1
|
Newport ME, Wilson P, Lowes S, Behrends M, Coons A, Bowman J, Bates HE. Photoperiod influences visceral adiposity and the adipose molecular clock independent of temperature in wild-derived Peromyscus leucopus. FASEB Bioadv 2025; 7:e70006. [PMID: 40330430 PMCID: PMC12050962 DOI: 10.1096/fba.2024-00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 02/08/2025] [Accepted: 02/17/2025] [Indexed: 05/08/2025] Open
Abstract
Physiology is closely synchronized to daily and seasonal light/dark cycles. Humans artificially extend daylight and experience irregular light schedules, resulting in dysregulation of metabolism and body mass. In rodents, winter-like conditions (cold and short photoperiod) can alter energy balance and adipose tissue mass. To determine if photoperiod alone, independent of temperature, is a strong enough signal to regulate adiposity, we compared the effects of long and short photoperiod at thermoneutrality on adiposity and WAT gene expression in photoperiod-sensitive, F1 generation wild-derived adult male white-footed mice (Peromyscus leucopus). Mice were housed in long-day (16:8 light:dark) or short-day (8:16 light:dark) photoperiod conditions at thermoneutrality (27°C) for 4 weeks with the extended light being provided through artificial lighting. Photoperiod did not impact body weight or calorie consumption. However, mice housed in long photoperiod with extended artificial light selectively developed greater visceral WAT mass without changing subcutaneous WAT or interscapular BAT mass. This was accompanied by a decrease in Adrβ3 and Ucp1 mRNA expression in visceral WAT with no change in Pgc1a, Lpl, or Hsl. Expression of Per1, Per2, and Nr1d1 mRNA in visceral WAT differed between long and short photoperiods over time when aligned to circadian time but not onset of darkness, indicating alterations in clock gene expression with photoperiod. These findings suggest that extended photoperiod through artificial light can promote visceral fat accumulation alone, independent of temperature, supporting that artificial light may play a role in obesity.
Collapse
Affiliation(s)
| | - Paul Wilson
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| | - Shanna Lowes
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| | - Marthe Behrends
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| | - Alexis Coons
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| | - Jeff Bowman
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
- Wildlife Research and Monitoring SectionOntario Ministry of Natural ResourcesPeterboroughOntarioCanada
| | - Holly E. Bates
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| |
Collapse
|
2
|
Diurnal variations of cold-induced thermogenesis in young, healthy adults: A randomized crossover trial. Clin Nutr 2021; 40:5311-5321. [PMID: 34536639 DOI: 10.1016/j.clnu.2021.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Harnessing cold-induced thermogenesis (CIT) and brown adipose tissue (BAT) activity has been proposed as a means of counteracting a positive energy balance, and thus of combating obesity and its related comorbidities. However, it has remained unclear whether CIT and BAT activity show diurnal variation in humans - knowledge that might allow treatments based on these factors to be time-optimized. METHODS A randomized crossover experiment was designed to examine whether CIT shows morning/evening variation in young, healthy adults (n = 14, 5 women). On the first experimental day, subjects' shivering thresholds were determined following a cooling protocol. After ≈96 h had elapsed, the subjects then returned on two further days (approx. 48 h apart) at 08:00 h or 18:00 in random order. On both the latter days, the resting energy expenditure (REE) was measured before the subjects underwent personalized cold exposure (i.e., according to their shivering threshold). CIT was then assessed for 60 min by indirect calorimetry. In an independent cross-sectional study (n = 133, 88 women), subjects came to the laboratory between 8:00 and 18:00 h and their BAT 18F-fluordeoxyglucose (18F-FDG) uptake was assessed after personalized cold stimulation. RESULTS Both the REE and CIT were similar in the morning and evening (all P > 0.05). Indeed, 60 min of personalized-mild cold exposure in the morning or evening elicited a similar change in energy expenditure (16.8 ± 12.8 vs. 15.7 ± 15.1% increase above REE, P = 0.72). BAT 18F-FDG uptake was also similar in the morning, evening and afternoon (all P > 0.05). CONCLUSION CIT does not appear to show morning/evening variation in young healthy adults, with the current study design and methodology. BAT 18F-FDG uptake appears not to change across the day either, although experiments with a within-subject study design are needed to confirm these findings. Registered under ClinicalTrials.gov Identifier no. NCT02365129.
Collapse
|
3
|
Chirumbolo S. Oxidative Stress, Nutrition and Cancer: Friends or Foes? World J Mens Health 2020; 39:19-30. [PMID: 32202081 PMCID: PMC7752511 DOI: 10.5534/wjmh.190167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022] Open
Abstract
The relationship between cancer and nutrition, as well as nutrition and oxidative stress, shares puzzling aspects that current research is investigating as the possible components of an intriguing regulating mechanism involving the complex interplay between adipose tissue and other compartments. Along the very recent biological evolution, humans underwent a rapid change in their lifestyles and henceforth the role of the adipocytes earned a much more complex task in the fine tuning of the tissue microenvironment. A lipidic signaling language probably evolved in association with the signaling role of reactive oxygen species, which gained a fundamental part in the regulation of cell stem and plasticity. The possible relationship with cancer onset might have some causative mechanism in the impairment of this complex task, usually deregulated by drastic changes in one's own lifestyle and dietary habit. This review tries to address this issue.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
4
|
Watanabe J, Kagami N, Kawazoe M, Arata S. A simplified enriched environment increases body temperature and suppresses cancer progression in mice. Exp Anim 2019; 69:207-218. [PMID: 31852850 PMCID: PMC7220712 DOI: 10.1538/expanim.19-0099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mice housed in an enriched environment (EE) have inhibited tumor development because of
eustress (positive stress) stimulation. However, the mechanisms underlying increased
cancer resistance in EEs remain unclear; this may be due to poor reproducibility of the
results because of the complicated EE assembly requirements. In this study, we examined
the effects of a simplified EE (sEE) model, consisting only of a nesting shelter and a
running wheel, on cancer development in mice. We found that, similar to the complex EE,
the sEE promoted motor function and alleviated anxiety in mice. Moreover, the mice housed
in the sEE showed inhibited tumor growth and metastasis in addition to a higher average
body temperature (especially at the point of transition from light to darkness).
Furthermore, mice in the sEE had a decreased brown adipose tissue (BAT) mass, with a
significant upregulation of the Ucp1 and Adrb3 genes
(which encode uncoupling protein 1 and β-adrenergic receptor, respectively) observed in
the BAT at the point of transition from light to darkness. An antibody against the immune
checkpoint protein programmed cell death 1 was also found to have an additive effect with
the sEE against tumor development. Our findings indicate that the established sEE model
may be a useful tool for studying the antitumor effects of eustress and can potentially
introduce new avenues for cancer prevention and treatment.
Collapse
Affiliation(s)
- Jun Watanabe
- Center for Biotechnology, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Tokyo, Japan.,Center for Laboratory Animal Science, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Nobuyuki Kagami
- Center for Laboratory Animal Science, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Mamiko Kawazoe
- Center for Laboratory Animal Science, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Satoru Arata
- Center for Biotechnology, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Tokyo, Japan.,Center for Laboratory Animal Science, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.,Department of Biochemistry, Faculty of Arts and Sciences, Showa University, 4562 Kamiyoshida, Fujiyoshida-shi, Yamanashi 403-0005, Japan
| |
Collapse
|
5
|
Acosta FM, Martinez-Tellez B, Blondin DP, Haman F, Rensen PCN, Llamas-Elvira JM, Martinez-Nicolas A, Ruiz JR. Relationship between the Daily Rhythm of Distal Skin Temperature and Brown Adipose Tissue 18F-FDG Uptake in Young Sedentary Adults. J Biol Rhythms 2019; 34:533-550. [PMID: 31389278 PMCID: PMC6732824 DOI: 10.1177/0748730419865400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The present study examines whether the daily rhythm of distal skin temperature (DST) is associated with brown adipose tissue (BAT) metabolism as determined by 18F-fluorodeoxyglucose (18F-FDG) uptake in young adults. Using a wireless thermometer (iButton) worn on the nondominant wrist, DST was measured in 77 subjects (26% male; age 22 ± 2 years; body mass index 25.2 ± 4.8 kg/m2) for 7 consecutive days. The temperatures to which they were habitually exposed over the day were also recorded. The interday stability of DST was calculated from the collected data, along with the intraday variability and relative amplitude; the mean temperature of the 5 and 10 consecutive hours with the maximum and minimum DST values, respectively; and when these hours occurred. Following exposure to cold, BAT volume and mean and peak standardized 18F-FDG uptake (SUVmean and SUVpeak) were determined for each subject via static 18F-FDG positron emission tomography/computed tomography scanning. Relative amplitude and the time at which the 10 consecutive hours of minimum DST values occurred were positively associated with BAT volume, SUVmean, and SUVpeak (p ≤ 0.02), whereas the mean DST of that period was inversely associated with the latter BAT variables (p ≤ 0.01). The interday stability and intraday variability of the DST were also associated (directly and inversely, respectively) with BAT SUVpeak (p ≤ 0.02 for both). All of these associations disappeared, however, when the analyses were adjusted for the ambient temperature to which the subjects were habitually exposed. Thus, the relationship between the daily rhythm of DST and BAT activity estimated by 18F-FDG uptake is masked by environmental and likely behavioral factors. Of note is that those participants exposed to the lowest ambient temperature showed 3 to 5 times more BAT volume and activity compared with subjects who were exposed to a warmer ambient temperature.
Collapse
Affiliation(s)
- Francisco M Acosta
- PROFITH "PROmoting FITness and Health through physical activity" research group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain
| | - Borja Martinez-Tellez
- PROFITH "PROmoting FITness and Health through physical activity" research group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain.,Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Denis P Blondin
- Faculty of Medicine and Health Sciences, Department of Pharmacology-Physiology, Université de Sherbrooke and Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Québec, Canada
| | - François Haman
- Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Jose M Llamas-Elvira
- Servicio de Medicina Nuclear, Hospital Universitario Virgen de las Nieves, Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Servicio de Medicina Nuclear, Granada, Spain
| | - Antonio Martinez-Nicolas
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Jonatan R Ruiz
- PROFITH "PROmoting FITness and Health through physical activity" research group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain
| |
Collapse
|
6
|
Yan X, Huang Y, Wu J. Identify Cross Talk Between Circadian Rhythm and Coronary Heart Disease by Multiple Correlation Analysis. J Comput Biol 2018; 25:1312-1327. [PMID: 30234379 DOI: 10.1089/cmb.2017.0254] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Disorder in circadian rhythm has been revealed as a risk factor for coronary heart disease. Several studies in molecular biology established a gene interaction network using coronary heart susceptibility genes and the circadian rhythm pathway. However, cross talk between genes was mostly discovered in single gene pairs. There might be combination sets of genes intergraded as a unit to regulate the network. To resolve multiple variables in coronary heart susceptibility genes controlling circadian rhythm pathways, a multiple correlation analysis was applied to the transcriptome. Nine genes, including CUGBP, Elav-like family member (CELF); sodium leak channel, nonselective (NALCN); protein phosphatase 2 regulatory subunit B gamma (PPP2R2C); tubulin alpha 1c (TUBA1C); microtubule-associated protein 4 (MAP4); cofilin 1 (CFL1); myosin heavy chain 7 (MYH7); QKI, KH domain containing RNA binding (QKI); and maternal embryonic leucine zipper kinase (MELK), from coronary heart susceptibility were identified to predict the outcome of a linear combination of circadian rhythm pathway genes with R factor more than 0.7. G protein subunit alpha o1 (GNAO1), protein kinase C gamma (PRKCG), RBX, and G protein subunit beta 1 (GNB1) in the circadian rhythm pathway are characterized as combination variables to coexpress with coronary heart susceptibility genes.
Collapse
Affiliation(s)
- Xiaoping Yan
- 1 Department of Cardiology, Fujian Medical University Union Hospital, Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian, China
| | - Yu Huang
- 1 Department of Cardiology, Fujian Medical University Union Hospital, Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian, China
| | - Jiabin Wu
- 2 Department of Nephrology, Fujian Provincial Hospital, Fujian Medical University , Fuzhou, China
| |
Collapse
|