1
|
Xu Y, Peng Y, Wu X, Ni F, Sun D, Zhang P, Yang Y, Yan M, Mi J, Tian G. VEGF-B prevents chronic hyperglycemia-induced retinal vascular leakage by regulating the CDC42-ZO1/VE-cadherin pathway. FASEB J 2024; 38:e70019. [PMID: 39215561 DOI: 10.1096/fj.202300987rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Non-proliferative diabetic retinopathy (NPDR) is the early stage of diabetic retinopathy (DR) and is a chronic oxidative stress-related ocular disease. Few treatments are approved for early DR. This study aimed to investigate the pathogenic mechanisms underlying the retinal micro-vasculopathy induced by diabetes and to explore an early potential for treating early DR in a mouse model. The mouse model of type 1 diabetes was established by intraperitoneal injection of streptozotocin (STZ, 180 mg/kg), which was used as the early DR model. The body weight and blood glucose mice were measured regularly; The retinal vascular leakage in the early DR mice was determined by whole-mount staining; Label-free quantitative proteomic analysis and bioinformatics were used to explore the target proteins and signaling pathways associated with the retinal tissues of early DR mice; To detect the effects of target protein on endothelial cell proliferation, migration, and tube formation, knockdown and overexpression of VEGF-B were performed in human retinal vascular endothelial cells (HRECs); Western blotting was used to detect the expression of target proteins in vitro and in vivo; Meanwhile, the therapeutic effect of VEGF-B on vascular leakage has also been evaluated in vitro and in vivo. The protein expressions of vascular endothelial growth factor (VEGF)-B and the Rho GTPases family member CDC42 were reduced in the retinal tissues of early DR. VEGF-B upregulated the expression of CDC42/ZO1/VE-cadherin and prevented hyperglycemia-induced vascular leakage in HRECs. Standard intravitreal VEGF-B injections improved the retinal vascular leakage and neurovascular response in early DR mice. Our findings demonstrated, for the first time, that in diabetes, the retinal vessels are damaged due to decreased VEGF-B expression through downregulation of CDC42/ZO1/VE-cadherin expression. Therefore, VEGF-B could be used as a novel therapy for early DR.
Collapse
Affiliation(s)
- Yuxue Xu
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| | - Yue Peng
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| | - Xiaojun Wu
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| | - Feixue Ni
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| | - Daxi Sun
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| | - Pengfei Zhang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
- School of Clinical Medicine, Binzhou Medical University, Yantai, China
| | - Yang Yang
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| | - Miao Yan
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| | - Jia Mi
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| | - Geng Tian
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| |
Collapse
|
2
|
Gao Y, Zhang L, Zhang F, Liu R, Liu L, Li X, Zhu X, Liang Y. Traditional Chinese medicine and its active substances reduce vascular injury in diabetes via regulating autophagic activity. Front Pharmacol 2024; 15:1355246. [PMID: 38505420 PMCID: PMC10949535 DOI: 10.3389/fphar.2024.1355246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Due to its high prevalence, poor prognosis, and heavy burden on healthcare costs, diabetic vascular complications have become a significant public health issue. Currently, the molecular and pathophysiological mechanisms underlying diabetes-induced vascular complications remain incompletely understood. Autophagy, a highly conserved process of lysosomal degradation, maintains intracellular homeostasis and energy balance via removing protein aggregates, damaged organelles, and exogenous pathogens. Increasing evidence suggests that dysregulated autophagy may contribute to vascular abnormalities in various types of blood vessels, including both microvessels and large vessels, under diabetic conditions. Traditional Chinese medicine (TCM) possesses the characteristics of "multiple components, multiple targets and multiple pathways," and its safety has been demonstrated, particularly with minimal toxicity in liver and kidney. Thus, TCM has gained increasing attention from researchers. Moreover, recent studies have indicated that Chinese herbal medicine and its active compounds can improve vascular damage in diabetes by regulating autophagy. Based on this background, this review summarizes the classification, occurrence process, and related molecular mechanisms of autophagy, with a focus on discussing the role of autophagy in diabetic vascular damage and the protective effects of TCM and its active compounds through the regulation of autophagy in diabetes. Moreover, we systematically elucidate the autophagic mechanisms by which TCM formulations, individual herbal extracts, and active compounds regulate diabetic vascular damage, thereby providing new candidate drugs for clinical treatment of vascular complications in diabetes. Therefore, further exploration of TCM and its active compounds with autophagy-regulating effects holds significant research value for achieving targeted therapeutic approaches for diabetic vascular complications.
Collapse
Affiliation(s)
- Yankui Gao
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Lei Zhang
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Fei Zhang
- Department of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Lanzhou, China
| | - Rong Liu
- Department of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lei Liu
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaoyan Li
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiangdong Zhu
- Department of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Yonglin Liang
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
3
|
Chueh KS, Lu JH, Juan TJ, Chuang SM, Juan YS. The Molecular Mechanism and Therapeutic Application of Autophagy for Urological Disease. Int J Mol Sci 2023; 24:14887. [PMID: 37834333 PMCID: PMC10573233 DOI: 10.3390/ijms241914887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Autophagy is a lysosomal degradation process known as autophagic flux, involving the engulfment of damaged proteins and organelles by double-membrane autophagosomes. It comprises microautophagy, chaperone-mediated autophagy (CMA), and macroautophagy. Macroautophagy consists of three stages: induction, autophagosome formation, and autolysosome formation. Atg8-family proteins are valuable for tracking autophagic structures and have been widely utilized for monitoring autophagy. The conversion of LC3 to its lipidated form, LC3-II, served as an indicator of autophagy. Autophagy is implicated in human pathophysiology, such as neurodegeneration, cancer, and immune disorders. Moreover, autophagy impacts urological diseases, such as interstitial cystitis /bladder pain syndrome (IC/BPS), ketamine-induced ulcerative cystitis (KIC), chemotherapy-induced cystitis (CIC), radiation cystitis (RC), erectile dysfunction (ED), bladder outlet obstruction (BOO), prostate cancer, bladder cancer, renal cancer, testicular cancer, and penile cancer. Autophagy plays a dual role in the management of urologic diseases, and the identification of potential biomarkers associated with autophagy is a crucial step towards a deeper understanding of its role in these diseases. Methods for monitoring autophagy include TEM, Western blot, immunofluorescence, flow cytometry, and genetic tools. Autophagosome and autolysosome structures are discerned via TEM. Western blot, immunofluorescence, northern blot, and RT-PCR assess protein/mRNA levels. Luciferase assay tracks flux; GFP-LC3 transgenic mice aid study. Knockdown methods (miRNA and RNAi) offer insights. This article extensively examines autophagy's molecular mechanism, pharmacological regulation, and therapeutic application involvement in urological diseases.
Collapse
Affiliation(s)
- Kuang-Shun Chueh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, San-min District, Kaohsiung 80708, Taiwan;
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jian-He Lu
- Center for Agricultural, Forestry, Fishery, Livestock and Aquaculture Carbon Emission Inventory and Emerging Compounds (CAFEC), General Research Service Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Tai-Jui Juan
- Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Shu-Mien Chuang
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yung-Shun Juan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, San-min District, Kaohsiung 80708, Taiwan;
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
4
|
Lundstrom K, Hromić-Jahjefendić A, Bilajac E, Aljabali AAA, Baralić K, Sabri NA, Shehata EM, Raslan M, Ferreira ACBH, Orlandi L, Serrano-Aroca Á, Tambuwala MM, Uversky VN, Azevedo V, Alzahrani KJ, Alsharif KF, Halawani IF, Alzahrani FM, Redwan EM, Barh D. COVID-19 signalome: Pathways for SARS-CoV-2 infection and impact on COVID-19 associated comorbidity. Cell Signal 2023; 101:110495. [PMID: 36252792 PMCID: PMC9568271 DOI: 10.1016/j.cellsig.2022.110495] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic has been the focus of research the past two years. The major breakthrough was made by discovering pathways related to SARS-CoV-2 infection through cellular interaction by angiotensin-converting enzyme (ACE2) and cytokine storm. The presence of ACE2 in lungs, intestines, cardiovascular tissues, brain, kidneys, liver, and eyes shows that SARS-CoV-2 may have targeted these organs to further activate intracellular signalling pathways that lead to cytokine release syndrome. It has also been reported that SARS-CoV-2 can hijack coatomer protein-I (COPI) for S protein retrograde trafficking to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), which, in turn, acts as the assembly site for viral progeny. In infected cells, the newly synthesized S protein in endoplasmic reticulum (ER) is transported first to the Golgi body, and then from the Golgi body to the ERGIC compartment resulting in the formation of specific a motif at the C-terminal end. This review summarizes major events of SARS-CoV-2 infection route, immune response following host-cell infection as an important factor for disease outcome, as well as comorbidity issues of various tissues and organs arising due to COVID-19. Investigations on alterations of host-cell machinery and viral interactions with multiple intracellular signaling pathways could represent a major factor in more effective disease management.
Collapse
Affiliation(s)
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Esma Bilajac
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan.
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Nagwa A Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11865, Egypt.
| | - Eslam M Shehata
- Drug Research Center, Clinical Research and Bioanalysis Department, Cairo 11865, Egypt.
| | - Mohamed Raslan
- Drug Research Center, Clinical Research and Bioanalysis Department, Cairo 11865, Egypt.
| | - Ana Cláudia B H Ferreira
- Campinas State University, Campinas, São Paulo, Brazil; University Center of Lavras (UNILAVRAS), Lavras, Minas Gerais, Brazil.
| | - Lidiane Orlandi
- University Center of Lavras (UNILAVRAS), Lavras, Minas Gerais, Brazil.
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain.
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Vasco Azevedo
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Khalaf F Alsharif
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Ibrahim F Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Fuad M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia.
| | - Debmalya Barh
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, India.
| |
Collapse
|
5
|
Mormile R. COVID-19 myocarditis and lasting heart damage: is deregulation of the Beclin1-Survivin axis the critical step of pathogenesis? Expert Rev Cardiovasc Ther 2021; 19:681-683. [PMID: 34253135 DOI: 10.1080/14779072.2021.1955352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Raffaella Mormile
- Division of Pediatrics and Neonatology, Moscati Hospital, Aversa, Italy
| |
Collapse
|
6
|
Lee JH, Samsuzzaman M, Park MG, Park SJ, Kim SY. Methylglyoxal-derived hemoglobin advanced glycation end products induce apoptosis and oxidative stress in human umbilical vein endothelial cells. Int J Biol Macromol 2021; 187:409-421. [PMID: 34271050 DOI: 10.1016/j.ijbiomac.2021.07.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/30/2022]
Abstract
The presence of excess glucose promotes hemoglobin glycation via the biochemical modification of hemoglobin by dicarbonyl products. However, the precise effects of Hb-AGEs in human umbilical vein endothelial cells (HUVECs) are not known to date. Therefore, we investigated the tentative effects of Hb-AGEs in HUVECs. Initially, we used the AGE formation assay to examine the selectivity of MGO toward various proteins. Among all proteins, MGO-Hb-AGEs formation was higher compared to the formation of other dicarbonyl-mediated AGEs. Our next data demonstrated that treatment with 0.5 mg/mL of Hb-AGEs-4w significantly reduced cell viability in HUVECs. Further, we evaluated the role of MGO in conformational and structural changes in Hb. The results showed that Hb demonstrated a highly altered conformation upon incubation with MGO. Moreover, Hb-AGEs-4w treatment strongly increased ROS production, and decreased mitochondrial membrane potential in HUVECs, and moderately reduced the expression of phosphorylated forms of p-38 and JNK. We observed that Hb-AGEs-4w treatment increased the number of apoptotic cells and the Bax/Bcl-2 ratio and cleaved the nuclear enzyme PARP in HUVECs. Finally, Hb-AGEs also inhibited migration and proliferation of HUVECs, thus be physiologically significant in endothelial dysfunction. Taken together, our data suggest that Hb-AGEs may play a critical role in inducing vascular endothelial cell damage. Therefore, this study may provide a plausible explanation for the potential Hb-AGEs in human endothelial cell dysfunction of diabetic patients.
Collapse
Affiliation(s)
- Jae Hyuk Lee
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Md Samsuzzaman
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Myoung Gyu Park
- MetaCen Therapeutics Company, # Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| | - Sung Jean Park
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Science, Gachon University, #191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea.
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Science, Gachon University, #191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea.
| |
Collapse
|
7
|
Innovative therapeutic strategy using prostaglandin I 2 agonist (ONO1301) combined with nano drug delivery system for pulmonary arterial hypertension. Sci Rep 2021; 11:7292. [PMID: 33790393 PMCID: PMC8012709 DOI: 10.1038/s41598-021-86781-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/03/2021] [Indexed: 02/05/2023] Open
Abstract
Clinical outcomes of pulmonary arterial hypertension (PAH) may be improved using targeted delivery system. We investigated the efficacy of ONO1301 (prostacyclin agonist) nanospheres (ONONS) in Sugen5416/hypoxia rat models of PAH. The rats were injected with saline (control) or ONONS (n = 10, each) on days 21 and 28, respectively. Hepatocyte growth factor (HGF)-expressing fibroblasts and inflammatory cytokines were measured. Cardiac performance was assessed and targeted delivery was monitored in vivo, using Texas red-labeled nanoparticles. Compared with control, HGF-expressing fibroblasts and HGF expression levels were significantly higher in the ONONS group, while the levels of interleukin-6, interleukin-1β, transforming growth factor-β, and platelet-derived growth factor were lower. Histological assessment revealed significant amelioration of the percent medial wall thickness in pulmonary vasculature of rats in the ONONS group. Rats in the ONONS group showed decreased proliferating cell nuclear antigen-positive smooth muscle cells and improved right ventricle pressure/left ventricle pressure. No difference was seen in the accumulation of Texas red-labeled nanoparticles in the brain, heart, liver, and spleen between PAH and normal rats. However, a significant area of nanoparticles was detected in the lungs of PAH rats. ONONS effectively ameliorated PAH, with selective delivery to the damaged lung.
Collapse
|
8
|
Duan L, Li S, Wang L, Jing Y, Li G, Sun Y, Sun W, Li Y, Zhao L, Xin S. Melatonin Plays a Critical Protective Role in Nicotine-Related Abdominal Aortic Aneurysm. Front Physiol 2020; 11:866. [PMID: 32765304 PMCID: PMC7379742 DOI: 10.3389/fphys.2020.00866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/26/2020] [Indexed: 01/10/2023] Open
Abstract
Aim: Smoking is a major risk factor for abdominal aortic aneurysm (AAA). Among the components of smoke, nicotine is known to exert pro-atherosclerotic, prothrombotic, and proangiogenic effects on vascular smooth muscle cells (VSMCs). The current study was designed to investigate the mechanisms through which nicotine induces vascular wall dysfunction and to examine whether melatonin protects against nicotine-related AAA. Methods: In this study, an enzyme-linked immunosorbent assay (ELISA) was used to measure melatonin and TNF-α levels, as well as total antioxidant status (TAS), in patients with AAA. We established a nicotine-related AAA model and explored the mechanisms underlying the therapeutic effects of melatonin. Tissue histopathology was used to assess vascular function, while western blotting (WB) and immunofluorescence staining were performed to detect protein expression. Results: We observed melatonin insufficiency in the serum from patients with AAA, particularly smokers. Moreover, melatonin level was positively correlated with antioxidant capacity. In the in vivo model, nicotine accelerated AAA expansion and destroyed vascular structure. Furthermore, OPN, LC3II, p62, matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), NF-κB p65, TNF-α, phosphorylated AKT, and phosphorylated mTOR levels were increased, in vivo, following nicotine treatment, while SM22α and α-SMA levels were reduced. Additionally, melatonin attenuated the effects of nicotine on AAA and reversed changes in protein expression. Moreover, melatonin lost its protective effects following bafilomycin A1-mediated inhibition of autophagy. Conclusion: Based on our data, melatonin exerts a beneficial effect on rats with nicotine-related AAA by downregulating the AKT-mTOR signaling pathway, improving autophagy dysfunction, and restoring the VSMC phenotype.
Collapse
Affiliation(s)
- Liren Duan
- Department of Vascular Surgery, The First Hospital of China Medical University, Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, China
| | - Shenli Li
- Department of Anesthesiology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Lei Wang
- Department of Vascular Surgery, The First Hospital of China Medical University, Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, China
| | - Yuchen Jing
- Department of Vascular Surgery, The First Hospital of China Medical University, Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, China
| | - Guangxin Li
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Yaodong Sun
- Department of Vascular Surgery, The First Hospital of China Medical University, Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, China
| | - Weifeng Sun
- Department of Vascular Surgery, The First Hospital of China Medical University, Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, China
| | - Yalun Li
- Department of Anorectal Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, China
| | - Shijie Xin
- Department of Vascular Surgery, The First Hospital of China Medical University, Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, China
| |
Collapse
|
9
|
Molecular mechanisms of methylglyoxal-induced aortic endothelial dysfunction in human vascular endothelial cells. Cell Death Dis 2020; 11:403. [PMID: 32467587 PMCID: PMC7256048 DOI: 10.1038/s41419-020-2602-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
Methylglyoxal (MGO)-induced cellular apoptosis, oxidative stress, inflammation, and AGE formation are specific events that induce vascular endothelial cell (EC) toxicity in endothelial dysfunction (ED). MGO accumulates quickly in various tissues and plays a prominent role in the pathogeneses of several diabetic complications. Unbalanced angiogenesis is a gateway to the development of diabetic complications. EC apoptosis and autophagy work together to regulate angiogenesis by interacting with different angiogenic factors. In addition to understanding the deep mechanism regarding MGO-dependent autophagy/apoptosis may provide new therapeutic applications to treat diabetes and diabetic complications. Therefore, the present study aimed to investigate the regulatory effects of MGO-induced autophagy and apoptosis on angiogenesis in HAoEC and to elucidate the molecular mechanisms to discover new target base therapy for diabetes and diabetic complications. In MGO-stimulated HAoEC, protein expression was identified using a western blot, autophagosomes were observed by bio-transmission electron microscopy (TEM), and cell autophagic vacuoles and flux were measured using a confocal microscope. We found that MGO significantly induced autophagy, declined the pro-angiogenic effect, decreased proliferation, migration, and formation of tube-like structures, and increased autophagic vacuoles, flux and autophagosomes in the HAoEC in a dose-dependent manner. We observed that MGO-induced autophagic cell death and inhibited the ROS-mediated Akt/mTOR signaling pathway. MGO also triggered apoptosis by elevating the cleaved caspase-3 to Bax/Bcl-2 ratio and through activation of the ROS-mediated MAPKs (p-JNK, p-p38, and p-ERK) signaling pathway. Collectively, these findings suggest that autophagy and apoptosis inhibit angiogenesis via the ROS-mediated Akt/mTOR and MAPKs signaling pathways, respectively, when HAoEC are treated with MGO.
Collapse
|
10
|
Wei A, Xiao H, Xu G, Yu X, Guo J, Jing Z, Shi S, Song Y. Hyperoside Protects Human Umbilical Vein Endothelial Cells Against Anticardiolipin Antibody-Induced Injury by Activating Autophagy. Front Pharmacol 2020; 11:762. [PMID: 32508661 PMCID: PMC7253676 DOI: 10.3389/fphar.2020.00762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/07/2020] [Indexed: 12/28/2022] Open
Abstract
Anticardiolipin antibody (aCL), an important characterization of antiphospholipid syndrome, shows an intense association with vascular endothelial injury. Hyperoside is a flavonoid extracted from medicinal plants traditionally used in Chinese medicines, displaying anti-inflammatory, anti-cancer, and anti-oxidative properties in various diseases. Recent studies have shifted the focus on the protective effects of hyperoside on vascular endothelial injury. However, little is known about the mechanisms involved. In the present study, we investigated the effect of hyperoside on aCL-induced injury of human umbilical vein endothelial cells (HUVECs) in vitro. Our data illustrated that aCL induced HUVEC injury via inhibiting autophagy. Hyperoside reduced aCL-induced secretion of proinflammatory cytokines IL-1β and IL-8 and endothelial adhesion cytokines TF, ICAM1, and VCAM1 in HUVECs. Additionally, hyperoside activated autophagy and suppressed the mTOR/S6K and TLR4/Myd88/NF-κB signaling transduction pathways in aCL-induced HUVECs. To the best of our knowledge, this is the first study to investigate the effect of hyperoside on aCL-induced injury, as well as offer insights into the involved mechanisms, which is of great significance for the treatment of antiphospholipid syndrome.
Collapse
Affiliation(s)
- Aiwu Wei
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Huidongzi Xiao
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Guangli Xu
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xile Yu
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jingjing Guo
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhuqing Jing
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Shaoqi Shi
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yanli Song
- Department of Reproductive Medicine, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
11
|
Wang W, Zhang F, Yan X, Tan Q. Wnt7a regulates high autophagic and inflammatory response of epidermis in high-glucose environment. Burns 2020; 46:121-127. [DOI: 10.1016/j.burns.2019.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/23/2019] [Accepted: 07/18/2019] [Indexed: 12/23/2022]
|
12
|
Vascular Occlusion Restores Endothelium-Dependent Effects of Adenosine Previously Diminished by Diabetes: The Preliminary Report. Sci Pharm 2018. [DOI: 10.3390/scipharm86040051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to investigate the effect of adenosine in non-occluded or occluded femoral arteries (FA) that were isolated from healthy or diabetic Wistar rats. Determining the role of endothelium, and a transmembrane flow of potassium ions in adenosine actions were also of interest. Diabetes was experimentally induced by alloxan, while the vascular occlusion was performed for 45 min on randomly selected FA. Vascular tone changes were continuously recorded. Selected markers of endothelial dysfunction were measured in animal serum. Thus, adenosine produced a concentration-dependent relaxation of rat FA, which was endothelium-dependent, too, except in a group of diabetic animals. Moreover, serum asymmetric dimethylarginine (ADMA) levels were higher in diabetic animals, thus reflecting endothelial dysfunction (ED). Still, an occlusion of FA enhanced the relaxation effect of adenosine in endothelium-intact rings from diabetic animals. Oppositely, in the presence of high potassium concentration in the buffer, adenosine-induced relaxation was significantly reduced in all of the investigated groups/subgroups. These results suggest that in diabetic animals, an occlusion of FA most probably reversed adenosine-induced relaxation from endothelium-independent into an endothelium-dependent relaxation, thus indicating the possible protective mechanism against ischemic episodes of FA in the presence of diabetes.
Collapse
|