1
|
Nobuhisa I, Melig G, Taga T. Sox17 and Other SoxF-Family Proteins Play Key Roles in the Hematopoiesis of Mouse Embryos. Cells 2024; 13:1840. [PMID: 39594589 PMCID: PMC11593047 DOI: 10.3390/cells13221840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
During mouse development, hematopoietic cells first form in the extraembryonic tissue yolk sac. Hematopoietic stem cells (HSCs), which retain their ability to differentiate into hematopoietic cells for a long time, form intra-aortic hematopoietic cell clusters (IAHCs) in the dorsal aorta at midgestation. These IAHCs emerge from the hemogenic endothelium, which is the common progenitor of hematopoietic cells and endothelial cells. HSCs expand in the fetal liver, and finally migrate to the bone marrow (BM) during the peripartum period. IAHCs are absent in the dorsal aorta in mice deficient in transcription factors such as Runx-1, GATA2, and c-Myb that are essential for definitive hematopoiesis. In this review, we focus on the transcription factor Sry-related high mobility group (HMG)-box (Sox) F family of proteins that is known to regulate hematopoiesis in the hemogenic endothelium and IAHCs. The SoxF family is composed of Sox7, Sox17, and Sox18, and they all have the HMG box, which has a DNA-binding ability, and a transcriptional activation domain. Here, we describe the functional and phenotypic properties of SoxF family members, with a particular emphasis on Sox17, which is the most involved in hematopoiesis in the fetal stages considering that enhanced expression of Sox17 in hemogenic endothelial cells and IAHCs leads to the production and maintenance of HSCs. We also discuss SoxF-inducing signaling pathways.
Collapse
Affiliation(s)
- Ikuo Nobuhisa
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan;
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, 5-7-1 Befu, Jonan-ku, Fukuoka 814-0198, Japan
- Department of Stem Cell Regulation, Medical Research Laboratory, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Gerel Melig
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan;
- Department of Stem Cell Regulation, Medical Research Laboratory, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan;
- Department of Stem Cell Regulation, Medical Research Laboratory, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
2
|
Melig G, Nobuhisa I, Saito K, Tsukahara R, Itabashi A, Kanai Y, Kanai-Azuma M, Osawa M, Oshima M, Iwama A, Taga T. A Sox17 downstream gene Rasip1 is involved in the hematopoietic activity of intra-aortic hematopoietic clusters in the midgestation mouse embryo. Inflamm Regen 2023; 43:41. [PMID: 37553580 PMCID: PMC10408172 DOI: 10.1186/s41232-023-00292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 07/13/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND During mouse embryonic development, definitive hematopoiesis is first detected around embryonic day (E) 10.5 in the aorta-gonad-mesonephros (AGM) region. Hematopoietic stem cells (HSCs) arise in the dorsal aorta's intra-aortic hematopoietic cell clusters (IAHCs). We have previously reported that a transcription factor Sox17 is expressed in IAHCs, and that, among them, CD45lowc-Kithigh cells have high hematopoietic activity. Furthermore, forced expression of Sox17 in this population of cells can maintain the formation of hematopoietic cell clusters. However, how Sox17 does so, particularly downstream signaling involved, remains poorly understood. The purpose of this study is to search for new Sox17 targets which contribute to cluster formation with hematopoietic activity. METHODS RNA-sequencing (RNA-seq) analysis was done to identify genes that are upregulated in Sox17-expressing IAHCs as compared with Sox17-negative ones. Among the top 7 highly expressed genes, Rasip1 which had been reported to be a vascular-specific regulator was focused on in this study, and firstly, the whole-mount immunostaining was done. We conducted luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay to examine whether Sox17 regulates Rasip1 gene expression via binding to its enhancer element. We also analyzed the cluster formation and the multilineage colony-forming ability of Rasip1-transduced cells and Rasip1-knockdown Sox17-transduced cells. RESULTS The increase of the Rasip1 expression level was observed in Sox17-positive CD45lowc-Kithigh cells as compared with the Sox17-nonexpressing control. Also, the expression level of the Rasip1 gene was increased by the Sox17-nuclear translocation. Rasip1 was expressed on the membrane of IAHCs, overlapping with the endothelial cell marker, CD31, and hematopoietic stem/progenitor marker (HSPC), c-Kit. Rasip1 expression was observed in most part of c-Kit+Sox17+ cells in IAHCs. Luciferase reporter assay and ChIP assay indicated that one of the five putative Sox17-binding sites in the Rasip1 enhancer region was important for Rasip1 expression via Sox17 binding. Rasip1 knockdown in Sox17-transduced cells decreased the cluster formation and diminished the colony-forming ability, while overexpression of Rasip1 in CD45lowc-Kithigh cells led to a significant but transient increase in hematopoietic activity. CONCLUSIONS Rasip1 knockdown in Sox17-transduced CD45lowc-Kithigh cells displayed a significant decrease in the multilineage colony-forming ability and the cluster size. Rasip1 overexpression in Sox17-untransduced CD45lowc-Kithigh cells led to a significant but transient increase in the multilineage colony-forming ability, suggesting the presence of a cooperating factor for sustained hematopoietic activity.
Collapse
Grants
- 26440118 the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 18K06249 the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 22130008 the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 15H04292 the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 18H02678 the Ministry of Education, Culture, Sports, Science and Technology of Japan
- H26-A39 Nanken-Kyoten, TMDU
- H27-A35 Nanken-Kyoten, TMDU
- H28-A11 Nanken-Kyoten, TMDU
Collapse
Affiliation(s)
- Gerel Melig
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Ikuo Nobuhisa
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan.
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, 5-7-1, Befu, Jonan-Ku, Fukuoka, 814-0198, Japan.
| | - Kiyoka Saito
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Ryota Tsukahara
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Ayumi Itabashi
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, Graduate School of Agricultural and Life Science, University of Tokyo, 1-1-1, Yayoi, Bunkyo-Ku, Tokyo, 113-8567, Japan
| | - Masami Kanai-Azuma
- Department of Experimental Animal Model for Human Disease, Center for Experimental Animals, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Mitsujiro Osawa
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Motohiko Oshima
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8039, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8039, Japan
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
3
|
Jung HS, Suknuntha K, Kim YH, Liu P, Dettle ST, Sedzro DM, Smith PR, Thomson JA, Ong IM, Slukvin II. SOX18-enforced expression diverts hemogenic endothelium-derived progenitors from T towards NK lymphoid pathways. iScience 2023; 26:106621. [PMID: 37250328 PMCID: PMC10214392 DOI: 10.1016/j.isci.2023.106621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/18/2022] [Accepted: 04/01/2023] [Indexed: 05/31/2023] Open
Abstract
Hemogenic endothelium (HE) is the main source of blood cells in the embryo. To improve blood manufacturing from human pluripotent stem cells (hPSCs), it is essential to define the molecular determinants that enhance HE specification and promote development of the desired blood lineage from HE. Here, using SOX18-inducible hPSCs, we revealed that SOX18 forced expression at the mesodermal stage, in contrast to its homolog SOX17, has minimal effects on arterial specification of HE, expression of HOXA genes and lymphoid differentiation. However, forced expression of SOX18 in HE during endothelial-to-hematopoietic transition (EHT) greatly increases NK versus T cell lineage commitment of hematopoietic progenitors (HPs) arising from HE predominantly expanding CD34+CD43+CD235a/CD41a-CD45- multipotent HPs and altering the expression of genes related to T cell and Toll-like receptor signaling. These studies improve our understanding of lymphoid cell specification during EHT and provide a new tool for enhancing NK cell production from hPSCs for immunotherapies.
Collapse
Affiliation(s)
- Ho Sun Jung
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA
| | - Kran Suknuntha
- Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, 600 Highland Avenue, Madison, WI 53792, USA
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| | - Yun Hee Kim
- Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, 600 Highland Avenue, Madison, WI 53792, USA
| | - Peng Liu
- Departments of Statistics and of Biostatistics and Medical Informatics, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel T. Dettle
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA
| | - Divine Mensah Sedzro
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA
| | - Portia R. Smith
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA
| | - James A. Thomson
- Morgridge Institute for Research, 330 N. Orchard Street, Madison, WI 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53707-7365, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Irene M. Ong
- Departments of Statistics and of Biostatistics and Medical Informatics, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Igor I. Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, 600 Highland Avenue, Madison, WI 53792, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53707-7365, USA
| |
Collapse
|
4
|
Ge Y, Wang J, Zhang H, Li J, Ye M, Jin X. Fate of hematopoietic stem cells determined by Notch1 signaling (Review). Exp Ther Med 2022; 23:170. [PMID: 35069851 PMCID: PMC8764575 DOI: 10.3892/etm.2021.11093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/17/2021] [Indexed: 11/05/2022] Open
Abstract
Regulation of the fate of hematopoietic stem cells (HSCs), including silencing, self-renewal or differentiation into blood line cells, is crucial to maintain the homeostasis of the human blood system and prevent leukemia. Notch1, a key receptor in the Notch signaling pathway, plays an important regulatory role in these properties of HSCs, particularly in the maintenance of the stemness of HSCs. In recent decades, the ubiquitination modification of Notch1 has been gradually revealed, and also demonstrated to affect the proliferation and differentiation of HSCs. Therefore, a detailed elucidation of Notch1 and its ubiquitination modification may help to improve understanding of the maintenance of HSC properties and the pathogenesis of leukemia. In addition, it may aid in identifying potential therapeutic targets for specific leukemias and provide potential prognostic indicators for HSC transplantation (HSCT). In the present review, the association between Notch1 and HSCs and the link between the ubiquitination modification of Notch1 and HSCs were described. In addition, the association between abnormal HSCs mediated by Notch1 or ubiquitinated Notch1and T-cell acute lymphoblastic leukemia (T-ALL) was also examined, which provides a promising direction for clinical application.
Collapse
Affiliation(s)
- Yidong Ge
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Wang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Hui Zhang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jinyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
5
|
Wu Y, Wharton J, Walters R, Vasilaki E, Aman J, Zhao L, Wilkins MR, Rhodes CJ. The pathophysiological role of novel pulmonary arterial hypertension gene SOX17. Eur Respir J 2021; 58:13993003.04172-2020. [PMID: 33632800 DOI: 10.1183/13993003.04172-2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/08/2021] [Indexed: 11/05/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease predominantly targeting pre-capillary blood vessels. Adverse structural remodelling and increased pulmonary vascular resistance result in cardiac hypertrophy and ultimately failure of the right ventricle. Recent whole-genome and whole-exome sequencing studies have identified SOX17 as a novel risk gene in PAH, with a dominant mode of inheritance and incomplete penetrance. Rare deleterious variants in the gene and more common variants in upstream enhancer sites have both been associated with the disease, and a deficiency of SOX17 expression may predispose to PAH. This review aims to consolidate the evidence linking genetic variants in SOX17 to PAH, and explores the numerous targets and effects of the transcription factor, focusing on the pulmonary vasculature and the pathobiology of PAH.
Collapse
Affiliation(s)
- Yukyee Wu
- National Heart and Lung Institute, Imperial College London, London, UK
| | - John Wharton
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rachel Walters
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Eleni Vasilaki
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jurjan Aman
- National Heart and Lung Institute, Imperial College London, London, UK.,VUmc, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Lan Zhao
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Martin R Wilkins
- National Heart and Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
6
|
Jung HS, Uenishi G, Park MA, Liu P, Suknuntha K, Raymond M, Choi YJ, Thomson JA, Ong IM, Slukvin II. SOX17 integrates HOXA and arterial programs in hemogenic endothelium to drive definitive lympho-myeloid hematopoiesis. Cell Rep 2021; 34:108758. [PMID: 33596423 PMCID: PMC7988717 DOI: 10.1016/j.celrep.2021.108758] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/12/2020] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
SOX17 has been implicated in arterial specification and the maintenance of hematopoietic stem cells (HSCs) in the murine embryo. However, knowledge about molecular pathways and stage-specific effects of SOX17 in humans remains limited. Here, using SOX17-knockout and SOX17-inducible human pluripotent stem cells (hPSCs), paired with molecular profiling studies, we reveal that SOX17 is a master regulator of HOXA and arterial programs in hemogenic endothelium (HE) and is required for the specification of HE with robust lympho-myeloid potential and DLL4+CXCR4+ phenotype resembling arterial HE at the sites of HSC emergence. Along with the activation of NOTCH signaling, SOX17 directly activates CDX2 expression, leading to the upregulation of the HOXA cluster genes. Since deficiencies in HOXA and NOTCH signaling contribute to the impaired in vivo engraftment of hPSC-derived hematopoietic cells, the identification of SOX17 as a key regulator linking arterial and HOXA programs in HE may help to program HSC fate from hPSCs.
Collapse
Affiliation(s)
- Ho Sun Jung
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA
| | - Gene Uenishi
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA
| | - Mi Ae Park
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA
| | - Peng Liu
- Departments of Statistics and of Biostatistics and Medical Informatics, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Kran Suknuntha
- Chakri Naruebodindra Medical Institute, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand; Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, 600 Highland Avenue, Madison, WI 53792, USA
| | - Matthew Raymond
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA
| | - Yoon Jung Choi
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA
| | - James A Thomson
- Morgridge Institute for Research, 330 N. Orchard Street, Madison, WI 53715, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53707-7365, USA; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Irene M Ong
- Departments of Statistics and of Biostatistics and Medical Informatics, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Igor I Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, 600 Highland Avenue, Madison, WI 53792, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53707-7365, USA.
| |
Collapse
|
7
|
Anani M, Nobuhisa I, Taga T. Sry-related High Mobility Group Box 17 Functions as a Tumor Suppressor by Antagonizing the Wingless-related Integration Site Pathway. J Cancer Prev 2020; 25:204-212. [PMID: 33409253 PMCID: PMC7783240 DOI: 10.15430/jcp.2020.25.4.204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 11/16/2022] Open
Abstract
A transcription factor Sry-related high mobility group box (Sox) 17 is involved in developmental processes including spermatogenesis, cardiovascular system, endoderm formation, and so on. In this article, we firstly review the studies on the relation between the Sox17 expression and tumor malignancy. Although Sox17 positively promotes various tissue development, most of the cancers associated with Sox17 show decreased expression levels of Sox17, and an inverse correlation between Sox17 expression and malignancy is revealed. We briefly discuss the mechanism of such Sox17 down-regulation by focusing on DNA methylation of CpG sites located in the Sox17 gene promoter. Next, we overview the function of Sox17 in the fetal hematopoiesis, particularly in the dorsal aorta in midgestation mouse embryos. The Sox17 expression in hematopoietic stem cell (HSC)-containing intra-aortic hematopoietic cell cluster (IAHCs) is important for the cluster formation with the hematopoietic ability. The sustained expression of Sox17 in adult bone marrow HSCs and the cells in IAHCs of the dorsal aorta indicate abnormalities that are low lymphocyte chimerism and the aberrant proliferation of common myeloid progenitors in transplantation experiments. We then summarize the perspectives of Sox17 research in cancer control.
Collapse
Affiliation(s)
- Maha Anani
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ikuo Nobuhisa
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
8
|
Takahashi S, Nobuhisa I, Saito K, Gerel M, Itabashi A, Harada K, Osawa M, Endo TA, Iwama A, Taga T. Sox17-mediated expression of adherent molecules is required for the maintenance of undifferentiated hematopoietic cluster formation in midgestation mouse embryos. Differentiation 2020; 115:53-61. [PMID: 32891959 DOI: 10.1016/j.diff.2020.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cell-containing intra-aortic hematopoietic cell clusters (IAHCs) emerge in the dorsal aorta of the aorta-gonad-mesonephros (AGM) region during midgestation mouse embryos. We previously showed that transduction of Sox17 in CD45lowc-Kithigh cells, which are one component of IAHCs, maintained the cluster formation and the undifferentiated state, but the mechanism of the cluster formation by Sox17 has not been clarified. By microarray gene expression analysis, we found that genes for vascular endothelial-cadherin (VE-cad) and endothelial cell-selective adhesion molecule (ESAM) were expressed at high levels in Sox17-transduced c-Kit+ cells. Here we show the functional role of these adhesion molecules in the formation of IAHCs and the maintenance of the undifferentiated state by in vitro experiments. We detected VE-cad and ESAM expression in endothelial cells of dorsal aorta and IAHCs in E10.5 embryos by whole mount immunohistochemistry. Cells with the middle expression level of VE-cad and the low expression level of ESAM had the highest colony-forming ability. Tamoxifen-dependent nuclear translocation of Sox17-ERT fusion protein induced the formation of cell clusters and the expression of Cdh5 (VE-cad) and ESAM genes. We showed the induction of the Cdh5 (VE-cad) and ESAM expression and the direct interaction of Sox17 with their promoter by luciferase assay and chromatin immunoprecipitation assay, respectively. Moreover, shRNA-mediated knockdown of either Cdh5 (VE-cad) or ESAM gene in Sox17-transduced cells decreased the multilineage-colony forming potential. These findings suggest that VE-cad and ESAM play an important role in the high hematopoietic activity of IAHCs and cluster formation.
Collapse
Affiliation(s)
- Satomi Takahashi
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ikuo Nobuhisa
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Kiyoka Saito
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Melig Gerel
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ayumi Itabashi
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kaho Harada
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mitsujiro Osawa
- Clinical Application Department, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takaho A Endo
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| |
Collapse
|