1
|
Dujardin C, Habeler W, Aprile P, Dellaquila A, Monville C, Letourneur D, Simon-Yarza T. Engineered micro-structured biomimetic material for modelling the outer blood-retinal barrier. Biomaterials 2025; 322:123357. [PMID: 40311520 DOI: 10.1016/j.biomaterials.2025.123357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/31/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025]
Abstract
The outer blood-retinal barrier (oBRB) is compromised in several retinal pathologies, such as age-related macular degeneration affecting over 200 million people worldwide. This 200-350 μm thick tissue includes the retinal pigment epithelium (RPE), the Bruch's membrane, and the vascularized choroid supplying the outer retina. Degeneration of the RPE and/or choroid leads to photoreceptor loss and, ultimately, blindness. Current in vitro co-culture oBRB models developed to better understand the diseases and to propose therapeutic alternatives are often simplistic, focusing on 2D cultures, or face limitations including non-physiological dimensions or low throughput. This study presents an innovative scaffold-driven approach to model the oBRB using a polysaccharide membrane engineered by freeze-drying. Our specific protocol allowed to mimic the oBRB structure, within physiological dimensions, generating a non-porous surface to culture the hiPSC-derived RPE monolayer, and an internal 3D porous structure for the choroidal network. Results showed that the inner porous structure promoted physiological self-organization of endothelial cells and pericytes. Our single-piece functional material allowed the cultivation of both RPE and choroidal compartments in close proximity, favoring cellular interactions, while maintaining them in their designated locations. This cyto-compatible, easy-to-use, and off-the-shelf membrane, produced at large amounts and low costs, provides a physiologically relevant biomaterial for oBRB tissue modelling.
Collapse
Affiliation(s)
- Chloé Dujardin
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS), INSERM U1148, 75018, Paris, France.
| | - Walter Habeler
- Université Paris-Saclay, Univ Evry, INSERM, I-Stem, UMR861, Corbeil-Essonnes, 91100, France; I-Stem, CECS, Corbeil-Essonnes, 91100, France
| | - Paola Aprile
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS), INSERM U1148, 75018, Paris, France
| | - Alessandra Dellaquila
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS), INSERM U1148, 75018, Paris, France
| | - Christelle Monville
- Université Paris-Saclay, Univ Evry, INSERM, I-Stem, UMR861, Corbeil-Essonnes, 91100, France
| | - Didier Letourneur
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS), INSERM U1148, 75018, Paris, France
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS), INSERM U1148, 75018, Paris, France.
| |
Collapse
|
2
|
Durak S, Sutova HE, Ceylan R, Aciksari A, Yetisgin AA, Onder Tokuc E, Kutlu O, Karabas VL, Cetinel S. A Nanogel Formulation of Anti-VEGF Peptide for Ocular Neovascularization Treatment. ACS APPLIED BIO MATERIALS 2024; 7:6001-6013. [PMID: 39167547 DOI: 10.1021/acsabm.4c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Age-related macular degeneration (AMD) is an eye disorder that can lead to visual impairment in elder patients, and current treatments include repeated injections of monoclonal antibody-based antivascular endothelial growth factor (anti-VEGF) agents. This study investigates the potential of a nanoformulation of a peptide anti-VEGF molecule for neovascular AMD. Anti-VEGF peptide HRHTKQRHTALH (HRH), which has high affinity to VEGF-Fc receptor, was used as the bioactive agent to control neovascularization of the retina. The nanoformulation consisting of hyaluronic acid nanogel was generated by incorporating divinyl sulfone and cholesterol to increase the stability and control the size of the nanodrug. The encapsulation efficacy of nanogel was 65%, and drug release was 34.72% at the end of 192 h. Obtained nanogels were efficiently internalized in 15 min by human umbilical vascular endothelial cells (HUVECs) and ARPE-19 cells, and results indicate that nanoformulation is not toxic to ARPE-19 cells, whereas it inhibits HUVEC proliferation owing to anti-VEGF peptide in the nanogel structure. In the coculture experiment in which retinal penetration was modeled, it was observed that the nanogel reached HUVECs and negatively affected their proliferation without disturbing the monolayer of ARPE-19 cells. In vivo experiments with chick chorioallantoic membrane revealed that nanogel formulation has higher antiangiogenesis activity compared to free HRH. Additionally, in an oxygen-induced retinopathy model, the excessive growth of blood vessels was notably suppressed in mice treated with HRH-loaded nanogel. This research indicates that nanogels formulated in this study are promising candidates as a topical treatment for AMD.
Collapse
Affiliation(s)
- Saliha Durak
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey
| | - Hande Eda Sutova
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey
| | - Ramazan Ceylan
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Aysegul Aciksari
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| | - Abuzer Alp Yetisgin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Sabanci University, Istanbul 34956, Turkey
| | - Ecem Onder Tokuc
- Department of Ophthalmology, Kocaeli University School of Medicine, Kocaeli 41001, Turkey
| | - Ozlem Kutlu
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey
| | - Veysel Levent Karabas
- Department of Ophthalmology, Kocaeli University School of Medicine, Kocaeli 41001, Turkey
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
3
|
Niu Y, Xi Y, Jing Y, Zhou Z, Sun X, Zhang G, Yuan T, Chang T, Dou G. Endothelial Notch Signaling Regulates the Function of the Retinal Pigment Epithelial Barrier via EC Angiocrine Signaling. Antioxidants (Basel) 2023; 12:1979. [PMID: 38001832 PMCID: PMC10669439 DOI: 10.3390/antiox12111979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The outer blood-retina barrier (oBRB), comprises tightly connected retinal pigment epithelium (RPE) cells, Bruch's membrane, and choroid blood vessels, and is essential for retinal health and normal visual function. Disruption of the RPE barrier and its dysfunction can lead to retinal disorders such as age-related macular degeneration (AMD). In the present study, we investigated the essential role of choroid endothelial cells (ECs) in the RPE barrier formation process and its dysfunction. We discovered that ECs promoted RPE barrier formation through angiocrine signaling. Through blocking or activating endothelial Notch signaling and conducting experiments in vitro and in vivo, we confirmed that endothelial Notch signaling regulated the expression of heparin-binding epidermal growth factor (HBEGF) and consequently impacted the expression and activity of matrix metalloproteinases (MMP)-9 in RPE cells. This modulation influenced the RPE extracellular matrix deposition, tight junctions and RPE barrier function. In in vivo experiments, the intravitreal administration of recombinant HBEGF (r-HBEGF) alleviated the RPE barrier disruption induced by subretinal injection (SI) or laser treatment and also rescued RPE barrier disruption in endothelial Notch-deficient mice. Our results showed that the endothelial Notch signaling drove HBEGF expression through angiocrine signaling and effectively improved RPE barrier function by regulating the MMP-9 expression in RPE cells. It suggests that the modulation of Notch signaling in the choroidal endothelium may offer a novel therapeutic strategy for retinal degenerative diseases.
Collapse
Affiliation(s)
- Yali Niu
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Y.J.); (Z.Z.); (X.S.); (G.Z.); (T.Y.)
- College of Life Sciences, Northwest University, Xi’an 710069, China;
| | - Yixuan Xi
- College of Life Sciences, Northwest University, Xi’an 710069, China;
| | - Yutong Jing
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Y.J.); (Z.Z.); (X.S.); (G.Z.); (T.Y.)
| | - Ziyi Zhou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Y.J.); (Z.Z.); (X.S.); (G.Z.); (T.Y.)
| | - Xiaojia Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Y.J.); (Z.Z.); (X.S.); (G.Z.); (T.Y.)
| | - Guoheng Zhang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Y.J.); (Z.Z.); (X.S.); (G.Z.); (T.Y.)
| | - Tianhao Yuan
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Y.J.); (Z.Z.); (X.S.); (G.Z.); (T.Y.)
| | - Tianfang Chang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Y.J.); (Z.Z.); (X.S.); (G.Z.); (T.Y.)
| | - Guorui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Y.J.); (Z.Z.); (X.S.); (G.Z.); (T.Y.)
| |
Collapse
|
4
|
Ignatova I, Frolov R, Nymark S. The retinal pigment epithelium displays electrical excitability and lateral signal spreading. BMC Biol 2023; 21:84. [PMID: 37069561 PMCID: PMC10111697 DOI: 10.1186/s12915-023-01559-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 03/10/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND The non-neuronal retinal pigment epithelium (RPE) functions in intimate association with retinal photoreceptors, performing a multitude of tasks critical for maintaining retinal homeostasis and collaborating with retinal glial cells to provide metabolic support and ionic buffering. Accordingly, the RPE has recently been shown to display dynamic properties mediated by an array of ion channels usually more characteristic of astrocytes and excitable cells. The recent discovery of canonical voltage-activated Na+ channels in the RPE and their importance for phagocytosis of photoreceptor outer segments raises a question about their electrogenic function. Here, we performed a detailed electrophysiological analysis related to the functioning of these channels in human embryonic stem cell (hESC)-derived RPE. RESULTS Our studies examining the electrical properties of the hESC-RPE revealed that its membrane mainly displays passive properties in a broad voltage range, with the exception of depolarization-induced spikes caused by voltage-activated Na+ current (INa). Spike amplitude depended on the availability of INa and spike kinetics on the membrane time constant, and the spikes could be largely suppressed by TTX. Membrane resistance fluctuated rapidly and strongly, repeatedly changing over the course of recordings and causing closely correlated fluctuations in resting membrane potential. In a minority of cells, we found delayed secondary INa-like inward currents characterized by comparatively small amplitudes and slow kinetics, which produced secondary depolarizing spikes. Up to three consecutive delayed inward current waves were detected. These currents could be rapidly and reversibly augmented by applying L-type Ca2+ channel blocker nifedipine to diminish influx of calcium and thus increase gap junctional conductance. CONCLUSIONS This work shows, for the first time, that INa and INa-mediated voltage spikes can spread laterally through gap junctions in the monolayer of cells that are traditionally considered non-excitable. Our findings support a potential role of the RPE that goes beyond giving homeostatic support to the retina.
Collapse
Affiliation(s)
- Irina Ignatova
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Soile Nymark
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
5
|
Hellinen L, Hongisto H, Ramsay E, Kaarniranta K, Vellonen KS, Skottman H, Ruponen M. Comparison of barrier properties of outer blood-retinal barrier models - Human stem cell-based models as a novel tool for ocular drug discovery. Eur J Pharm Biopharm 2023; 184:181-188. [PMID: 36740104 DOI: 10.1016/j.ejpb.2023.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/26/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
The retinal pigment epithelial (RPE) cell monolayer forms the outer blood-retinal barrier and has a crucial role in ocular pharmacokinetics. Although several RPE cell models are available, there have been no systematic comparisons of their barrier properties with respect to drug permeability. We compared the barrier properties of RPE secondary cell lines (ARPE19, and ARPE19mel) and both primary (hfRPE) and stem-cell derived RPE (hESC-RPE) cells by investigating the permeability of nine drugs (aztreonam, ciprofloxacin, dexamethasone, fluconazole, ganciclovir, ketorolac, methotrexate, voriconazole, and quinidine) across cell monolayers. ARPE19, ARPE19mel, and hfRPE cells displayed a narrow Papp value range, with relatively high permeation rates (5.2-26 × 10-6 cm/s). In contrast, hESC-RPE cells efficiently restricted the drug flux, and displayed even lower Papp values than those reported for bovine RPE-choroid, with the range of 0.4-32 cm-6/s. Therefore, ARPE19, ARPE19mel, and hfRPE cells failed to form a tight barrier, whereas hESC-RPE cells restricted the drug flux to a similar extent as bovine RPE-choroid. Therefore, hESC-RPE cells are valuable tools in ocular drug discovery.
Collapse
Affiliation(s)
- Laura Hellinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland.
| | - Heidi Hongisto
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - Eva Ramsay
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70210 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 Kuopio, Finland.
| | - Kati-Sisko Vellonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland.
| | - Heli Skottman
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland.
| | - Marika Ruponen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland.
| |
Collapse
|
6
|
Davies AE, Williams RL, Lugano G, Pop SR, Kearns VR. In vitro and computational modelling of drug delivery across the outer blood-retinal barrier. Interface Focus 2020; 10:20190132. [PMID: 32194934 PMCID: PMC7061949 DOI: 10.1098/rsfs.2019.0132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2020] [Indexed: 12/22/2022] Open
Abstract
The ability to produce rapid, cost-effective and human-relevant data has the potential to accelerate the development of new drug delivery systems. Intraocular drug delivery is an area undergoing rapid expansion, due to the increase in sight-threatening diseases linked to increasing age and lifestyle factors. The outer blood-retinal barrier (OBRB) is important in this area of drug delivery, as it separates the eye from the systemic blood flow. This study reports the development of complementary in vitro and in silico models to study drug transport from silicone oil across the OBRB. Monolayer cultures of a human retinal pigmented epithelium cell line, ARPE-19, were added to chambers and exposed to a controlled flow to simulate drug clearance across the OBRB. Movement of dextran molecules and release of ibuprofen from silicone oil in this model were measured. Corresponding simulations were developed using COMSOL Multiphysics computational fluid dynamics software and validated using independent in vitro datasets. Computational simulations were able to predict dextran movement and ibuprofen release, with all of the features of the experimental release profiles being observed in the simulated data. Simulated values for peak concentrations of permeated dextran and ibuprofen released from silicone oil were within 18% of the in vitro results. This model could be used as a predictive tool for drug transport across this important tissue.
Collapse
Affiliation(s)
- Alys E. Davies
- Department of Eye and Vision Science, University of Liverpool, Liverpool, UK
| | - Rachel L. Williams
- Department of Eye and Vision Science, University of Liverpool, Liverpool, UK
| | - Gaia Lugano
- Department of Eye and Vision Science, University of Liverpool, Liverpool, UK
| | - Serban R. Pop
- Department of Computer Science, University of Chester, Chester, UK
| | - Victoria R. Kearns
- Department of Eye and Vision Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
7
|
Drug Flux Across RPE Cell Models: The Hunt for An Appropriate Outer Blood-Retinal Barrier Model for Use in Early Drug Discovery. Pharmaceutics 2020; 12:pharmaceutics12020176. [PMID: 32093035 PMCID: PMC7076505 DOI: 10.3390/pharmaceutics12020176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/23/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
The retinal pigment epithelial (RPE) cell monolayer forms the outer blood–retinal barrier and has a crucial role in ocular pharmacokinetics. Although several RPE cell models are available, there have been no systematic comparisons of their barrier properties with respect to drug permeability. We compared the barrier properties of several RPE secondary cell lines (ARPE19, ARPE19mel, and LEPI) and both primary (hfRPE) and stem-cell derived RPE (hESC-RPE) cells by investigating the permeability of nine drugs (aztreonam, ciprofloxacin, dexamethasone, fluconazole, ganciclovir, ketorolac, methotrexate, voriconazole, and quinidine) across cell monolayers. ARPE19, ARPE19mel, and hfRPE cells displayed a narrow Papp value range, with relatively high permeation rates (5.2–26 × 10−6 cm/s. In contrast, hESC-RPE and LEPI cells efficiently restricted the drug flux, and displayed even lower Papp values than those reported for bovine RPE-choroid, with the range of 0.4–32 cm−6/s (hESC-RPE cells) and 0.4–29 × 10−6 cm/s, (LEPI cells). Therefore, ARPE19, ARPE19mel, and hfRPE cells failed to form a tight barrier, whereas hESC-RPE and LEPI cells restricted the drug flux to a similar extent as bovine RPE-choroid. Therefore, LEPI and hESC-RPE cells are valuable tools in ocular drug discovery.
Collapse
|
8
|
Co-culture of human induced pluripotent stem cell-derived retinal pigment epithelial cells and endothelial cells on double collagen-coated honeycomb films. Acta Biomater 2020; 101:327-343. [PMID: 31711900 DOI: 10.1016/j.actbio.2019.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 12/28/2022]
Abstract
In vitro cell culture models representing the physiological and pathological features of the outer retina are urgently needed. Artificial tissue replacements for patients suffering from degenerative retinal diseases are similarly in great demand. Here, we developed a co-culture system based solely on the use of human induced pluripotent stem cell (hiPSC)-derived cells. For the first time, hiPSC-derived retinal pigment epithelium (RPE) and endothelial cells (EC) were cultured on opposite sides of porous polylactide substrates prepared by breath figures (BF), where both surfaces had been collagen-coated by Langmuir-Schaefer (LS) technology. Small modifications of casting conditions during material preparation allowed the production of free-standing materials with distinct porosity, wettability and ion diffusion capacity. Complete pore coverage was achieved by the collagen coating procedure, resulting in a detectable nanoscale topography. Primary retinal endothelial cells (ACBRI181) and umbilical cord vein endothelial cells (hUVEC) were utilised as EC references. Mono-cultures of all ECs were prepared for comparison. All tested materials supported cell attachment and growth. In mono-culture, properties of the materials had a major effect on the growth of all ECs. In co-culture, the presence of hiPSC-RPE affected the primary ECs more significantly than hiPSC-EC. In consistency, hiPSC-RPE were also less affected by hiPSC-EC than by the primary ECs. Finally, our results show that the modulation of the porosity of the materials can promote or prevent EC migration. In short, we showed that the behaviour of the cells is highly dependent on the three main variables of the study: the presence of a second cell type in co-culture, the source of endothelial cells and the biomaterial properties. The combination of BF and LS methodologies is a powerful strategy to develop thin but stable materials enabling cell growth and modulation of cell-cell contact. STATEMENT OF SIGNIFICANCE: Artificial blood-retinal barriers (BRB), mimicking the interface at the back of the eye, are urgently needed as physiological and disease models, and for tissue transplantation targeting patients suffering from degenerative retinal diseases. Here, we developed a new co-culture model based on thin, biodegradable porous films, coated on both sides with collagen, one of the main components of the natural BRB, and cultivated endothelial and retinal pigment epithelial cells on opposite sides of the films, forming a three-layer structure. Importantly, our hiPSC-EC and hiPSC-RPE co-culture model is the first to exclusively use human induced pluripotent stem cells as cell source, which have been widely regarded as an practical candidate for therapeutic applications in regenerative medicine.
Collapse
|
9
|
Oliveira AV, Sarmento B. Establishment of a multilayered 3D cellular model of the retinal-blood barrier. Int J Pharm 2019; 572:118811. [PMID: 31678524 DOI: 10.1016/j.ijpharm.2019.118811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 11/19/2022]
Abstract
Retinal disorders are leading causes of blindness. Still, treatment strategies are limited and the challenging anatomical barriers of the eye limit the evaluation and development of new therapeutics. Among these layers of barriers is the blood-retinal barrier, which separates the retina from the choroid by the Bruch's membrane. This work aimed to establish a 3D cellular model that recapitulates barrier properties of the BRB and diffusion through the vitreous, the main barriers encountered upon intravitreal injection. Several parameters were evaluated namely co-culture time of ARPE-19 and HUVECs and different biomaterial compositions of hydrogels to better mimic the human vitreous. The developed vitreous mimic has viscoelastic properties similar to human vitreous. Co-culture of human retinal and endothelial cells showed increased transepithelial resistance with longer co-culture times concomitant with reduced permeability to FITC-dextran 40 kDa. The proposed models lay the foundation of a platform for faster assessment of a large number of samples and without the use of animals.
Collapse
Affiliation(s)
- Ana V Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
10
|
Compromised Barrier Function in Human Induced Pluripotent Stem-Cell-Derived Retinal Pigment Epithelial Cells from Type 2 Diabetic Patients. Int J Mol Sci 2019; 20:ijms20153773. [PMID: 31375001 PMCID: PMC6696227 DOI: 10.3390/ijms20153773] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
In diabetic patients, high blood glucose induces alterations in retinal function and can lead to visual impairment due to diabetic retinopathy. In immortalized retinal pigment epithelial (RPE) cultures, high glucose concentrations are shown to lead to impairment in epithelial barrier properties. For the first time, the induced pluripotent stem-cell-derived retinal pigment epithelium (hiPSC-RPE) cell lines derived from type 2 diabetics and healthy control patients were utilized to assess the effects of glucose concentration on the cellular functionality. We show that both type 2 diabetic and healthy control hiPSC-RPE lines differentiate and mature well, both in high and normal glucose concentrations, express RPE specific genes, secrete pigment epithelium derived factor, and form a polarized cell layer. Here, type 2 diabetic hiPSC-RPE cells had a decreased barrier function compared to controls. Added insulin increased the epithelial cell layer tightness in normal glucose concentrations, and the effect was more evident in type 2 diabetics than in healthy control hiPSC-RPE cells. In addition, the preliminary functionality assessments showed that type 2 diabetic hiPSC-RPE cells had attenuated autophagy detected via ubiquitin-binding protein p62/Sequestosome-1 (p62/SQSTM1) accumulation, and lowered pro- matrix metalloproteinase 2 (proMMP2) as well as increased pro-MMP9 secretion. These results suggest that the cellular ability to tolerate stress is possibly decreased in type 2 diabetic RPE cells.
Collapse
|
11
|
Churm R, Dunseath GJ, Prior SL, Thomas RL, Banerjee S, Owens DR. Development and characterization of an in vitro system of the human retina using cultured cell lines. Clin Exp Ophthalmol 2019; 47:1055-1062. [PMID: 31254428 DOI: 10.1111/ceo.13578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Previously developed in vitro cultures of the human retina have been solo or dual cell cultures. We developed a triple-cell culture in vitro model utilizing a membrane system to produce a better representation of a functional and morphological human retina. METHODS Retinal microvascular endothelial cells (HRMVEC/ACBRI181, cell systems), retinal pigment epithelium cells (RPE/ARPE-19, ATCC) and Müller glial cells (Moorfield Institute of Ophthalmology-Müller 1, UCL) were grown in a triple culture. Our optimized triple-culture media contained a mix of specific endothelial medium and high glucose Dulbecco's Modified Eagle's medium, where all three layers were viable for up to 5 days. Co-culture effect on morphological changes (cell staining) and gene expression of functional genes (pigment epithelium derived factor [PEDF] and vascular endothelial growth factor [VEGF]) were measured from RNA via real-time polymerase chain reaction. Expression of tight junction protein 1 (TJP1) was measured in RNA isolated from ARPE-19s, to assess barrier stability. RESULTS The triple-culture promotes certain cell functionality through up-regulation of TJP1, increasing PEDF and decreasing VEGF expression highlighting its importance for the assessment of disease mechanisms distinct from a solo culture which would not allow the true effect of the native microenvironment to be elucidated. CONCLUSIONS This model's novelty and reliability allows for the assessment of singular cellular function within the retinal microenvironment and overall assessment of retinal health, while eliminating the requirement of animal-based models.
Collapse
Affiliation(s)
- Rachel Churm
- Diabetes Research Group, Swansea University, Swansea, UK
| | | | - Sarah L Prior
- Diabetes Research Group, Swansea University, Swansea, UK
| | | | - Sanjiv Banerjee
- Cardiff and Vale Health Board, University of Wales Hospital, Cardiff, UK
| | - David R Owens
- Diabetes Research Group, Swansea University, Swansea, UK
| |
Collapse
|
12
|
Palanisamy K, Karunakaran C, Raman R, Chidambaram S. Optimization of an in vitro bilayer model for studying the functional interplay between human primary retinal pigment epithelial and choroidal endothelial cells isolated from donor eyes. BMC Res Notes 2019; 12:307. [PMID: 31146784 PMCID: PMC6543644 DOI: 10.1186/s13104-019-4333-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/22/2019] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE The microenvironment of outer retina is largely regulated by retinal pigment epithelium (RPE) and choroid. Damage to either of these layers lead to the development of age related macular degeneration (AMD). A simplified cell culture model that mimics the RPE/Bruch's membrane (BM) and choroidal layers of the eye is a prerequisite for elucidating the molecular mechanism of disease progression. RESULTS We have isolated primary retinal pigment epithelial cells (hRPE) and human primary choroidal endothelial cells (hCEC) from donor eyes to construct a bilayer of hCEC/hRPE on transwell inserts. Secretion of VEGF in the insert grown bilayer was significantly higher (22 pg/ml) than hCEC monolayer (3 pg/ml). To mimic the disease condition the model was treated with 100 ng/ml of VEGF, which increased the permeability of bilayer for 20 kDa FITC dextran while addition of bevacizumab, a humanized anti-VEGF drug, reversed the effect. To conclude the transwell insert based human primary hCEC/hRPE bilayer model would be an ideal system for studying the disease mechanisms and the crosstalk between RPE and choroid. This model will also be useful in screening small molecules and performing drug permeability kinetics.
Collapse
Affiliation(s)
- Karthikka Palanisamy
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Chennai, India.,School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Coral Karunakaran
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Chennai, India
| | - Rajiv Raman
- Department of Vitreo-Retinal Services, Medical Research Foundation, Chennai, India
| | - Subbulakshmi Chidambaram
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Chennai, India. .,Department of Biochemistry and Molecular Biology, Pondicherry University, Kalapet, Puducherry, India.
| |
Collapse
|
13
|
Hunt NC, Hallam D, Chichagova V, Steel DH, Lako M. The Application of Biomaterials to Tissue Engineering Neural Retina and Retinal Pigment Epithelium. Adv Healthc Mater 2018; 7:e1800226. [PMID: 30175520 DOI: 10.1002/adhm.201800226] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/16/2018] [Indexed: 12/21/2022]
Abstract
The prevalence of degenerative retinal disease is ever increasing as life expectancy rises globally. The human retina fails to regenerate and the use of human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) to engineer retinal tissue is of particular interest due to the limited availability of suitable allogeneic or autologous tissue. Retinal tissue and its development are well characterized, which have resulted in robust assays to assess the development of tissue-engineered retina. Retinal tissue can be generated in vitro from hESCs and hiPSCs without biomaterial scaffolds, but despite advancements, protocols remain slow, expensive, and fail to result in mature functional tissue. Several recent studies have demonstrated the potential of biomaterial scaffolds to enhance generation of hESC/hiPSC-derived retinal tissue, including synthetic polymers, silk, alginate, hyaluronic acid, and extracellular matrix molecules. This review outlines the advances that have been made toward tissue-engineered neural retina and retinal pigment epithelium (RPE) for clinical application in recent years, including the success of clinical trials involving transplantation of cells and tissue to promote retinal repair; and the evidence from in vitro and animal studies that biomaterials can enhance development and integration of retinal tissue.
Collapse
Affiliation(s)
- Nicola C. Hunt
- Newcastle UniversityInstitute of Genetic MedicineInternational Centre for Life Central Parkway Newcastle NE1 3BZ UK
| | - Dean Hallam
- Newcastle UniversityInstitute of Genetic MedicineInternational Centre for Life Central Parkway Newcastle NE1 3BZ UK
| | - Valeria Chichagova
- Newcastle UniversityInstitute of Genetic MedicineInternational Centre for Life Central Parkway Newcastle NE1 3BZ UK
- Biomedicine WestInternational Centre for LifeTimes SquareNewcastle upon Tyne NE1 4EP UK
| | - David H. Steel
- Newcastle UniversityInstitute of Genetic MedicineInternational Centre for Life Central Parkway Newcastle NE1 3BZ UK
| | - Majlinda Lako
- Newcastle UniversityInstitute of Genetic MedicineInternational Centre for Life Central Parkway Newcastle NE1 3BZ UK
| |
Collapse
|
14
|
Dong CX, Song CP, Zhang CP, Dong M, Gong XR, Gao HY, Wang H. Clinical and experimental study on angiopoietin-like protein 8 associated with proliferative diabetic retinopathy. Int J Ophthalmol 2017; 10:1819-1823. [PMID: 29259898 DOI: 10.18240/ijo.2017.12.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/25/2017] [Indexed: 11/23/2022] Open
Abstract
AIM To confirm the role of angiopoietin-like protein 8 (Angptl 8) in proliferative diabetic retinopathy (PDR). METHODS The sera and aqueous humor of 10 PDR patients and 10 non-diabetic retinopathy (NDR) patients (idiopathic macular hole patients) were collected and the expression of Angptl 8 was detected by enzyme linked immune-sorbent assay (ELISA). Experimental diabetes mice model was induced with streptozotocin. The expression of glycosylated hemoglobin and Angptl 8 in sera was detected. Recombinant Angptl 8 was re-infused into wild type (WT) diabetic mice and spatial frequency threshold and contrast sensitivity were measured. In vitro retinal pigment epithelium (RPE) were stimulated by recombinant Angptl 8 for 24h. MMT assay were used to detect cell proliferation. At the same time, qRT-PCR and Western blot was used to measure the expression of proliferation-related factors in PRE cells. RESULTS The expression of Angptl 8 was markedly increased in the sera and aqueous humor of PDR patients (F=99.02, P<0.0001 in sera; t=10.42, P<0.0001 in aqueous). After successfully establishing the diabetic mice model, we found that glycosylated hemoglobin and Angptl 8 expression levels were increased. Re-infusion of recombinant Angptl 8 into WT diabetic mice could further decrease spatial frequency threshold and contrast sensitivity (P<0.01). In vitro, RPE cells stimulated by recombinant Angptl 8 could increase the relative absorbance of MMT assay (1.486±0.042 vs 1.000±0.104, P<0.05) and proliferating cell nuclear antigen (PCNA) expression (0.55±0.01 vs 0.29±0.03, P<0.05). The proliferative effect of Angptl 8 is mainly mediated by increasing the expression of proliferation-activating factors cyclin A1 (4.973±0.205 vs 2.720±0.197, P<0.05), cyclin F (5.690±0.219 vs 4.297±0.292, P<0.05) and E2F2 (2.297±0.102 vs 1.750±0.146, P<0.05), and reducing the expression of proliferation-inhibiting factors cdkn1 (2.370±0.074 vs 3.317±0.135, P<0.05) and cdkn2 (4.793±0.065 vs 5.387±0.149, P<0.05). CONCLUSION The expression of Angptl 8 is increased in PDR, and the increased Angptl 8 can promote proliferation and increase proliferation-related factors.
Collapse
Affiliation(s)
- Chang-Xia Dong
- Department of Ophthalmology, Yantai Yuhuangding Hospital, Yantai 264000, Shandong Province, China
| | - Cai-Ping Song
- Department of Ophthalmology, Weihai Municipal Hospital, Weihai 264200, Shandong Province, China
| | - Chun-Ping Zhang
- Department of Stomatology, Yantai Yuhuangding Hospital, Yantai 264000, Shandong Province, China
| | - Mei Dong
- Department of Ophthalmology, Yantai Yuhuangding Hospital, Yantai 264000, Shandong Province, China
| | - Xiu-Rong Gong
- Department of Ophthalmology, Yantai Yuhuangding Hospital, Yantai 264000, Shandong Province, China
| | - He-Ying Gao
- Department of Ophthalmology, Yantai Yuhuangding Hospital, Yantai 264000, Shandong Province, China
| | - Hong Wang
- Department of Ophthalmology, Shandong Qilu Hospital, Shandong University, Jinan 25000, Shandong Province, China
| |
Collapse
|