1
|
Peterson RJ, Reed RC, Zamecnik CR, Sallam MA, Finbloom JA, Martinez FJ, Levy JM, Moonwiriyakit A, Desai TA, Koval M. Apical integrins as a switchable target to regulate the epithelial barrier. J Cell Sci 2024; 137:jcs263580. [PMID: 39552289 PMCID: PMC11795292 DOI: 10.1242/jcs.263580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
Tight junctions regulate epithelial barrier function and have been shown to be influenced by multiple classes of proteins. Apical integrins have been identified as potential regulators of epithelial barrier function; however, only indirect approaches have been used to measure integrin regulation of the epithelial barrier. Here, we used polymeric nanowires conjugated with anti-integrin β1 antibodies to specifically target apically localized integrins in either their closed or open conformation. Barrier regulation by apical integrins was found to be conformation specific. Nanowires targeting integrins in the closed conformation increased epithelial permeability and caused zonula occludens-1 (ZO-1, also known as TJP1) to change from a linear to a ruffled morphology. Claudin-2 and claudin-4 colocalized with ZO-1 and were also ruffled; however, claudin-1 and claudin-7 remained linear. Ruffling was dependent on myosin light chain kinases (MLCKs) and Rho kinases (ROCKs). Conversely, targeting integrins in the open conformation decreased epithelial permeability and made junctions more linearized. Anti-integrin β1 nanowires differentially affected actin and talin (analyzed using pan-talin antibodies), depending on whether they contained activating or inhibitory antibodies. Thus, apical integrins can act as a conformation-sensitive switch that regulates epithelial barrier function.
Collapse
Affiliation(s)
- Raven J. Peterson
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ryan C. Reed
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Colin R. Zamecnik
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Marwa A. Sallam
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Joel A. Finbloom
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Francisco J. Martinez
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joshua M. Levy
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA 30322, USA
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aekkacha Moonwiriyakit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakan, 10540, Thailand
| | - Tejal A. Desai
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
3
|
Hansen ME, Ibrahim Y, Desai TA, Koval M. Nanostructure-Mediated Transport of Therapeutics through Epithelial Barriers. Int J Mol Sci 2024; 25:7098. [PMID: 39000205 PMCID: PMC11241453 DOI: 10.3390/ijms25137098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The ability to precisely treat human disease is facilitated by the sophisticated design of pharmacologic agents. Nanotechnology has emerged as a valuable approach to creating vehicles that can specifically target organ systems, effectively traverse epithelial barriers, and protect agents from premature degradation. In this review, we discuss the molecular basis for epithelial barrier function, focusing on tight junctions, and describe different pathways that drugs can use to cross barrier-forming tissue, including the paracellular route and transcytosis. Unique features of drug delivery applied to different organ systems are addressed: transdermal, ocular, pulmonary, and oral delivery. We also discuss how design elements of different nanoscale systems, such as composition and nanostructured architecture, can be used to specifically enhance transepithelial delivery. The ability to tailor nanoscale drug delivery vehicles to leverage epithelial barrier biology is an emerging theme in the pursuit of facilitating the efficacious delivery of pharmacologic agents.
Collapse
Affiliation(s)
- M. Eva Hansen
- University of California Berkeley-University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA;
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yasmin Ibrahim
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Tejal A. Desai
- University of California Berkeley-University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA;
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Sutlive J, Liu BS, Kwan SA, Pan JM, Gou K, Xu R, Ali AB, Khalil HA, Ackermann M, Chen Z, Mentzer SJ. Buckling forces and the wavy folds between pleural epithelial cells. Biosystems 2024; 240:105216. [PMID: 38692427 PMCID: PMC11139554 DOI: 10.1016/j.biosystems.2024.105216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
Cell shapes in tissues are affected by the biophysical interaction between cells. Tissue forces can influence specific cell features such as cell geometry and cell surface area. Here, we examined the 2-dimensional shape, size, and perimeter of pleural epithelial cells at various lung volumes. We demonstrated a 1.53-fold increase in 2-dimensional cell surface area and a 1.43-fold increase in cell perimeter at total lung capacity compared to residual lung volume. Consistent with previous results, close inspection of the pleura demonstrated wavy folds between pleural epithelial cells at all lung volumes. To investigate a potential explanation for the wavy folds, we developed a physical simulacrum suggested by D'Arcy Thompson in On Growth and Form. The simulacrum suggested that the wavy folds were the result of redundant cell membranes unable to contract. To test this hypothesis, we developed a numerical simulation to evaluate the impact of an increase in 2-dimensional cell surface area and cell perimeter on the shape of the cell-cell interface. Our simulation demonstrated that an increase in cell perimeter, rather than an increase in 2-dimensional cell surface area, had the most direct impact on the presence of wavy folds. We conclude that wavy folds between pleural epithelial cells reflects buckling forces arising from the excess cell perimeter necessary to accommodate visceral organ expansion.
Collapse
Affiliation(s)
- Joseph Sutlive
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Betty S Liu
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stacey A Kwan
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer M Pan
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kun Gou
- Department of Computational, Engineering, and Mathematical Sciences, Texas A&M University-San Antonio, San Antonio, TX, USA
| | - Rongguang Xu
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ali B Ali
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hassan A Khalil
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Zi Chen
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Steven J Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Easley KF, Edenfield RC, Lott MEJ, Reed RC, Das Sarma J, Mehta AJ, Staitieh BS, Lipp EK, Cho IK, Johnson SK, Jones CA, Bebin-Blackwell AG, Levy JM, Tompkins SM, Easley CA, Koval M. Chronic alcohol use primes bronchial cells for altered inflammatory response and barrier dysfunction during SARS-CoV-2 infection. Am J Physiol Lung Cell Mol Physiol 2023; 325:L647-L661. [PMID: 37786945 PMCID: PMC11498272 DOI: 10.1152/ajplung.00381.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/26/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023] Open
Abstract
Alcohol use disorder (AUD) is a significant public health concern and people with AUD are more likely to develop severe acute respiratory distress syndrome (ARDS) in response to respiratory infections. To examine whether AUD was a risk factor for more severe outcome in response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, we examined early responses to infection using cultured differentiated bronchial epithelial cells derived from brushings obtained from people with AUD or without AUD. RNA-seq analysis of uninfected cells determined that AUD cells were enriched for expression of epidermal genes as compared with non-AUD cells. Bronchial epithelial cells from patients with AUD showed a significant decrease in barrier function 72 h postinfection, as determined by transepithelial electrical resistance. In contrast, barrier function of non-AUD cells was enhanced 72 h after SARS-CoV-2 infection. AUD cells showed claudin-7 that did not colocalize with zonula occludens-1 (ZO-1), indicative of disorganized tight junctions. However, both AUD and non-AUD cells showed decreased β-catenin expression following SARS-CoV-2 infection. To determine the impact of AUD on the inflammatory response to SARS-CoV-2 infection, cytokine secretion was measured by multiplex analysis. SARS-CoV-2-infected AUD bronchial cells had enhanced secretion of multiple proinflammatory cytokines including TNFα, IL-1β, and IFNγ as opposed to non-AUD cells. In contrast, secretion of the barrier-protective cytokines epidermal growth factor (EGF) and granulocyte macrophage-colony stimulating factor (GM-CSF) was enhanced for non-AUD bronchial cells. Taken together, these data support the hypothesis that AUD is a risk factor for COVID-19, where alcohol primes airway epithelial cells for increased inflammation and increased barrier dysfunction and increased inflammation in response to infection by SARS-CoV-2.NEW & NOTEWORTHY Alcohol use disorder (AUD) is a significant risk factor for severe acute respiratory distress syndrome. We found that AUD causes a phenotypic shift in gene expression in human bronchial epithelial cells, enhancing expression of epidermal genes. AUD cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had higher levels of proinflammatory cytokine secretion and barrier dysfunction not present in infected non-AUD cells, consistent with increased early COVID-19 severity due to AUD.
Collapse
Affiliation(s)
- Kristen F Easley
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - R Clayton Edenfield
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, United States
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, United States
| | - Megan E J Lott
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, United States
| | - Ryan C Reed
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Ashish J Mehta
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia, United States
| | - Bashar S Staitieh
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Erin K Lipp
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, United States
| | - In Ki Cho
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, United States
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, United States
| | - Scott K Johnson
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States
| | - Cheryl A Jones
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States
| | | | - Joshua M Levy
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, United States
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - S Mark Tompkins
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States
| | - Charles A Easley
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, United States
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, United States
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
6
|
Peng J, Li H, Olaolu OA, Ibrahim S, Ibrahim S, Wang S. Natural Products: A Dependable Source of Therapeutic Alternatives for Inflammatory Bowel Disease through Regulation of Tight Junctions. Molecules 2023; 28:6293. [PMID: 37687122 PMCID: PMC10488775 DOI: 10.3390/molecules28176293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), can affect the entire gastrointestinal tract and mucosal layer and lead to intestinal damage and intestinal dysfunction. IBD is an inflammatory disease of the gastrointestinal tract that significantly impacts public health development. Monoclonal antibodies and other synthetic medications are currently used to treat IBD, but they are suspected of producing serious side effects and causing a number of other problems with long-term use. Numerous in vitro and in vivo studies have shown that organic macromolecules from plants and animals have an alleviating effect on IBD-related problems, and many of them are also capable of altering enzymatic function, reducing oxidative stress, and inhibiting the production of cytokines and release of proinflammatory transcriptional factors. Thus, in this paper, the natural products with potential anti-IBD activities and their mechanism of action were reviewed, with a focus on the protective effects of natural products on intestinal barrier integrity and the regulation of tight junction protein expression and remodeling. In conclusion, the insights provided in the present review will be useful for further exploration and development of natural products for the treatment of IBD.
Collapse
Affiliation(s)
- Jing Peng
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (J.P.); (H.L.); (O.A.O.)
| | - Hao Li
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (J.P.); (H.L.); (O.A.O.)
| | - Oladejo Ayodele Olaolu
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (J.P.); (H.L.); (O.A.O.)
- Department of Animal Health Technology, Oyo State College of Agriculture and Technology Igboora Nigeria, Igboora 201003, Nigeria
| | - Saber Ibrahim
- Packaging Materials Department, National Research Centre, Giza 12111, Egypt;
- Nanomaterials Investigation Laboratory, Central Laboratory Network, National Research Centre, Giza 12111, Egypt
| | - Sally Ibrahim
- Department of Animal Reproduction and AI, Veterinary Research Institute, National Research Centre, Dokki 12622, Egypt;
| | - Shengyi Wang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (J.P.); (H.L.); (O.A.O.)
| |
Collapse
|
7
|
Peterson RJ, Koval M. Above the Matrix: Functional Roles for Apically Localized Integrins. Front Cell Dev Biol 2021; 9:699407. [PMID: 34485286 PMCID: PMC8414885 DOI: 10.3389/fcell.2021.699407] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Integrins are transmembrane proteins that are most typically thought of as integrating adhesion to the extracellular matrix with intracellular signaling and cell regulation. Traditionally, integrins are found at basolateral and lateral cell surfaces where they facilitate binding to the ECM and intercellular adhesion through cytosolic binding partners that regulate organization of actin microfilaments. However, evidence is accumulating that integrins also are apically localized, either endogenously or due to an exogenous stimulus. Apically localized integrins have been shown to regulate several processes by interacting with proteins such as connexins, tight junction proteins, and polarity complex proteins. Integrins can also act as receptors to mediate endocytosis. Here we review these newly appreciated roles for integrins localized to the apical cell surface.
Collapse
Affiliation(s)
- Raven J Peterson
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
8
|
Cottrill KA, Peterson RJ, Lewallen CF, Koval M, Bridges RJ, McCarty NA. Sphingomyelinase decreases transepithelial anion secretion in airway epithelial cells in part by inhibiting CFTR-mediated apical conductance. Physiol Rep 2021; 9:e14928. [PMID: 34382377 PMCID: PMC8358481 DOI: 10.14814/phy2.14928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel whose dysfunction causes cystic fibrosis (CF). The loss of CFTR function in pulmonary epithelial cells causes surface dehydration, mucus build-up, inflammation, and bacterial infections that lead to lung failure. Little has been done to evaluate the effects of lipid perturbation on CFTR activity, despite CFTR residing in the plasma membrane. This work focuses on the acute effects of sphingomyelinase (SMase), a bacterial virulence factor secreted by CF relevant airway bacteria which degrades sphingomyelin into ceramide and phosphocholine, on the electrical circuitry of pulmonary epithelial monolayers. We report that basolateral SMase decreases CFTR-mediated transepithelial anion secretion in both primary bronchial and tracheal epithelial cells from explant tissue, with current CFTR modulators unable to rescue this effect. Focusing on primary cells, we took a holistic ion homeostasis approach to determine a cause for reduced anion secretion following SMase treatment. Using impedance analysis, we determined that basolateral SMase inhibits apical and basolateral conductance in non-CF primary cells without affecting paracellular permeability. In CF primary airway cells, correction with clinically relevant CFTR modulators did not prevent SMase-mediated inhibition of CFTR currents. Furthermore, SMase was found to inhibit only apical conductance in these cells. Future work should determine the mechanism for SMase-mediated inhibition of CFTR currents, and further explore the clinical relevance of SMase and sphingolipid imbalances.
Collapse
Affiliation(s)
- Kirsten A. Cottrill
- Molecular and Systems Pharmacology PhD ProgramEmory UniversityAtlantaGeorgiaUSA
| | - Raven J. Peterson
- Biochemistry, Cell, and Developmental Biology PhD ProgramEmory UniversityAtlantaGeorgiaUSA
| | - Colby F. Lewallen
- Georgia Institute of TechnologyG.W. Woodruff School of Mechanical EngineeringAtlantaGeorgiaUSA
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep MedicineDepartment of MedicineEmory UniversityAtlantaGeorgiaUSA
- Department of Cell BiologyEmory UniversityAtlantaGeorgiaUSA
| | - Robert J. Bridges
- Department of Physiology and BiophysicsCenter for Genetic DiseasesChicago Medical SchoolNorth Chicago, IllinoisUSA
| | - Nael A. McCarty
- Molecular and Systems Pharmacology PhD ProgramEmory UniversityAtlantaGeorgiaUSA
- Department of Pediatrics and Children’s Healthcare of AtlantaCenter for Cystic Fibrosis and Airways Disease ResearchEmory University School of MedicineAtlantaGeorgiaUSA
| |
Collapse
|
9
|
Abstract
Lung fluid balance is maintained in part by the barriers formed by the pulmonary microvasculature and alveolar epithelium. Failure of either of these barriers leads to pulmonary edema, which limits lung function and exacerbates the severity of acute lung injury. Here we describe a method using Evans Blue dye to simultaneously measure the function of vascular and epithelial barriers of murine lungs in vivo.
Collapse
|
10
|
Huang X, Shi X, Hansen ME, Setiady I, Nemeth CL, Celli A, Huang B, Mauro T, Koval M, Desai TA. Nanotopography Enhances Dynamic Remodeling of Tight Junction Proteins through Cytosolic Liquid Complexes. ACS NANO 2020; 14:13192-13202. [PMID: 32940450 DOI: 10.1101/858118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nanotopographic materials provide special biophysical stimuli that can regulate epithelial tight junctions and their barrier function. Through the use of total internal reflection fluorescence microscopy of live cells, we demonstrated that contact of synthetic surfaces with defined nanotopography at the apical surface of epithelial monolayers increased paracellular permeability of macromolecules. To monitor changes in tight junction morphology in live cells, we fluorescently tagged the scaffold protein zonula occludens-1 (ZO-1) through CRISPR/Cas9-based gene editing to enable live cell tracking of ZO-1 expressed at physiologic levels. Contact between cells and nanostructured surfaces destabilized junction-associated ZO-1 and promoted its arrangement into highly dynamic liquid cytosolic complexes with a 1-5 μm diameter. Junction-associated ZO-1 rapidly remodeled, and we observed the direct transformation of cytosolic complexes into junction-like structures. Claudin-family tight junction transmembrane proteins and F-actin also were associated with these ZO-1 containing cytosolic complexes. These data suggest that these cytosolic structures are important intermediates formed in response to nanotopographic cues that facilitate rapid tight junction remodeling in order to regulate paracellular permeability.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Xiaoyu Shi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697, United States
| | - Mollie Eva Hansen
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California 94158, United States
| | - Initha Setiady
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Cameron L Nemeth
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California 94158, United States
| | - Anna Celli
- Department of Dermatology, University of California, San Francisco, San Francisco, California 94158, United States
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| | - Theodora Mauro
- Department of Dermatology, University of California, San Francisco, San Francisco, California 94158, United States
| | - Michael Koval
- Division of Pulmonary, Allergy, and Critical Care Medicine and Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
11
|
Huang X, Shi X, Hansen ME, Setiady I, Nemeth CL, Celli A, Huang B, Mauro T, Koval M, Desai TA. Nanotopography Enhances Dynamic Remodeling of Tight Junction Proteins through Cytosolic Liquid Complexes. ACS NANO 2020; 14:13192-13202. [PMID: 32940450 PMCID: PMC7606830 DOI: 10.1021/acsnano.0c04866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nanotopographic materials provide special biophysical stimuli that can regulate epithelial tight junctions and their barrier function. Through the use of total internal reflection fluorescence microscopy of live cells, we demonstrated that contact of synthetic surfaces with defined nanotopography at the apical surface of epithelial monolayers increased paracellular permeability of macromolecules. To monitor changes in tight junction morphology in live cells, we fluorescently tagged the scaffold protein zonula occludens-1 (ZO-1) through CRISPR/Cas9-based gene editing to enable live cell tracking of ZO-1 expressed at physiologic levels. Contact between cells and nanostructured surfaces destabilized junction-associated ZO-1 and promoted its arrangement into highly dynamic liquid cytosolic complexes with a 1-5 μm diameter. Junction-associated ZO-1 rapidly remodeled, and we observed the direct transformation of cytosolic complexes into junction-like structures. Claudin-family tight junction transmembrane proteins and F-actin also were associated with these ZO-1 containing cytosolic complexes. These data suggest that these cytosolic structures are important intermediates formed in response to nanotopographic cues that facilitate rapid tight junction remodeling in order to regulate paracellular permeability.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Xiaoyu Shi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697, United States
| | - Mollie Eva Hansen
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California 94158, United States
| | - Initha Setiady
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Cameron L Nemeth
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California 94158, United States
| | - Anna Celli
- Department of Dermatology, University of California, San Francisco, San Francisco, California 94158, United States
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| | - Theodora Mauro
- Department of Dermatology, University of California, San Francisco, San Francisco, California 94158, United States
| | - Michael Koval
- Division of Pulmonary, Allergy, and Critical Care Medicine and Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
12
|
Lynn KS, Peterson RJ, Koval M. Ruffles and spikes: Control of tight junction morphology and permeability by claudins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183339. [PMID: 32389670 DOI: 10.1016/j.bbamem.2020.183339] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
Abstract
Epithelial barrier function is regulated by a family of transmembrane proteins known as claudins. Functional tight junctions are formed when claudins interact with other transmembrane proteins, cytosolic scaffold proteins and the actin cytoskeleton. The predominant scaffold protein, zonula occludens-1 (ZO-1), directly binds to most claudin C-terminal domains, crosslinking them to the actin cytoskeleton. When imaged by immunofluorescence microscopy, tight junctions most frequently are linear structures that form between tricellular junctions. However, tight junctions also adapt non-linear architectures exhibiting either a ruffled or spiked morphology, which both are responses to changes in claudin engagement of actin filaments. Other terms for ruffled tight junctions include wavy, tortuous, undulating, serpentine or zig-zag junctions. Ruffling is under the control of hypoxia induced factor (HIF) and integrin-mediated signaling, as well as direct mechanical stimulation. Tight junction ruffling is specifically enhanced by claudin-2, antagonized by claudin-1 and requires claudin binding to ZO-1. Tight junction spikes are sites of active vesicle budding and fusion that appear as perpendicular projections oriented towards the nucleus. Spikes share molecular features with focal adherens junctions and tubulobulbar complexes found in Sertoli cells. Lung epithelial cells under stress form spikes due to an increase in claudin-5 expression that directly disrupts claudin-18/ZO-1 interactions. Together this suggests that claudins are not simply passive cargoes controlled by scaffold proteins. We propose a model where claudins specifically influence tight junction scaffold proteins to control interactions with the cytoskeleton as a mechanism that regulates tight junction assembly and function.
Collapse
Affiliation(s)
- K Sabrina Lynn
- Division of Pulmonary, Allergy Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Raven J Peterson
- Division of Pulmonary, Allergy Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael Koval
- Division of Pulmonary, Allergy Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
13
|
Abstract
The field of nanomedicine has made substantial strides in the areas of therapeutic and diagnostic development. For example, nanoparticle-modified drug compounds and imaging agents have resulted in markedly enhanced treatment outcomes and contrast efficiency. In recent years, investigational nanomedicine platforms have also been taken into the clinic, with regulatory approval for Abraxane® and other products being awarded. As the nanomedicine field has continued to evolve, multifunctional approaches have been explored to simultaneously integrate therapeutic and diagnostic agents onto a single particle, or deliver multiple nanomedicine-functionalized therapies in unison. Similar to the objectives of conventional combination therapy, these strategies may further improve treatment outcomes through targeted, multi-agent delivery that preserves drug synergy. Also, similar to conventional/unmodified combination therapy, nanomedicine-based drug delivery is often explored at fixed doses. A persistent challenge in all forms of drug administration is that drug synergy is time-dependent, dose-dependent and patient-specific at any given point of treatment. To overcome this challenge, the evolution towards nanomedicine-mediated co-delivery of multiple therapies has made the potential of interfacing artificial intelligence (AI) with nanomedicine to sustain optimization in combinatorial nanotherapy a reality. Specifically, optimizing drug and dose parameters in combinatorial nanomedicine administration is a specific area where AI can actionably realize the full potential of nanomedicine. To this end, this review will examine the role that AI can have in substantially improving nanomedicine-based treatment outcomes, particularly in the context of combination nanotherapy for both N-of-1 and population-optimized treatment.
Collapse
Affiliation(s)
- Dean Ho
- Department of Biomedical Engineering, NUS Engineering, National University of Singapore, Singapore.
| | | | | |
Collapse
|