated by histopathological characterization of each tumor, including cell density and proliferation, peritumoral invasion and distant migration, and immune cell infiltration. Our study bodes well for precision neuro-oncology, highlighting the importance of mapping glucose flux rates to better understand the metabolic heterogeneity of glioblastoma and its links to disease phenotypes.
Collapse
Affiliation(s)
- Rui Vasco Simoes
- Preclinical MRI, Champalimaud Research, Champalimaud FoundationLisbonPortugal
- Neuroengineering and Computational Neuroscience, Institute for Research and Innovation in Health (i3S)PortoPortugal
| | | | - Jonas L Olesen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus UniversityAarhusDenmark
| | - Beatriz M Cardoso
- Preclinical MRI, Champalimaud Research, Champalimaud FoundationLisbonPortugal
| | | | - Mariana AV Monteiro
- Histopathology Platform, Champalimaud Research, Champalimaud FoundationLisbonPortugal
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus UniversityAarhusDenmark
| | - Tânia Carvalho
- Histopathology Platform, Champalimaud Research, Champalimaud FoundationLisbonPortugal
| | - Noam Shemesh
- Preclinical MRI, Champalimaud Research, Champalimaud FoundationLisbonPortugal
| |
Collapse
|
2
|
Tavakoli N, Fong EJ, Coleman A, Huang YK, Bigger M, Doche ME, Kim S, Lenz HJ, Graham NA, Macklin P, Finley SD, Mumenthaler SM. Merging metabolic modeling and imaging for screening therapeutic targets in colorectal cancer. NPJ Syst Biol Appl 2025; 11:12. [PMID: 39875420 PMCID: PMC11775273 DOI: 10.1038/s41540-025-00494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a key role in metabolic reprogramming and are well-established contributors to drug resistance in colorectal cancer (CRC). To exploit this metabolic crosstalk, we integrated a systems biology approach that identified key metabolic targets in a data-driven method and validated them experimentally. This process involved a novel machine learning-based method to computationally screen, in a high-throughput manner, the effects of enzyme perturbations predicted by a computational model of CRC metabolism. This approach reveals the network-wide effects of metabolic perturbations. Our results highlighted hexokinase (HK) as a crucial target, which subsequently became our focus for experimental validation using patient-derived tumor organoids (PDTOs). Through metabolic imaging and viability assays, we found that PDTOs cultured in CAF-conditioned media exhibited increased sensitivity to HK inhibition, confirming the model predictions. Our approach emphasizes the critical role of integrating computational and experimental techniques in exploring and exploiting CRC-CAF crosstalk.
Collapse
Affiliation(s)
- Niki Tavakoli
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Emma J Fong
- Ellison Medical Institute, Los Angeles, CA, 90064, USA
| | | | - Yu-Kai Huang
- Ellison Medical Institute, Los Angeles, CA, 90064, USA
| | - Mathias Bigger
- Ellison Medical Institute, Los Angeles, CA, 90064, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | | | - Seungil Kim
- Ellison Medical Institute, Los Angeles, CA, 90064, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Nicholas A Graham
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 46202, USA
| | - Stacey D Finley
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Shannon M Mumenthaler
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Ellison Medical Institute, Los Angeles, CA, 90064, USA.
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
3
|
Shafi S, Khan MA, Ahmad J, Rabbani SA, Singh S, Najmi AK. Envisioning Glucose Transporters (GLUTs and SGLTs) as Novel Intervention against Cancer: Drug Discovery Perspective and Targeting Approach. Curr Drug Targets 2025; 26:109-131. [PMID: 39377414 DOI: 10.2174/0113894501335877240926101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 10/09/2024]
Abstract
Metabolic reprogramming and altered cellular energetics have been recently established as an important cancer hallmark. The modulation of glucose metabolism is one of the important characteristic features of metabolic reprogramming in cancer. It contributes to oncogenic progression by supporting the increased biosynthetic and bio-energetic demands of tumor cells. This oncogenic transformation consequently results in elevated expression of glucose transporters in these cells. Moreover, various cancers exhibit abnormal transporter expression patterns compared to normal tissues. Recent investigations have underlined the significance of glucose transporters in regulating cancer cell survival, proliferation, and metastasis. Abnormal regulation of these transporters, which exhibit varying affinities for hexoses, could enable cancer cells to efficiently manage their energy supply, offering a crucial edge for proliferation. Exploiting the upregulated expression of glucose transporters, GLUTs, and Sodium Linked Glucose Transporters (SGLTs), could serve as a novel therapeutic intervention for anti-cancer drug discovery as well as provide a unique targeting approach for drug delivery to specific tumor tissues. This review aims to discussthe previous and emerging research on the expression of various types of glucose transporters in tumor tissues, the role of glucose transport inhibitors as a cancer therapy intervention as well as emerging GLUT/SGLT-mediated drug delivery strategies that can be therapeutically employed to target various cancers.
Collapse
Affiliation(s)
- Sadat Shafi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Kingdom of Saudi Arabia (KSA)
| | - Syed Arman Rabbani
- Department of Clinical Pharmacy and Pharmacology, Ras Al Khaimah College of Pharmacy, Ras Al Khaimah Medical and Health Science University, Ras Al Khaimah, United Arab Emirates
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
4
|
Zhang S, Wang H. Targeting the lung tumour stroma: harnessing nanoparticles for effective therapeutic interventions. J Drug Target 2025; 33:60-86. [PMID: 39356091 DOI: 10.1080/1061186x.2024.2410462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Lung cancer remains an influential global health concern, necessitating the development of innovative therapeutic strategies. The tumour stroma, which is known as tumour microenvironment (TME) has a central impact on tumour expansion and treatment resistance. The stroma of lung tumours consists of numerous cells and molecules that shape an environment for tumour expansion. This environment not only protects tumoral cells against immune system attacks but also enables tumour stroma to attenuate the action of antitumor drugs. This stroma consists of stromal cells like cancer-associated fibroblasts (CAFs), suppressive immune cells, and cytotoxic immune cells. Additionally, the presence of stem cells, endothelial cells and pericytes can facilitate tumour volume expansion. Nanoparticles are hopeful tools for targeted drug delivery because of their extraordinary properties and their capacity to devastate biological obstacles. This review article provides a comprehensive overview of contemporary advancements in targeting the lung tumour stroma using nanoparticles. Various nanoparticle-based approaches, including passive and active targeting, and stimuli-responsive systems, highlighting their potential to improve drug delivery efficiency. Additionally, the role of nanotechnology in modulating the tumour stroma by targeting key components such as immune cells, extracellular matrix (ECM), hypoxia, and suppressive elements in the lung tumour stroma.
Collapse
Affiliation(s)
- Shushu Zhang
- Cancer Center (Oncology) Department, the Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Hui Wang
- Cancer Center (Oncology) Department, the Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Tavakoli N, Fong EJ, Coleman A, Huang YK, Bigger M, Doche ME, Kim S, Lenz HJ, Graham NA, Macklin P, Finley SD, Mumenthaler SM. Merging Metabolic Modeling and Imaging for Screening Therapeutic Targets in Colorectal Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595756. [PMID: 38826317 PMCID: PMC11142224 DOI: 10.1101/2024.05.24.595756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Cancer-associated fibroblasts (CAFs) play a key role in metabolic reprogramming and are well-established contributors to drug resistance in colorectal cancer (CRC). To exploit this metabolic crosstalk, we integrated a systems biology approach that identified key metabolic targets in a data-driven method and validated them experimentally. This process involved a novel machine learning-based method to computationally screen, in a high-throughput manner, the effects of enzyme perturbations predicted by a computational model of CRC metabolism. This approach reveals the network-wide effects of metabolic perturbations. Our results highlighted hexokinase (HK) as a crucial target, which subsequently became our focus for experimental validation using patient-derived tumor organoids (PDTOs). Through metabolic imaging and viability assays, we found that PDTOs cultured in CAF-conditioned media exhibited increased sensitivity to HK inhibition, confirming the model predictions. Our approach emphasizes the critical role of integrating computational and experimental techniques in exploring and exploiting CRC-CAF crosstalk.
Collapse
|
6
|
Kabeer F, Tran H, Andronescu M, Singh G, Lee H, Salehi S, Wang B, Biele J, Brimhall J, Gee D, Cerda V, O'Flanagan C, Algara T, Kono T, Beatty S, Zaikova E, Lai D, Lee E, Moore R, Mungall AJ, Williams MJ, Roth A, Campbell KR, Shah SP, Aparicio S. Single-cell decoding of drug induced transcriptomic reprogramming in triple negative breast cancers. Genome Biol 2024; 25:191. [PMID: 39026273 PMCID: PMC11256464 DOI: 10.1186/s13059-024-03318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The encoding of cell intrinsic drug resistance states in breast cancer reflects the contributions of genomic and non-genomic variations and requires accurate estimation of clonal fitness from co-measurement of transcriptomic and genomic data. Somatic copy number (CN) variation is the dominant mutational mechanism leading to transcriptional variation and notably contributes to platinum chemotherapy resistance cell states. Here, we deploy time series measurements of triple negative breast cancer (TNBC) single-cell transcriptomes, along with co-measured single-cell CN fitness, identifying genomic and transcriptomic mechanisms in drug-associated transcriptional cell states. RESULTS We present scRNA-seq data (53,641 filtered cells) from serial passaging TNBC patient-derived xenograft (PDX) experiments spanning 2.5 years, matched with genomic single-cell CN data from the same samples. Our findings reveal distinct clonal responses within TNBC tumors exposed to platinum. Clones with high drug fitness undergo clonal sweeps and show subtle transcriptional reversion, while those with weak fitness exhibit dynamic transcription upon drug withdrawal. Pathway analysis highlights convergence on epithelial-mesenchymal transition and cytokine signaling, associated with resistance. Furthermore, pseudotime analysis demonstrates hysteresis in transcriptional reversion, indicating generation of new intermediate transcriptional states upon platinum exposure. CONCLUSIONS Within a polyclonal tumor, clones with strong genotype-associated fitness under platinum remained fixed, minimizing transcriptional reversion upon drug withdrawal. Conversely, clones with weaker fitness display non-genomic transcriptional plasticity. This suggests CN-associated and CN-independent transcriptional states could both contribute to platinum resistance. The dominance of genomic or non-genomic mechanisms within polyclonal tumors has implications for drug sensitivity, restoration, and re-treatment strategies.
Collapse
Affiliation(s)
- Farhia Kabeer
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Hoa Tran
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Mirela Andronescu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Gurdeep Singh
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Hakwoo Lee
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Sohrab Salehi
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Beixi Wang
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Justina Biele
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Jazmine Brimhall
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - David Gee
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Viviana Cerda
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Ciara O'Flanagan
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Teresa Algara
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Takako Kono
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Sean Beatty
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Elena Zaikova
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Daniel Lai
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Eric Lee
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Richard Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Marc J Williams
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew Roth
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Kieran R Campbell
- Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sohrab P Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Samuel Aparicio
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.
| |
Collapse
|
7
|
Yadav K, Singh D, Singh MR, Pradhan M. Nano-constructs targeting the primary cellular energy source of cancer cells for modulating tumor progression. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Díaz-Valdivia N, Simón L, Díaz J, Martinez-Meza S, Contreras P, Burgos-Ravanal R, Pérez VI, Frei B, Leyton L, Quest AFG. Mitochondrial Dysfunction and the Glycolytic Switch Induced by Caveolin-1 Phosphorylation Promote Cancer Cell Migration, Invasion, and Metastasis. Cancers (Basel) 2022; 14:cancers14122862. [PMID: 35740528 PMCID: PMC9221213 DOI: 10.3390/cancers14122862] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Caveolin-1 (CAV1) is a membrane protein that has been attributed a dual role in cancer, acting at early stages as a tumor suppressor and in later stages of the disease as a promoter of metastasis. In the latter case, enhanced expression of CAV1 favors the malignant phenotype and correlates with a poorer prognosis of the patients. Bearing in mind that the reprogramming of energy metabolism is required in cancer cells to meet both the bioenergetic and biosynthetic needs to sustain increased proliferation, migration, and invasion, we evaluated the metabolism of metastatic cells expressing or not CAV1. In this study, we show that the expression of CAV1 promotes in cancer cells a metabolic switch to an aerobic, glycolytic phenotype by blocking mitochondrial respiration. Abstract Cancer cells often display impaired mitochondrial function, reduced oxidative phosphorylation, and augmented aerobic glycolysis (Warburg effect) to fulfill their bioenergetic and biosynthetic needs. Caveolin-1 (CAV1) is a scaffolding protein that promotes cancer cell migration, invasion, and metastasis in a manner dependent on CAV1 phosphorylation on tyrosine-14 (pY14). Here, we show that CAV1 expression increased glycolysis rates, while mitochondrial respiration was reduced by inhibition of the mitochondrial complex IV. These effects correlated with increased reactive oxygen species (ROS) levels that favored CAV1-induced migration and invasion. Interestingly, pY14-CAV1 promoted the metabolic switch associated with increased migration/invasion and augmented ROS-inhibited PTP1B, a phosphatase that controls pY14 levels. Finally, the glycolysis inhibitor 2-deoxy-D-glucose reduced CAV1-enhanced migration in vitro and metastasis in vivo of murine melanoma cells. In conclusion, CAV1 promotes the Warburg effect and ROS production, which inhibits PTP1B to augment CAV1 phosphorylation on tyrosine-14, thereby increasing the metastatic potential of cancer cells.
Collapse
Affiliation(s)
- Natalia Díaz-Valdivia
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (N.D.-V.); (L.S.); (J.D.); (S.M.-M.); (P.C.); (R.B.-R.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Layla Simón
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (N.D.-V.); (L.S.); (J.D.); (S.M.-M.); (P.C.); (R.B.-R.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Jorge Díaz
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (N.D.-V.); (L.S.); (J.D.); (S.M.-M.); (P.C.); (R.B.-R.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Samuel Martinez-Meza
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (N.D.-V.); (L.S.); (J.D.); (S.M.-M.); (P.C.); (R.B.-R.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Pamela Contreras
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (N.D.-V.); (L.S.); (J.D.); (S.M.-M.); (P.C.); (R.B.-R.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Renato Burgos-Ravanal
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (N.D.-V.); (L.S.); (J.D.); (S.M.-M.); (P.C.); (R.B.-R.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Viviana I. Pérez
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA; (V.I.P.); (B.F.)
| | - Balz Frei
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA; (V.I.P.); (B.F.)
| | - Lisette Leyton
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (N.D.-V.); (L.S.); (J.D.); (S.M.-M.); (P.C.); (R.B.-R.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Correspondence: (L.L.); (A.F.G.Q.)
| | - Andrew F. G. Quest
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (N.D.-V.); (L.S.); (J.D.); (S.M.-M.); (P.C.); (R.B.-R.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Correspondence: (L.L.); (A.F.G.Q.)
| |
Collapse
|
9
|
Jin M, Cao W, Chen B, Xiong M, Cao G. Tumor-Derived Lactate Creates a Favorable Niche for Tumor via Supplying Energy Source for Tumor and Modulating the Tumor Microenvironment. Front Cell Dev Biol 2022; 10:808859. [PMID: 35646923 PMCID: PMC9136137 DOI: 10.3389/fcell.2022.808859] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/08/2022] [Indexed: 12/05/2022] Open
Abstract
Tumor evolution is influenced by events involving tumor cells and the environment in which they live, known as the tumor microenvironment (TME). TME is a functional and structural niche composed of tumor cells, endothelial cells (ECs), cancer-associated fibroblasts (CAFs), mesenchymal stromal cells (MSCs), and a subset of immune cells (macrophages, dendritic cells, natural killer cells, T cells, B cells). Otto Warburg revealed the Warburg effect in 1923, a characteristic metabolic mechanism of tumor cells that performs high glucose uptake and excessive lactate formation even in abundant oxygen. Tumor tissues excrete a large amount of lactate into the extracellular microenvironment in response to TME’s hypoxic or semi-hypoxic state. High lactate concentrations in tumor biopsies have been linked to metastasis and poor clinical outcome. This indicates that the metabolite may play a role in carcinogenesis and lead to immune escape in TME. Lactate is now recognized as an essential carbon source for cellular metabolism and as a signaling molecule in TME, forming an active niche that influences tumor progression. This review summarized the advanced literature demonstrating the functional role of lactate in TME remodeling, elucidating how lactate shapes the behavior and the phenotype of both tumor cells and tumor-associated cells. We also concluded the intriguing interactions of multiple immune cells in TME. Additionally, we demonstrated how lactate functioned as a novel function factor by being used in a new histone modification, histone lysine lactylation, and to regulate gene expression in TME. Ultimately, because lactate created a favorable niche for tumor progression, we summarized potential anti-tumor strategies targeting lactate metabolism and signaling to investigate better cancer treatment.
Collapse
Affiliation(s)
| | | | - Bo Chen
- *Correspondence: Bo Chen, ; Maoming Xiong, ; Guodong Cao,
| | - Maoming Xiong
- *Correspondence: Bo Chen, ; Maoming Xiong, ; Guodong Cao,
| | - Guodong Cao
- *Correspondence: Bo Chen, ; Maoming Xiong, ; Guodong Cao,
| |
Collapse
|
10
|
Niu D, Wu Y, Lei Z, Zhang M, Xie Z, Tang S. Lactic acid, a driver of tumor-stroma interactions. Int Immunopharmacol 2022; 106:108597. [DOI: 10.1016/j.intimp.2022.108597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
|
11
|
Corchado-Cobos R, García-Sancha N, Mendiburu-Eliçabe M, Gómez-Vecino A, Jiménez-Navas A, Pérez-Baena MJ, Holgado-Madruga M, Mao JH, Cañueto J, Castillo-Lluva S, Pérez-Losada J. Pathophysiological Integration of Metabolic Reprogramming in Breast Cancer. Cancers (Basel) 2022; 14:322. [PMID: 35053485 PMCID: PMC8773662 DOI: 10.3390/cancers14020322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
Metabolic changes that facilitate tumor growth are one of the hallmarks of cancer. The triggers of these metabolic changes are located in the tumor parenchymal cells, where oncogenic mutations induce an imperative need to proliferate and cause tumor initiation and progression. Cancer cells undergo significant metabolic reorganization during disease progression that is tailored to their energy demands and fluctuating environmental conditions. Oxidative stress plays an essential role as a trigger under such conditions. These metabolic changes are the consequence of the interaction between tumor cells and stromal myofibroblasts. The metabolic changes in tumor cells include protein anabolism and the synthesis of cell membranes and nucleic acids, which all facilitate cell proliferation. They are linked to catabolism and autophagy in stromal myofibroblasts, causing the release of nutrients for the cells of the tumor parenchyma. Metabolic changes lead to an interstitium deficient in nutrients, such as glucose and amino acids, and acidification by lactic acid. Together with hypoxia, they produce functional changes in other cells of the tumor stroma, such as many immune subpopulations and endothelial cells, which lead to tumor growth. Thus, immune cells favor tissue growth through changes in immunosuppression. This review considers some of the metabolic changes described in breast cancer.
Collapse
Affiliation(s)
- Roberto Corchado-Cobos
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Natalia García-Sancha
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Marina Mendiburu-Eliçabe
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Aurora Gómez-Vecino
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Alejandro Jiménez-Navas
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Manuel Jesús Pérez-Baena
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Marina Holgado-Madruga
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Javier Cañueto
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
- Departamento de Dermatología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain
- Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain
| | - Sonia Castillo-Lluva
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Jesús Pérez-Losada
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| |
Collapse
|
12
|
Metabolic Interactions Between Tumor and Stromal Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1350:101-121. [PMID: 34888846 DOI: 10.1007/978-3-030-83282-7_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this chapter, we provide information about metabolic reprogramming in cancer cells, molecular interactions between tumor and stromal cells in the tumor microenvironment, focusing primarily on CAFs and tumor cell interaction. We have covered the role of cytokines, chemokines, and lactate in driving tumor-stroma interactions in the microenvironment. Here, we have discussed the pro-tumorigenic molecular interactions in between tumor cells and CAFs mediated via altered signaling pathways, cytokines, chemokines, and lactate in the tumor vicinity. A better understanding of the complex cancer cell-CAF interactions will help in designing successful therapeutic strategies targeting the stromal-rich tumors in the clinic.
Collapse
|
13
|
Khadka S, Arthur K, Barekatain Y, Behr E, Washington M, Ackroyd J, Crowley K, Suriyamongkol P, Lin YH, Pham CD, Zielinski R, Trujillo M, Galligan J, Georgiou DK, Asara J, Muller F. Impaired anaplerosis is a major contributor to glycolysis inhibitor toxicity in glioma. Cancer Metab 2021; 9:27. [PMID: 34172075 PMCID: PMC8228515 DOI: 10.1186/s40170-021-00259-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reprogramming of metabolic pathways is crucial to satisfy the bioenergetic and biosynthetic demands and maintain the redox status of rapidly proliferating cancer cells. In tumors, the tricarboxylic acid (TCA) cycle generates biosynthetic intermediates and must be replenished (anaplerosis), mainly from pyruvate and glutamine. We recently described a novel enolase inhibitor, HEX, and its pro-drug POMHEX. Since glycolysis inhibition would deprive the cell of a key source of pyruvate, we hypothesized that enolase inhibitors might inhibit anaplerosis and synergize with other inhibitors of anaplerosis, such as the glutaminase inhibitor, CB-839. METHODS We analyzed polar metabolites in sensitive (ENO1-deleted) and resistant (ENO1-WT) glioma cells treated with enolase and glutaminase inhibitors. We investigated whether sensitivity to enolase inhibitors could be attenuated by exogenous anaplerotic metabolites. We also determined the synergy between enolase inhibitors and the glutaminase inhibitor CB-839 in glioma cells in vitro and in vivo in both intracranial and subcutaneous tumor models. RESULTS Metabolomic profiling of ENO1-deleted glioma cells treated with the enolase inhibitor revealed a profound decrease in the TCA cycle metabolites with the toxicity reversible upon exogenous supplementation of supraphysiological levels of anaplerotic substrates, including pyruvate. ENO1-deleted cells also exhibited selective sensitivity to the glutaminase inhibitor CB-839, in a manner rescuable by supplementation of anaplerotic substrates or plasma-like media PlasmaxTM. In vitro, the interaction of these two drugs yielded a strong synergistic interaction but the antineoplastic effects of CB-839 as a single agent in ENO1-deleted xenograft tumors in vivo were modest in both intracranial orthotopic tumors, where the limited efficacy could be attributed to the blood-brain barrier (BBB), and subcutaneous xenografts, where BBB penetration is not an issue. This contrasts with the enolase inhibitor HEX, which, despite its negative charge, achieved antineoplastic effects in both intracranial and subcutaneous tumors. CONCLUSION Together, these data suggest that at least for ENO1-deleted gliomas, tumors in vivo-unlike cells in culture-show limited dependence on glutaminolysis and instead primarily depend on glycolysis for anaplerosis. Our findings reinforce the previously reported metabolic idiosyncrasies of in vitro culture and suggest that cell culture media nutrient composition more faithful to the in vivo environment will more accurately predict in vivo efficacy of metabolism targeting drugs.
Collapse
Affiliation(s)
- Sunada Khadka
- grid.240145.60000 0001 2291 4776Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX USA
| | - Kenisha Arthur
- grid.240145.60000 0001 2291 4776Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Yasaman Barekatain
- grid.240145.60000 0001 2291 4776Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX USA
| | - Eliot Behr
- grid.240145.60000 0001 2291 4776Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Mykia Washington
- grid.240145.60000 0001 2291 4776Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Jeffrey Ackroyd
- grid.240145.60000 0001 2291 4776Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX USA
| | - Kaitlyn Crowley
- grid.240145.60000 0001 2291 4776Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Pornpa Suriyamongkol
- grid.240145.60000 0001 2291 4776Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Yu-Hsi Lin
- grid.240145.60000 0001 2291 4776Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Cong-Dat Pham
- grid.240145.60000 0001 2291 4776Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Rafal Zielinski
- grid.240145.60000 0001 2291 4776Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Marissa Trujillo
- grid.134563.60000 0001 2168 186XDepartment of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ USA
| | - James Galligan
- grid.134563.60000 0001 2168 186XDepartment of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ USA
| | - Dimitra K. Georgiou
- grid.240145.60000 0001 2291 4776Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - John Asara
- grid.239395.70000 0000 9011 8547Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA USA
| | | |
Collapse
|
14
|
Dias AS, Helguero L, Almeida CR, Duarte IF. Natural Compounds as Metabolic Modulators of the Tumor Microenvironment. Molecules 2021; 26:molecules26123494. [PMID: 34201298 PMCID: PMC8228554 DOI: 10.3390/molecules26123494] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) is a heterogenous assemblage of malignant and non-malignant cells, including infiltrating immune cells and other stromal cells, together with extracellular matrix and a variety of soluble factors. This complex and dynamic milieu strongly affects tumor differentiation, progression, immune evasion, and response to therapy, thus being an important therapeutic target. The phenotypic and functional features of the various cell types present in the TME are largely dependent on their ability to adopt different metabolic programs. Hence, modulating the metabolism of the cells in the TME, and their metabolic crosstalk, has emerged as a promising strategy in the context of anticancer therapies. Natural compounds offer an attractive tool in this respect as their multiple biological activities can potentially be harnessed to ‘(re)-educate’ TME cells towards antitumoral roles. The present review discusses how natural compounds shape the metabolism of stromal cells in the TME and how this may impact tumor development and progression.
Collapse
Affiliation(s)
- Ana S. Dias
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Medical Sciences, iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (L.H.); (C.R.A.)
| | - Luisa Helguero
- Department of Medical Sciences, iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (L.H.); (C.R.A.)
| | - Catarina R. Almeida
- Department of Medical Sciences, iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (L.H.); (C.R.A.)
| | - Iola F. Duarte
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Correspondence: ; Tel.: +351-234-401-418
| |
Collapse
|
15
|
Singh SV, Chaube B, Mayengbam SS, Singh A, Malvi P, Mohammad N, Deb A, Bhat MK. Metformin induced lactic acidosis impaired response of cancer cells towards paclitaxel and doxorubicin: Role of monocarboxylate transporter. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166011. [PMID: 33212188 DOI: 10.1016/j.bbadis.2020.166011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022]
Abstract
Abnormal glucose metabolism in cancer cells causes generation and secretion of excess lactate, which results in acidification of the extracellular microenvironment. This altered metabolism aids not only in survival and proliferation but also in suppressing immune-mediated destruction of cancer cells. However, how it influences the response of cancer cells to chemotherapeutic drugs is not clearly understood. We employed appropriate in vitro approaches to explore the role of mono-carboxylate transporter 4 (MCT4) mediated altered intra and extracellular pH on the outcome of the therapeutic efficacy of chemotherapeutic drugs in breast and lung cancer models. We demonstrate by in vitro experiments that inhibition of complex I enhances glycolysis and increases expression as well as membrane translocation of MCT4. It causes a decrease in extracellular pH (pHe) and impairs doxorubicin and paclitaxel's therapeutic efficacy. Acidic pHe inhibits doxorubicin's uptake, while acidic intracellular pH (pH i) impairs the efficacy of paclitaxel. Under in vivo experimental settings, the modulation of pHe with phloretin or alkalizer (NaHCO3) enhances cytotoxicity of drugs and inhibits the growth of MCF-7 xenografts in mice. In a nutshell, this study indicates that MCT4 mediated extracellular acidosis is involved in impairing chemotherapeutic drugs' efficacy on cancer cells. Therefore, the use of pH neutralizing agents or MCT inhibitors may be beneficial towards circumventing impairment in the efficacy of certain drugs that are sensitive to pH changes.
Collapse
Affiliation(s)
- Shivendra Vikram Singh
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Balkrishna Chaube
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | | | - Abhijeet Singh
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Parmanand Malvi
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Naoshad Mohammad
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Ankita Deb
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Manoj Kumar Bhat
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
16
|
Mitochondria at Center of Exchanges between Cancer Cells and Cancer-Associated Fibroblasts during Tumor Progression. Cancers (Basel) 2020; 12:cancers12103017. [PMID: 33080792 PMCID: PMC7603005 DOI: 10.3390/cancers12103017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Malignant cells and their supportive associated fibroblasts (CAFs) exchange various molecules that promote energy production, biosynthesis and therapy resistance by modulating mitochondrial activity and dynamics. We herein review molecular exchanges from CAFs to malignant cells that support tumor growth and therapy resistance, and we highlight the crucial role of CAFs mitochondria in this support. This implies (1) reciprocal mitochondrial control by malignant cells and (2) fibroblast activation. Finally, we discuss therapeutic strategies that could improve current therapies by targeting mitochondrial-mediated dialogue between the two cell types. Abstract Resistance of solid cancer cells to chemotherapies and targeted therapies is not only due to the mutational status of cancer cells but also to the concurring of stromal cells of the tumor ecosystem, such as immune cells, vasculature and cancer-associated fibroblasts (CAFs). The reciprocal education of cancer cells and CAFs favors tumor growth, survival and invasion. Mitochondrial function control, including the regulation of mitochondrial metabolism, oxidative stress and apoptotic stress are crucial for these different tumor progression steps. In this review, we focus on how CAFs participate in cancer progression by modulating cancer cells metabolic functions and mitochondrial apoptosis. We emphasize that mitochondria from CAFs influence their activation status and pro-tumoral effects. We thus advocate that understanding mitochondria-mediated tumor–stroma interactions provides the possibility to consider cancer therapies that improve current treatments by targeting these interactions or mitochondria directly in tumor and/or stromal cells.
Collapse
|
17
|
Mendes C, Serpa J. Revisiting lactate dynamics in cancer—a metabolic expertise or an alternative attempt to survive? J Mol Med (Berl) 2020; 98:1397-1414. [DOI: 10.1007/s00109-020-01965-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/14/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022]
|
18
|
Sun X, Wang M, Wang M, Yao L, Li X, Dong H, Li M, Sun T, Liu X, Liu Y, Xu Y. Role of Proton-Coupled Monocarboxylate Transporters in Cancer: From Metabolic Crosstalk to Therapeutic Potential. Front Cell Dev Biol 2020; 8:651. [PMID: 32766253 PMCID: PMC7379837 DOI: 10.3389/fcell.2020.00651] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/01/2020] [Indexed: 01/18/2023] Open
Abstract
Proton-coupled monocarboxylate transporters (MCTs), representing the first four isoforms of the SLC16A gene family, mainly participate in the transport of lactate, pyruvate, and other monocarboxylates. Cancer cells exhibit a metabolic shift from oxidative metabolism to an enhanced glycolytic phenotype, leading to a higher production of lactate in the cytoplasm. Excessive accumulation of lactate threatens the survival of cancer cells, and the overexpression of proton-coupled MCTs observed in multiple types of cancer facilitates enhanced export of lactate from highly glycolytic cancer cells. Proton-coupled MCTs not only play critical roles in the metabolic symbiosis between hypoxic and normoxic cancer cells within tumors but also mediate metabolic interaction between cancer cells and cancer-associated stromal cells. Of the four proton-coupled MCTs, MCT1 and MCT4 are the predominantly expressed isoforms in cancer and have been identified as potential therapeutic targets in cancer. Therefore, in this review, we primarily focus on the roles of MCT1 and MCT4 in the metabolic reprogramming of cancer cells under hypoxic and nutrient-deprived conditions. Additionally, we discuss how MCT1 and MCT4 serve as metabolic links between cancer cells and cancer-associated stromal cells via transport of crucial monocarboxylates, as well as present emerging opportunities and challenges in targeting MCT1 and MCT4 for cancer treatment.
Collapse
Affiliation(s)
- Xiangyu Sun
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mozhi Wang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mengshen Wang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Litong Yao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xinyan Li
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Haoran Dong
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Meng Li
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tie Sun
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xing Liu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- The Second Affiliated Hospital of China Medical University, Shenyang, China
| | - Yingying Xu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Bendau E, Smith J, Zhang L, Ackerstaff E, Kruchevsky N, Wu B, Koutcher JA, Alfano R, Shi L. Distinguishing metastatic triple-negative breast cancer from nonmetastatic breast cancer using second harmonic generation imaging and resonance Raman spectroscopy. JOURNAL OF BIOPHOTONICS 2020; 13:e202000005. [PMID: 32219996 PMCID: PMC7433748 DOI: 10.1002/jbio.202000005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 05/10/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subset of breast cancer that is more common in African-American and Hispanic women. Early detection followed by intensive treatment is critical to improving poor survival rates. The current standard to diagnose TNBC from histopathology of biopsy samples is invasive and time-consuming. Imaging methods such as mammography and magnetic resonance (MR) imaging, while covering the entire breast, lack the spatial resolution and specificity to capture the molecular features that identify TNBC. Two nonlinear optical modalities of second harmonic generation (SHG) imaging of collagen, and resonance Raman spectroscopy (RRS) potentially offer novel rapid, label-free detection of molecular and morphological features that characterize cancerous breast tissue at subcellular resolution. In this study, we first applied MR methods to measure the whole-tumor characteristics of metastatic TNBC (4T1) and nonmetastatic estrogen receptor positive breast cancer (67NR) models, including tumor lactate concentration and vascularity. Subsequently, we employed for the first time in vivo SHG imaging of collagen and ex vivo RRS of biomolecules to detect different microenvironmental features of these two tumor models. We achieved high sensitivity and accuracy for discrimination between these two cancer types by quantitative morphometric analysis and nonnegative matrix factorization along with support vector machine. Our study proposes a new method to combine SHG and RRS together as a promising novel photonic and optical method for early detection of TNBC.
Collapse
Affiliation(s)
- Ethan Bendau
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Jason Smith
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Lin Zhang
- Institute for Ultrafast Spectroscopy and Lasers, The City College of New York, New York, New York
| | - Ellen Ackerstaff
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Natalia Kruchevsky
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Binlin Wu
- Physics Department, CSCU Center for Nanotechnology, Southern Connecticut State University, New Haven, Connecticut
| | - Jason A. Koutcher
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medical Physics and Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, Cornell University, New York, New York
| | - Robert Alfano
- Institute for Ultrafast Spectroscopy and Lasers, The City College of New York, New York, New York
| | - Lingyan Shi
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| |
Collapse
|
20
|
Fong EJ, Strelez C, Mumenthaler SM. A Perspective on Expanding Our Understanding of Cancer Treatments by Integrating Approaches from the Biological and Physical Sciences. SLAS DISCOVERY 2020; 25:672-683. [PMID: 32297829 PMCID: PMC7372587 DOI: 10.1177/2472555220915830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multicellular systems such as cancer suffer from immense complexity. It is imperative to capture the heterogeneity of these systems across scales to achieve a deeper understanding of the underlying biology and develop effective treatment strategies. In this perspective article, we will discuss how recent technologies and approaches from the biological and physical sciences have transformed traditional ways of measuring, interpreting, and treating cancer. During the SLAS 2019 Annual Meeting, SBI2 hosted a Special Interest Group (SIG) on this topic. Academic and industry leaders engaged in discussions surrounding what biological model systems are appropriate to study cancer complexity, what assays are necessary to interrogate this complexity, and how physical sciences approaches may be useful to detangle this complexity. In particular, we examined the utility of mathematical models in predicting cancer progression and treatment response when tightly integrated with reproducible, quantitative, and dynamic biological measurements achieved using high-content imaging and analysis. The dialogue centered around the impetus for convergent biosciences, bringing new perspectives to cancer research to further understand this complex adaptive system and successfully intervene therapeutically.
Collapse
Affiliation(s)
- Emma J Fong
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carly Strelez
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
21
|
Dias AS, Almeida CR, Helguero LA, Duarte IF. Metabolic crosstalk in the breast cancer microenvironment. Eur J Cancer 2019; 121:154-171. [PMID: 31581056 DOI: 10.1016/j.ejca.2019.09.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/03/2019] [Indexed: 02/08/2023]
Abstract
During tumorigenesis, breast tumour cells undergo metabolic reprogramming, which generally includes enhanced glycolysis, tricarboxylic acid cycle activity, glutaminolysis and fatty acid biosynthesis. However, the extension and functional importance of these metabolic alterations may diverge not only according to breast cancer subtypes, but also depending on the interaction of cancer cells with the complex surrounding microenvironment. This microenvironment comprises a variety of non-cancerous cells, such as immune cells (e.g. macrophages, lymphocytes, natural killer cells), fibroblasts, adipocytes and endothelial cells, together with extracellular matrix components and soluble factors, which influence cancer progression and are predictive of clinical outcome. The continuous interaction between cancer and stromal cells results in metabolic competition and symbiosis, with oncogenic-driven metabolic reprogramming of cancer cells shaping the metabolism of neighbouring cells and vice versa. This review addresses current knowledge on this metabolic crosstalk within the breast tumour microenvironment (TME). Improved understanding of how metabolism in the TME modulates cancer development and evasion of tumour-suppressive mechanisms may provide clues for novel anticancer therapeutics directed to metabolic targets.
Collapse
Affiliation(s)
- Ana S Dias
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, Aveiro, Portugal; iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Catarina R Almeida
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Luisa A Helguero
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Iola F Duarte
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, Aveiro, Portugal.
| |
Collapse
|
22
|
Lactate Dehydrogenases as Metabolic Links between Tumor and Stroma in the Tumor Microenvironment. Cancers (Basel) 2019; 11:cancers11060750. [PMID: 31146503 PMCID: PMC6627402 DOI: 10.3390/cancers11060750] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer is a metabolic disease in which abnormally proliferating cancer cells rewire metabolic pathways in the tumor microenvironment (TME). Molecular reprogramming in the TME helps cancer cells to fulfill elevated metabolic demands for bioenergetics and cellular biosynthesis. One of the ways through which cancer cell achieve this is by regulating the expression of metabolic enzymes. Lactate dehydrogenase (LDH) is the primary metabolic enzyme that converts pyruvate to lactate and vice versa. LDH also plays a significant role in regulating nutrient exchange between tumor and stroma. Thus, targeting human lactate dehydrogenase for treating advanced carcinomas may be of benefit. LDHA and LDHB, two isoenzymes of LDH, participate in tumor stroma metabolic interaction and exchange of metabolic fuel and thus could serve as potential anticancer drug targets. This article reviews recent research discussing the roles of lactate dehydrogenase in cancer metabolism. As molecular regulation of LDHA and LDHB in different cancer remains obscure, we also review signaling pathways regulating LDHA and LDHB expression. We highlight on the role of small molecule inhibitors in targeting LDH activity and we emphasize the development of safer and more effective LDH inhibitors. We trust that this review will also generate interest in designing combination therapies based on LDH inhibition, with LDHA being targeted in tumors and LDHB in stromal cells for better treatment outcome.
Collapse
|
23
|
Jiang E, Xu Z, Wang M, Yan T, Huang C, Zhou X, Liu Q, Wang L, Chen Y, Wang H, Liu K, Shao Z, Shang Z. Tumoral microvesicle-activated glycometabolic reprogramming in fibroblasts promotes the progression of oral squamous cell carcinoma. FASEB J 2019; 33:5690-5703. [PMID: 30698991 DOI: 10.1096/fj.201802226r] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metabolic reprogramming is a hallmark of cancer. Stromal cells could function as providers of energy metabolites for tumor cells by undergoing the "reverse Warburg effect," but the mechanism has not been fully elucidated. The interaction between the tumoral microvesicles (TMVs) and stroma in the tumor microenvironment plays a critical role in facilitating cancer progression. In this study, we demonstrated a novel mechanism for the TMV-mediated glycometabolic reprogramming of stromal cells. After being incubated with TMVs, normal human gingival fibroblasts exhibited a phenotype switch to cancer-associated fibroblasts and underwent a degradation of caveolin 1 (CAV1) through the ERK1/2-activation pathway. CAV1 degradation further induced the metabolic switch to aerobic glycolysis in the fibroblasts. The microvesicle-activated fibroblasts absorbed more glucose and produced more lactate. The migration and invasion of oral squamous cell carcinoma (OSCC) were promoted after being cocultured with the activated fibroblasts. Fibroblast-cancer cell glycometabolic coupling ring mediated by monocarboxylate transporter (MCT) 4 and MCT1 was then proved in the tumor microenvironment. Results indicated a mechanism for tumor progression by the crosstalk between tumor cells and stromal cells through the reverse Warburg effect via TMVs, thereby identifying potential targets for OSCC prevention and treatment.-Jiang, E., Xu, Z., Wang, M., Yan, T., Huang, C., Zhou, X., Liu, Q., Wang, L., Chen, Y., Wang, H., Liu, K., Shao, Z., Shang, Z. Tumoral microvesicle-activated glycometabolic reprogramming in fibroblasts promotes the progression of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Erhui Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China
| | - Zhi Xu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China
| | - Tinglin Yan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China
| | - Chunming Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China
| | - Xiaocheng Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China
| | - Qing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China
| | - Lin Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China
| | - Yang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China
| | - Hui Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China
| | - Ke Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China.,Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhe Shao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China.,Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China.,Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Nilendu P, Sarode SC, Jahagirdar D, Tandon I, Patil S, Sarode GS, Pal JK, Sharma NK. Mutual concessions and compromises between stromal cells and cancer cells: driving tumor development and drug resistance. Cell Oncol (Dordr) 2018; 41:353-367. [PMID: 30027403 DOI: 10.1007/s13402-018-0388-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Various cancers have been found to be associated with heterogeneous and adaptive tumor microenvironments (TMEs) and to be driven by the local TMEs in which they thrive. Cancer heterogeneity plays an important role in tumor cell survival, progression and drug resistance. The diverse cellular components of the TME may include cancer-associated fibroblasts, adipocytes, pericytes, mesenchymal stem cells, endothelial cells, lymphocytes and other immune cells. These components may support tumor development through the secretion of growth factors, evasion from immune checkpoints, metabolic adaptations, modulations of the extracellular matrix, activation of oncogenes and the acquisition of drug resistance. Here, we will address recent advances in our understanding of the molecular mechanisms underlying stromal-tumor cell interactions, with special emphasis on basic and pre-clinical information that may facilitate the design of novel personalized cancer therapies. CONCLUSIONS This review presents a holistic view on the translational potential of the interplay between stromal cells and cancer cells. This interplay is currently being employed for the development of promising preclinical and clinical biomarkers, and the design of small molecule inhibitors, antibodies and small RNAs for (combinatorial) cancer treatment options. In addition, nano-carriers, tissue scaffolds and 3-D based matrices are being developed to precisely and safely deliver these compounds.
Collapse
Affiliation(s)
- Pritish Nilendu
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Sachin C Sarode
- Department of Oral Pathology and Microbiology, Dr. D Y Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Devashree Jahagirdar
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Ishita Tandon
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Gargi S Sarode
- Department of Oral Pathology and Microbiology, Dr. D Y Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Jayanta K Pal
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India.
| |
Collapse
|
25
|
Scroggins BT, Matsuo M, White AO, Saito K, Munasinghe JP, Sourbier C, Yamamoto K, Diaz V, Takakusagi Y, Ichikawa K, Mitchell JB, Krishna MC, Citrin DE. Hyperpolarized [1- 13C]-Pyruvate Magnetic Resonance Spectroscopic Imaging of Prostate Cancer In Vivo Predicts Efficacy of Targeting the Warburg Effect. Clin Cancer Res 2018; 24:3137-3148. [PMID: 29599412 DOI: 10.1158/1078-0432.ccr-17-1957] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/02/2017] [Accepted: 03/20/2018] [Indexed: 12/26/2022]
Abstract
Purpose: To evaluate the potential of hyperpolarized [1-13C]-pyruvate magnetic resonance spectroscopic imaging (MRSI) of prostate cancer as a predictive biomarker for targeting the Warburg effect.Experimental Design: Two human prostate cancer cell lines (DU145 and PC3) were grown as xenografts. The conversion of pyruvate to lactate in xenografts was measured with hyperpolarized [1-13C]-pyruvate MRSI after systemic delivery of [1-13C] pyruvic acid. Steady-state metabolomic analysis of xenograft tumors was performed with mass spectrometry and steady-state lactate concentrations were measured with proton (1H) MRS. Perfusion and oxygenation of xenografts were measured with electron paramagnetic resonance (EPR) imaging with OX063. Tumor growth was assessed after lactate dehydrogenase (LDH) inhibition with FX-11 (42 μg/mouse/day for 5 days × 2 weekly cycles). Lactate production, pyruvate uptake, extracellular acidification rates, and oxygen consumption of the prostate cancer cell lines were analyzed in vitro LDH activity was assessed in tumor homogenates.Results: DU145 tumors demonstrated an enhanced conversion of pyruvate to lactate with hyperpolarized [1-13C]-pyruvate MRSI compared with PC3 and a corresponding greater sensitivity to LDH inhibition. No difference was observed between PC3 and DU145 xenografts in steady-state measures of pyruvate fermentation, oxygenation, or perfusion. The two cell lines exhibited similar sensitivity to FX-11 in vitro LDH activity correlated to FX-11 sensitivity.Conclusions: Hyperpolarized [1-13C]-pyruvate MRSI of prostate cancer predicts efficacy of targeting the Warburg effect. Clin Cancer Res; 24(13); 3137-48. ©2018 AACR.
Collapse
Affiliation(s)
- Bradley T Scroggins
- Radiation Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Masayuki Matsuo
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ayla O White
- Radiation Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Keita Saito
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Jeeva P Munasinghe
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland
| | - Carole Sourbier
- Urologic Oncology Branch, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Vivian Diaz
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland
| | - Yoichi Takakusagi
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kazuhiro Ichikawa
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, Japan
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
26
|
Martinez AF, McCachren SS, Lee M, Murphy HA, Zhu C, Crouch BT, Martin HL, Erkanli A, Rajaram N, Ashcraft KA, Fontanella AN, Dewhirst MW, Ramanujam N. Metaboloptics: Visualization of the tumor functional landscape via metabolic and vascular imaging. Sci Rep 2018. [PMID: 29520098 PMCID: PMC5843602 DOI: 10.1038/s41598-018-22480-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many cancers adeptly modulate metabolism to thrive in fluctuating oxygen conditions; however, current tools fail to image metabolic and vascular endpoints at spatial resolutions needed to visualize these adaptations in vivo. We demonstrate a high-resolution intravital microscopy technique to quantify glucose uptake, mitochondrial membrane potential (MMP), and SO2 to characterize the in vivo phentoypes of three distinct murine breast cancer lines. Tetramethyl rhodamine, ethyl ester (TMRE) was thoroughly validated to report on MMP in normal and tumor-bearing mice. Imaging MMP or glucose uptake together with vascular endpoints revealed that metastatic 4T1 tumors maintained increased glucose uptake across all SO2 (“Warburg effect”), and also showed increased MMP relative to normal tissue. Non-metastatic 67NR and 4T07 tumor lines both displayed increased MMP, but comparable glucose uptake, relative to normal tissue. The 4T1 peritumoral areas also showed a significant glycolytic shift relative to the tumor regions. During a hypoxic stress test, 4T1 tumors showed significant increases in MMP with corresponding significant drops in SO2, indicative of intensified mitochondrial metabolism. Conversely, 4T07 and 67NR tumors shifted toward glycolysis during hypoxia. Our findings underscore the importance of imaging metabolic endpoints within the context of a living microenvironment to gain insight into a tumor’s adaptive behavior.
Collapse
Affiliation(s)
- Amy F Martinez
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | | | - Marianne Lee
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Helen A Murphy
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Caigang Zhu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Brian T Crouch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Hannah L Martin
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Alaattin Erkanli
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | - Nirmala Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
27
|
Runa F, Hamalian S, Meade K, Shisgal P, Gray PC, Kelber JA. Tumor microenvironment heterogeneity: challenges and opportunities. ACTA ACUST UNITED AC 2017; 3:218-229. [PMID: 29430386 DOI: 10.1007/s40610-017-0073-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment (TME) has been recognized as an integral component of malignancies in breast and prostate tissues, contributing in confounding ways to tumor progression, metastasis, therapy resistance and disease recurrence. Major components of the TME are immune cells, fibroblasts, pericytes, endothelial cells, mesenchymal stroma/stem cells (MSCs), and extracellular matrix (ECM) components. Herein, we discuss the molecular and cellular heterogeneity within the TME and how this presents unique challenges and opportunities for treating breast and prostate cancers.
Collapse
Affiliation(s)
- F Runa
- Department of Biology, California State University, Northridge, CA
| | - S Hamalian
- Department of Biology, California State University, Northridge, CA
| | - K Meade
- Department of Biology, California State University, Northridge, CA
| | - P Shisgal
- Department of Biology, California State University, Northridge, CA
| | - P C Gray
- The Salk Institute for Biological Studies, La Jolla, CA
| | - J A Kelber
- Department of Biology, California State University, Northridge, CA
| |
Collapse
|
28
|
Sun X, Wang M, Wang M, Yu X, Guo J, Sun T, Li X, Yao L, Dong H, Xu Y. Birth order and multiple sclerosis. Acta Neurol Scand 1982; 10:428. [PMID: 32296646 PMCID: PMC7136496 DOI: 10.3389/fonc.2020.00428] [Citation(s) in RCA: 140] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/10/2020] [Indexed: 01/16/2023]
Abstract
Metabolic reprogramming is an emerging hallmark of cancer cells, in which cancer cells exhibit distinct metabolic phenotypes to fuel their proliferation and progression. The significant advancements made in the area of metabolic reprogramming make possible new strategies for overcoming malignant cancer, including triple-negative breast cancer. Triple-negative breast cancer (TNBC) is associated with high histologic grade, aggressive phenotype, and poor prognosis. Even though triple-negative breast cancer patients benefit from standard chemotherapy, they still face high recurrence rates and are more likely to develop resistance to chemotherapeutic drugs. Therefore, there is an urgent need to explore vulnerabilities of triple-negative breast cancer and develop novel therapeutic drugs to improve clinical outcomes for triple-negative breast cancer patients. Metabolic reprogramming may provide promising therapeutic targets for the treatment of triple-negative breast cancer. In this paper, we primarily discuss how triple-negative breast cancer cells reprogram their metabolic phenotype and that of stromal cells in the microenvironment to survive under nutrient-poor conditions. Considering that metastasis and chemoresistance are the main contributors to mortality in triple-negative breast cancer patients, we also focus on the role of metabolic adaption in mediating metastasis and chemoresistance of triple-negative breast cancer tumors.
Collapse
|