1
|
Barton WC, Kumari A, Mack ZT, Schools GP, Quintero LM, Choi AS, Rangavajhula K, Arend RC, Broude EV, Mythreye K. Targeting Mediator Kinase Cyclin-Dependent Kinases 8/19 Potentiates Chemotherapeutic Responses, Reverses Tumor Growth, and Prolongs Survival from Ovarian Clear Cell Carcinoma. Cancers (Basel) 2025; 17:941. [PMID: 40149277 PMCID: PMC11940259 DOI: 10.3390/cancers17060941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVE Ovarian clear cell carcinomas (OCCCs) are a rare histological subtype of epithelial ovarian cancer characterized by resistance to platinum-based therapy. CDK8/19, a component of the regulatory CDK module associated with Mediator complex, has been implicated in transcriptional reprogramming and drug resistance in various solid tumors. Our study aimed to investigate the therapeutic potential of CDK8/19 kinase inhibition using selective inhibitors SNX631 and SNX631-6 in OCCC treatment, both as monotherapy and in combination with standard chemotherapeutics. METHODS CDK8 and Ki67 levels were evaluated via immunohistochemistry in benign, primary, and metastatic ovarian cancer tissues. The efficacy of SNX631 alone and in combination with cisplatin or paclitaxel was assessed in OCCC cell lines (ES-2, TOV-21-G, RMG-1). In vivo evaluation utilized xenograft models with subcutaneous and intraperitoneal delivery of the OCCC ES2 cells and oral delivery of SNX631-6, with the monitoring of tumor growth, metastatic spread, and survival. RESULTS CDK8 protein levels were elevated in OC tissues, particularly in OCCC primary and metastatic lesions compared to benign tissue. While CDK8/19 inhibition showed limited effects on in vitro cell proliferation, SNX631-6 demonstrated significant antitumor and anti-metastatic activity in vivo. Notably, SNX631-6 enhanced the efficacy of cisplatin, substantially inhibiting tumor growth and extending overall survival. CONCLUSIONS Therapeutically achievable doses of CDK8/19 inhibitors may provide clinical benefit for OCCC patients by inhibiting tumor growth and reversing platinum resistance, potentially addressing a critical treatment challenge in this rare ovarian cancer subtype.
Collapse
Affiliation(s)
- Wade C. Barton
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL 35294, USA; (W.C.B.); (R.C.A.)
| | - Asha Kumari
- Division of Molecular Cellular Pathology, Department of Pathology, Heersink School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama Birmingham, Birmingham, AL 35294, USA; (A.K.); (L.M.Q.); (A.S.C.)
| | - Zachary T. Mack
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA; (Z.T.M.); (G.P.S.); (K.R.)
| | - Gary P. Schools
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA; (Z.T.M.); (G.P.S.); (K.R.)
| | - Liz Macias Quintero
- Division of Molecular Cellular Pathology, Department of Pathology, Heersink School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama Birmingham, Birmingham, AL 35294, USA; (A.K.); (L.M.Q.); (A.S.C.)
| | - Alex Seok Choi
- Division of Molecular Cellular Pathology, Department of Pathology, Heersink School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama Birmingham, Birmingham, AL 35294, USA; (A.K.); (L.M.Q.); (A.S.C.)
| | - Karthik Rangavajhula
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA; (Z.T.M.); (G.P.S.); (K.R.)
| | - Rebecca C. Arend
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL 35294, USA; (W.C.B.); (R.C.A.)
| | - Eugenia V. Broude
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA; (Z.T.M.); (G.P.S.); (K.R.)
| | - Karthikeyan Mythreye
- Division of Molecular Cellular Pathology, Department of Pathology, Heersink School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama Birmingham, Birmingham, AL 35294, USA; (A.K.); (L.M.Q.); (A.S.C.)
| |
Collapse
|
2
|
Li J, Hilimire TA, Liu Y, Wang L, Liang J, Gyorffy B, Sikirzhytski V, Ji H, Zhang L, Cheng C, Ding X, Kerr KR, Dowling CE, Chumanevich AA, Mack ZT, Schools GP, Lim CU, Ellis L, Zi X, Porter DC, Broude EV, McInnes C, Wilding G, Lilly MB, Roninson IB, Chen M. Mediator kinase inhibition reverses castration resistance of advanced prostate cancer. J Clin Invest 2024; 134:e176709. [PMID: 38546787 DOI: 10.1172/jci176709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
Mediator kinases CDK19 and CDK8, pleiotropic regulators of transcriptional reprogramming, are differentially regulated by androgen signaling, but both kinases are upregulated in castration-resistant prostate cancer (CRPC). Genetic or pharmacological inhibition of CDK8 and CDK19 reverses the castration-resistant phenotype and restores the sensitivity of CRPC xenografts to androgen deprivation in vivo. Prolonged CDK8/19 inhibitor treatment combined with castration not only suppressed the growth of CRPC xenografts but also induced tumor regression and cures. Transcriptomic analysis revealed that Mediator kinase inhibition amplified and modulated the effects of castration on gene expression, disrupting CRPC adaptation to androgen deprivation. Mediator kinase inactivation in tumor cells also affected stromal gene expression, indicating that Mediator kinase activity in CRPC molded the tumor microenvironment. The combination of castration and Mediator kinase inhibition downregulated the MYC pathway, and Mediator kinase inhibition suppressed a MYC-driven CRPC tumor model even without castration. CDK8/19 inhibitors showed efficacy in patient-derived xenograft models of CRPC, and a gene signature of Mediator kinase activity correlated with tumor progression and overall survival in clinical samples of metastatic CRPC. These results indicate that Mediator kinases mediated androgen-independent in vivo growth of CRPC, supporting the development of CDK8/19 inhibitors for the treatment of this presently incurable disease.
Collapse
Affiliation(s)
- Jing Li
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Thomas A Hilimire
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
- Senex Biotechnology Inc., Columbia, South Carolina, USA
| | - Yueying Liu
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lili Wang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Jiaxin Liang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Balazs Gyorffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | - Vitali Sikirzhytski
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Hao Ji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Li Zhang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Chen Cheng
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Xiaokai Ding
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Kendall R Kerr
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Charles E Dowling
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Alexander A Chumanevich
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Zachary T Mack
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Gary P Schools
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Chang-Uk Lim
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Leigh Ellis
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences; Walter Reed National Military Medical Center; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc.; Bethesda, Maryland, USA
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaolin Zi
- Departments of Urology and Pharmaceutical Sciences, University of California, Irvine, California, USA
| | | | - Eugenia V Broude
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Campbell McInnes
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | | | - Michael B Lilly
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Igor B Roninson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Mengqian Chen
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
- Senex Biotechnology Inc., Columbia, South Carolina, USA
| |
Collapse
|
3
|
Kou Y, Zhang Y, Rong X, Yang P, Wang C, Zhou Q, Liu H, Liu B, Li M. Simvastatin inhibits proliferation and promotes apoptosis of oral squamous cell carcinoma through KLF2 signal. J Oral Biosci 2023; 65:347-355. [PMID: 37625505 DOI: 10.1016/j.job.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
OBJECTIVES This study aimed to explore the role and specific mechanism of the cholesterol-lowering drug simvastatin in inhibiting oral squamous cell carcinoma (OSCC). METHODS The proliferation, apoptosis, and migration levels of OSCC cells were detected by CCK8, quantitative real-time polymerase chain reaction, Western blot, colony formation, TdT-mediated dUTP Nick-End Labeling assay, and wound healing assay. The inhibitory effect of simvastatin in vivo was detected by a mouse xenograft tumor model. Immunohistochemistry and immunofluorescence staining were used to assess the KLF2 and β-catenin expressions in cells and tissues. RESULTS KLF2 expression in OSCC cells and tissues was downregulated. The addition of KLF2 inducer, GGTI298, inhibited the proliferation and migration of OSCC cells. Simvastatin played a role in inhibiting the proliferation and promoting the apoptosis of OSCC cells. Moreover, it inhibited β-catenin expression and promoted KLF2 expression in OSCC cells. KLF2 siRNA reversed the effect of simvastatin on the proliferation and apoptosis of OSCC cells. CONCLUSIONS KLF2, as a tumor suppressor gene, may be an important marker for diagnosing and treating OSCC. Simvastatin inhibits the progression of OSCC by regulating the KLF2 signal.
Collapse
Affiliation(s)
- Yuying Kou
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Yuan Zhang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Xing Rong
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Panpan Yang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Caijiao Wang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Qin Zhou
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Hongrui Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Bo Liu
- School of Clinical Medicine, Jining Medical University, Jining, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China.
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China; School of Clinical Medicine, Jining Medical University, Jining, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China.
| |
Collapse
|
4
|
Giarrizzo M, LaComb JF, Bialkowska AB. The Role of Krüppel-like Factors in Pancreatic Physiology and Pathophysiology. Int J Mol Sci 2023; 24:ijms24108589. [PMID: 37239940 DOI: 10.3390/ijms24108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Krüppel-like factors (KLFs) belong to the family of transcription factors with three highly conserved zinc finger domains in the C-terminus. They regulate homeostasis, development, and disease progression in many tissues. It has been shown that KLFs play an essential role in the endocrine and exocrine compartments of the pancreas. They are necessary to maintain glucose homeostasis and have been implicated in the development of diabetes. Furthermore, they can be a vital tool in enabling pancreas regeneration and disease modeling. Finally, the KLF family contains proteins that act as tumor suppressors and oncogenes. A subset of members has a biphasic function, being upregulated in the early stages of oncogenesis and stimulating its progression and downregulated in the late stages to allow for tumor dissemination. Here, we describe KLFs' function in pancreatic physiology and pathophysiology.
Collapse
Affiliation(s)
- Michael Giarrizzo
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph F LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
5
|
Arconada-Luque E, Jiménez-Suarez J, Pascual-Serra R, Nam-Cha SH, Moline T, Cimas FJ, Fliquete G, Ortega-Muelas M, Roche O, Fernández-Aroca DM, Muñoz Velasco R, García-Flores N, Garnés-García C, Sánchez-Fdez A, Matilla-Almazán S, Sánchez-Arévalo Lobo VJ, Hernández-Losa J, Belandia B, Pandiella A, Esparís-Ogando A, Ramón y Cajal S, del Peso L, Sánchez-Prieto R, Ruiz-Hidalgo MJ. ERK5 Is a Major Determinant of Chemical Sarcomagenesis: Implications in Human Pathology. Cancers (Basel) 2022; 14:cancers14143509. [PMID: 35884568 PMCID: PMC9316148 DOI: 10.3390/cancers14143509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Sarcoma is a heterogeneous group of tumors poorly studied with few therapeutic opportunities. Interestingly, the role of MAPKs still remains unclear in sarcomatous pathology. Here, we describe for the first time the critical role of ERK5 in the biology of soft tissue sarcoma by using in vitro and in vivo approaches in a murine experimental model of chemical sarcomagenesis. Indeed, our observations were extrapolated to a short series of human leiomyosarcoma and rhabdomyosarcomas. Furthermore, transcriptome analysis allows us to demonstrate the critical role of KLF2 in the biological effects of ERK5. Therefore, the data presented here open new windows in the diagnosis and therapy of soft tissue sarcomas. Abstract Sarcomas are a heterogeneous group of tumors in which the role of ERK5 is poorly studied. To clarify the role of this MAPK in sarcomatous pathology, we used a murine 3-methyl-cholanthrene (3MC)-induced sarcoma model. Our data show that 3MC induces pleomorphic sarcomas with muscle differentiation, showing an increased expression of ERK5. Indeed, this upregulation was also observed in human sarcomas of muscular origin, such as leiomyosarcoma or rhabdomyosarcoma. Moreover, in cell lines derived from these 3MC-induced tumors, abrogation of Mapk7 expression by using specific shRNAs decreased in vitro growth and colony-forming capacity and led to a marked loss of tumor growth in vivo. In fact, transcriptomic profiling in ERK5 abrogated cell lines by RNAseq showed a deregulated gene expression pattern for key biological processes such as angiogenesis, migration, motility, etc., correlating with a better prognostic in human pathology. Finally, among the various differentially expressed genes, Klf2 is a key mediator of the biological effects of ERK5 as indicated by its specific interference, demonstrating that the ERK5–KLF2 axis is an important determinant of sarcoma biology that should be further studied in human pathology.
Collapse
Affiliation(s)
- Elena Arconada-Luque
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
| | - Jaime Jiménez-Suarez
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
| | - Raquel Pascual-Serra
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
| | - Syong Hyun Nam-Cha
- Servicio de Anatomía Patológica, Hospital General de Albacete, 02008 Albacete, Spain;
| | - Teresa Moline
- Grupo de Patología Molecular Traslacional, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona Centro de Investigación Biomédica en RED de Cancer CIBERONC, 08035 Barcelona, Spain; (T.M.); (G.F.); (J.H.-L.); (S.R.y.C.)
| | - Francisco J. Cimas
- Unidad de Bioquímica y Biología Molecular, Servicio de Instrumentación Biomédica, Universidad de Castilla-La Mancha, 02008 Albacete, Spain;
| | - Germán Fliquete
- Grupo de Patología Molecular Traslacional, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona Centro de Investigación Biomédica en RED de Cancer CIBERONC, 08035 Barcelona, Spain; (T.M.); (G.F.); (J.H.-L.); (S.R.y.C.)
| | - Marta Ortega-Muelas
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
| | - Olga Roche
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Diego M. Fernández-Aroca
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
| | - Raúl Muñoz Velasco
- Grupo de Oncología Molecular, Facultad de Ciencias Experimentales, Instituto de Investigación Biosanitaria, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain; (R.M.V.); (V.J.S.-A.L.)
- Departamento de Anatomía Patológica, Instituto de Investigación Hospital 12 de Octubre, Av. Córdoba, s/n, 28041 Madrid, Spain
| | - Natalia García-Flores
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
| | - Cristina Garnés-García
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
| | - Adrián Sánchez-Fdez
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, 37007 Salamanca, Spain; (A.S.-F.); (S.M.-A.); (A.P.); (A.E.-O.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en RED de Cancer CIBERONC, 37007 Salamanca, Spain
| | - Sofía Matilla-Almazán
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, 37007 Salamanca, Spain; (A.S.-F.); (S.M.-A.); (A.P.); (A.E.-O.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en RED de Cancer CIBERONC, 37007 Salamanca, Spain
| | - Víctor J. Sánchez-Arévalo Lobo
- Grupo de Oncología Molecular, Facultad de Ciencias Experimentales, Instituto de Investigación Biosanitaria, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain; (R.M.V.); (V.J.S.-A.L.)
- Departamento de Anatomía Patológica, Instituto de Investigación Hospital 12 de Octubre, Av. Córdoba, s/n, 28041 Madrid, Spain
| | - Javier Hernández-Losa
- Grupo de Patología Molecular Traslacional, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona Centro de Investigación Biomédica en RED de Cancer CIBERONC, 08035 Barcelona, Spain; (T.M.); (G.F.); (J.H.-L.); (S.R.y.C.)
| | - Borja Belandia
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, 28029 Madrid, Spain;
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, 37007 Salamanca, Spain; (A.S.-F.); (S.M.-A.); (A.P.); (A.E.-O.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en RED de Cancer CIBERONC, 37007 Salamanca, Spain
| | - Azucena Esparís-Ogando
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, 37007 Salamanca, Spain; (A.S.-F.); (S.M.-A.); (A.P.); (A.E.-O.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en RED de Cancer CIBERONC, 37007 Salamanca, Spain
| | - Santiago Ramón y Cajal
- Grupo de Patología Molecular Traslacional, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona Centro de Investigación Biomédica en RED de Cancer CIBERONC, 08035 Barcelona, Spain; (T.M.); (G.F.); (J.H.-L.); (S.R.y.C.)
| | - Luis del Peso
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), 28029 Madrid, Spain;
- Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias CIBERES, 28029 Madrid, Spain
| | - Ricardo Sánchez-Prieto
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’, Consejo Superior de Investigaciones Científicas (IIBM-CSIC)-Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Correspondence:
| | - María José Ruiz-Hidalgo
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Área de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| |
Collapse
|
6
|
Yasutake N, Iwasaki T, Yamamoto H, Sonoda K, Kodama K, Okugawa K, Asanoma K, Yahata H, Kato K, Oda Y. Cyclin-dependent kinase 8 is an independent prognosticator in uterine leiomyosarcoma. Pathol Res Pract 2022; 235:153920. [DOI: 10.1016/j.prp.2022.153920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
|
7
|
Zhang L, Cheng C, Li J, Wang L, Chumanevich AA, Porter DC, Mindich A, Gorbunova S, Roninson IB, Chen M, McInnes C. A Selective and Orally Bioavailable Quinoline-6-Carbonitrile-Based Inhibitor of CDK8/19 Mediator Kinase with Tumor-Enriched Pharmacokinetics. J Med Chem 2022; 65:3420-3433. [PMID: 35114084 PMCID: PMC10042267 DOI: 10.1021/acs.jmedchem.1c01951] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Senexins are potent and selective quinazoline inhibitors of CDK8/19 Mediator kinases. To improve their potency and metabolic stability, quinoline-based derivatives were designed through a structure-guided strategy based on the simulated drug-target docking model of Senexin A and Senexin B. A library of quinoline-Senexin derivatives was synthesized to explore the structure-activity relationship (SAR). An optimized compound 20a (Senexin C) exhibits potent CDK8/19 inhibitory activity with high selectivity. Senexin C is more metabolically stable and provides a more sustained inhibition of CDK8/19-dependent cellular gene expression when compared with the prototype inhibitor Senexin B. In vivo pharmacokinetic (PK) and pharmacodynamic (PD) evaluation using a novel tumor-based PD assay showed good oral bioavailability of Senexin C with a strong tumor-enrichment PK profile and tumor-PD marker responses. Senexin C inhibits MV4-11 leukemia growth in a systemic in vivo model with good tolerability.
Collapse
Affiliation(s)
- Li Zhang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Chen Cheng
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jing Li
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Lili Wang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Alexander A Chumanevich
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Donald C Porter
- Senex Biotechnology, Inc., Columbia, South Carolina 29208, United States
| | - Aleksei Mindich
- CSC BIOCAD, Strelna, Saint-Petersburg 198515, Russia.,Biotechnology Department, Sirius University of Science and Technology, Sochi 354340, Russia
| | | | - Igor B Roninson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States.,Senex Biotechnology, Inc., Columbia, South Carolina 29208, United States
| | - Mengqian Chen
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States.,Senex Biotechnology, Inc., Columbia, South Carolina 29208, United States
| | - Campbell McInnes
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
8
|
Sun H, Yan J, Tian G, Chen X, Song W. LINC01224 accelerates malignant transformation via MiR-193a-5p/CDK8 axis in gastric cancer. Cancer Med 2021; 10:1377-1393. [PMID: 33655711 PMCID: PMC7926023 DOI: 10.1002/cam4.3726] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/19/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a malignant tumor with a significantly high mortality rate, yet, its pathogenesis is not fully understood. Bioinformatics predicted that LINC01224 is highly expressed in stomach adenocarcinoma (STAD), and showed that LINC01224 adsorbed miR-193a-5p to target CDK8. Therefore, this study intended to verify the effect of the LINC01224/miR-193a-5p/CDK8 axis on the biological behavior of gastric cancer. METHODS Expressions of LINC01224, miR-193a-5p, CDK8, apoptosis-, and EMT-related genes were analyzed using the GEPIA website, RT-qPCR, in situ hybridization, and Western blot as needed. Bioinformatics and dual luciferase assay were used to evaluate the relationship between LINC01224, miR-193a-5p, and CDK8. Functional experiments and rescue experiments (MTT assay, flow cytometry, wound healing assay, and Transwell) were conducted to detect the effects of the above genes on the biological characteristics of GC cells. Tumorigenesis assay was used to verify the results of in vitro experiments. RESULTS LINC01224 adsorbed miR-193a-5p to target and upregulate CDK8. The expressions of LINC01224 and CDK8 were increased, while the expression of miR-193a-5p was decreased in GC. Overexpressed LINC01224 promoted cell viability, migration and invasion, accelerated tumor formation, attenuated apoptosis, inhibited the expressions of apoptosis-related proteins, and promoted the expressions of EMT-related proteins, whereas silenced LINC01224 led to the opposite effect. MiR-193a-5p inhibitor partially offset the effect of silenced LINC01224; interestingly, siCDK8 significantly reversed the effect of miR-193a-5p inhibitor on GC cells. CONCLUSION LINC01224 affects the biological behavior of gastric cancer by mediating miR-193a-5p to regulate CDK8.
Collapse
Affiliation(s)
- Hui Sun
- Department of Tumor Surgery, Weifang People's Hospital, Kuiwen District, Weifang, Shandong, China
| | - Jihong Yan
- Department of Neurosurgery, Weifang Yidu Central Hospital, Qingzhou, Shandong, China
| | - Guangyu Tian
- Oncology Department, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaojun Chen
- Oncology Department, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Wenbo Song
- Oncology Department, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
9
|
Zou Y, Chen B. Long non-coding RNA HCP5 in cancer. Clin Chim Acta 2020; 512:33-39. [PMID: 33245911 DOI: 10.1016/j.cca.2020.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
Cancer remains a major threat to human health worldwide. Long non-coding RNA (lncRNA) comprises a group of single-stranded RNA with lengths longer than 200 bp. LncRNAs are aberrantly expressed and play a variety of roles involving multiple cellular processes in cancer. Histocompatibility leukocyte antigen complex P5 (HCP5), initially reported in 1993, is an important lncRNA located between the MICA and MICB genes in MHC I region. HCP5 is involved many autoimmune diseases as well as malignancies. Abnormal HCP5 expression occurs in many types of cancer and its dysregulation appears closely associated with tumor progression. HCP5 is also involved in anti-tumor drug resistance as well. As such, HCP5 represents a promising biomarker and therapeutic target in cancer. In this review, we summarize recent researches and provide an overview of the role and mechanism of HCP5 in human cancer.
Collapse
Affiliation(s)
- Yuanzhang Zou
- Department of Urology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Binghai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
10
|
Wu D, Zhang Z, Chen X, Yan Y, Liu X. Angel or Devil ? - CDK8 as the new drug target. Eur J Med Chem 2020; 213:113043. [PMID: 33257171 DOI: 10.1016/j.ejmech.2020.113043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinase 8 (CDK8) plays an momentous role in transcription regulation by forming kinase module or transcription factor phosphorylation. A large number of evidences have identified CDK8 as an important factor in cancer occurrence and development. In addition, CDK8 also participates in the regulation of cancer cell stress response to radiotherapy and chemotherapy, assists tumor cell invasion, metastasis, and drug resistance. Therefore, CDK8 is regarded as a promising target for cancer therapy. Most studies in recent years supported the role of CDK8 as a carcinogen, however, under certain conditions, CDK8 exists as a tumor suppressor. The functional diversity of CDK8 and its exceptional role in different types of cancer have aroused great interest from scientists but even more controversy during the discovery of CDK8 inhibitors. In addition, CDK8 appears to be an effective target for inflammation diseases and immune system disorders. Therefore, we summarized the research results of CDK8, involving physiological/pathogenic mechanisms and the development status of compounds targeting CDK8, provide a reference for the feasibility evaluation of CDK8 as a therapeutic target, and guidance for researchers who are involved in this field for the first time.
Collapse
Affiliation(s)
- Dan Wu
- School of Biological Engineering, Hefei Technology College, Hefei, 238000, PR China
| | - Zhaoyan Zhang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Xing Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Yaoyao Yan
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Xinhua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
11
|
Liu G, Zhang Z, Song Q, Guo Y, Bao P, Shui H. Circ_0006528 Contributes to Paclitaxel Resistance of Breast Cancer Cells by Regulating miR-1299/CDK8 Axis. Onco Targets Ther 2020; 13:9497-9511. [PMID: 33061434 PMCID: PMC7522311 DOI: 10.2147/ott.s252886] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background Circular RNAs (circRNAs) have been reported to be involved in regulating the development of breast cancer. Paclitaxel (PTX) can be used for the chemotherapy of breast cancer. The study aimed to explore the role and mechanism of circ_0006528 in PTX-resistant breast cancer progression. Methods The levels of circ_0006528, microRNA-1299 (miR-1299) and cyclin-dependent kinase 8 (CDK8) were measured by quantitative real-time polymerase chain reaction (qRT-PCR). RNase R treatment was used to confirm that the circ_0006528 was a circular RNA. PTX resistance and cell proliferation were determined by Cell counting kit-8 (CCK-8) assay. Cell apoptosis, migration and invasion were analyzed by flow cytometry and Transwell assays, respectively. The levels of all proteins were examined by Western blot. The interaction between circ_0006528 and miR-1299 or CDK8 was predicted by online database confirmed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Xenograft mice model was constructed to reveal the role of circ_0006528 on tumor growth in vivo. Results Circ_0006528 was significantly up-regulated and miR-1299 was down-regulated in PTX-resistant breast cancer tissues and cells compared with control groups. CDK8 protein expression was dramatically upregulated in PTX-resistant breast cancer tissues and cells as compared to control groups. Loss-of-function experiments revealed that circ_0006528 knockdown decreased IC50 value of PTX and restrained proliferation, migration, invasion and autophagy, whereas induced apoptosis of PTX-resistant breast cancer cells in vitro. The inhibitory effects of sh-circ_0006528 on the progression of PTX-resistant breast cancer cells were reversed by decreasing miR-1299 or increasing CDK8 expression. Furthermore, circ_0006528 could modulate CDK8 expression by sponging miR-1299. Circ_0006528 silencing impeded the growth of PTX-resistant tumors by regulating miR-1299/CDK8 axis in vivo. Conclusion Circ_0006528 partially contributed to PTX resistance of breast cancer cells through up-regulating CDK8 expression by sponging miR-1299.
Collapse
Affiliation(s)
- Guoqi Liu
- Department of Integrated Traditional Chinese and Western Medicine in Oncology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, People's Republic of China
| | - Zhenxing Zhang
- Department of Integrated Traditional Chinese and Western Medicine in Oncology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, People's Republic of China
| | - Qing Song
- Department of Oncology and Hematology, No. 989 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Pingdingshan, People's Republic of China
| | - Yanling Guo
- Department of Integrated Traditional Chinese and Western Medicine in Oncology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, People's Republic of China
| | - Puqiang Bao
- Department of Integrated Traditional Chinese and Western Medicine in Oncology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, People's Republic of China
| | - Huifeng Shui
- Department of Integrated Traditional Chinese and Western Medicine in Oncology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, People's Republic of China
| |
Collapse
|
12
|
Liu T, Meng J, Zhang Y. miR‑592 acts as an oncogene and promotes medullary thyroid cancer tumorigenesis by targeting cyclin‑dependent kinase 8. Mol Med Rep 2020; 22:3316-3326. [PMID: 32945439 PMCID: PMC7453674 DOI: 10.3892/mmr.2020.11392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
Medullary thyroid carcinoma (MTC) is a relatively rare subtype of thyroid cancer, accounting for 5‑10% of all cases of thyroid cancer worldwide. Due to the current lack of knowledge regarding the tumorigenesis of MTC, the clinical treatment of MTC remains a challenge. It has been reported that microRNAs (miRNAs) regulate the progression of MTC; however, the regulatory network of miRNAs and the exact underlying mechanisms are not completely understood. In the present study, an miRNA expression profile (GSE40807), consisting of 80 samples, was downloaded and analyzed using Gene Expression Omnibus‑2R to identify differentially expressed miRNAs between MTC and normal samples. miR‑592 expression levels were significantly increased in MTC tissues and cell lines compared with normal tissues and cell lines. Patients with high miR‑592 expression levels exhibited a less favorable prognosis compared with patients with low miR‑592 expression. The results suggested that miR‑592 overexpression promoted TT and MZ‑CRC‑1 cell proliferation in vitro. In addition, miR‑592 negatively regulated cyclin‑dependent kinase 8 (CDK8) via targeted binding in MTC cells. Moreover, co‑transfection of CDK8 overexpression plasmid and miR‑592 mimic reversed miR‑592‑mediated MTC cell proliferation. In conclusion, miR‑592 may serve as an oncogene in MTC by decreasing the expression of CDK8, indicating that the miR‑592/CDK8 axis might serve as a promising therapeutic target for MTC.
Collapse
Affiliation(s)
- Ting Liu
- Department of Nuclear Medicine, The Affiliated Wuhan Central Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Jingjing Meng
- Department of Thyroid and Breast Surgery, The Affiliated Wuhan Central Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Yu Zhang
- Department of Surgery II, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
13
|
Yuan B, Guan Q, Yan T, Zhang X, Xu W, Li J. LncRNA HCP5 Regulates Pancreatic Cancer Progression by miR-140-5p/CDK8 Axis. Cancer Biother Radiopharm 2020; 35:711-719. [PMID: 32407143 DOI: 10.1089/cbr.2019.3294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Pancreatic cancer (PC) is a leading cause of cancer-related deaths worldwide. Human leukocyte antigen complex P5 (HCP5), a member of long noncoding RNAs (lncRNAs), was reported to be associated with the poor prognosis of PC. However, the mechanism of HCP5 in regulating the progression of PC remains poorly defined. Materials and Methods: Quantitative real-time polymerase chain reaction was performed to detect the expression levels of HCP5, microRNA (miR)-140-5p, and cyclin-dependent kinase 8 (CDK8) in PC tissues and cells. Cell counting kit-8 (CCK-8) assay was utilized to check cell proliferation. Transwell assay was employed to evaluate the abilities of cell migration and invasion. Xenograft tumor model was established to investigate the biological role of HCP5 in PC in vivo. The interaction between miR-140-5p and HCP5 or CDK8 was predicted by starBase or TargetScan, respectively. The dual-luciferase reporter assay was conducted to corroborate the interaction. The protein level of CDK8 was measured by Western blot. Results: HCP5 and CDK8 were significantly upregulated in PC tissues and cells, opposite to the expression of miR-140-5p. High expression of HCP5 contributed to the low survival rate and HCP5 silencing inhibited proliferation, migration, and invasion of PC cells in vitro. Simultaneously, in vivo experiments indicated that downregulation of HCP5 suppressed tumor growth. In addition, miR-140-5p was a target of HCP5 and bound to the 3'-untranslated region (3'UTR) of CDK8. Further studies revealed that overexpression of CDK8 reversed the miR-140-5p-mediated inhibitory effect on PC progression. Moreover, downregulation of miR-140-5p or upregulation of CDK8 inverted the silencing-mediated repressive impact of HCP5 on PC progression. Conclusion: Downregulation of HCP5 impeded PC progression by downregulating CDK8 via sponging miR-140-5p.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Hepatobiliary Surgery, Dongying City People's Hospital, Dongying, China
| | - Qiang Guan
- Department of Hepatobiliary Surgery, Dongying City People's Hospital, Dongying, China
| | - Tinghai Yan
- Department of Oncology, Wudi County People's Hospital, Binzhou, China
| | - Xiaobin Zhang
- Department of Hepatobiliary Surgery, Dongying City People's Hospital, Dongying, China
| | - Wuzhong Xu
- Department of Hepatobiliary Surgery, Dongying City People's Hospital, Dongying, China
| | - Jiangong Li
- Department of Hepatobiliary Surgery, Dongying City People's Hospital, Dongying, China
| |
Collapse
|
14
|
Yuedi D, Houbao L, Pinxiang L, Hui W, Min T, Dexiang Z. KLF2 induces the senescence of pancreatic cancer cells by cooperating with FOXO4 to upregulate p21. Exp Cell Res 2020; 388:111784. [PMID: 31866399 DOI: 10.1016/j.yexcr.2019.111784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/02/2023]
Abstract
Pancreatic cancer is one of the most common malignancies in the world. Senescence is frequently observed in the progression of pancreatic cancer. In a previous study, we showed that KLF2 inhibited the growth and migration of pancreatic cancer. However, the mechanisms are not fully understood. In this study, we showed that overexpression of KLF2 induced the senescence of pancreatic cancer cells and inhibited tumorigenesis, and knockdown of KLF2 inhibited senescence and p21 expression. In the molecular mechanism study, KLF2 was found to interact with FOXO4 and cooperated with FOXO4 to induce the expression of p21. Downregulation of p21 and FOXO4 impaired the induction of senescence by KLF2. Overall, this study revealed the functions and mechanisms of KLF2 in senescence and provided a novel explanation for the suppressive roles of KLF2 in pancreatic cancer.
Collapse
Affiliation(s)
- Dai Yuedi
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Soochow, 215006, China; Department of Medical Oncology, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai, 200240, China.
| | - Liu Houbao
- General Surgery Department, Zhongshan Hospital, General Surgery Institute, Fudan University, 180 Fenglin Rd., Shanghai, 200032, China.
| | - Lu Pinxiang
- General Surgery Department, Zhongshan-Xuhui Hospital Affiliated to Fudan University, Shanghai, 200031, China.
| | - Wang Hui
- General Surgery Department, Zhongshan-Xuhui Hospital Affiliated to Fudan University, Shanghai, 200031, China.
| | - Tao Min
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Soochow, 215006, China.
| | - Zhang Dexiang
- General Surgery Department, Zhongshan-Xuhui Hospital Affiliated to Fudan University, Shanghai, 200031, China.
| |
Collapse
|
15
|
Ma D, Chen X, Shen XB, Sheng LQ, Liu XH. Binding patterns and structure–activity relationship of CDK8 inhibitors. Bioorg Chem 2020; 96:103624. [DOI: 10.1016/j.bioorg.2020.103624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
|
16
|
Kujan O, Huang G, Ravindran A, Vijayan M, Farah CS. The role of cyclin-dependent kinases in oral potentially malignant disorders and oral squamous cell carcinoma. J Oral Pathol Med 2019; 48:560-565. [PMID: 31172620 DOI: 10.1111/jop.12903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/09/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a major global health problem with a relatively low-moderate 5-year survival rate. OSCC is often preceded by lesions and conditions known as oral potentially malignant disorders (OPMDs) that have an increased risk of malignant transformation. Despite advances in diagnostic technology and cancer research, the prognosis of OSCC remains poor as it is frequently detected a late stage. Understanding the molecular pathways involved in oral carcinogenesis provides a platform to identify biomarkers that may allow the early detection of OSCC and accurate prediction of the malignant potential of OPMDs. In addition, specific molecular inhibitors can be developed to target these important pathways and allow advanced therapeutic management to improve the prognosis of this malignancy. A common feature across a number of different cancers is the dysfunction of cell cycle moderator proteins known as cyclin-dependent kinases. This review summarises the current literature regarding the role of cyclin-dependent kinases in oral carcinogenesis with a particular focus on cyclin-dependent kinases 4 (CDK4) and 6 (CDK6). This is of particular relevance as CDK4 and CDK6 inhibitors have shown some promising results in other cancer types and are interesting potential treatments for OSCC.
Collapse
Affiliation(s)
- Omar Kujan
- UWA Dental School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Gareth Huang
- UWA Dental School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Ashwati Ravindran
- UWA Dental School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Monisha Vijayan
- UWA Dental School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Camile S Farah
- UWA Dental School, The University of Western Australia, Nedlands, Western Australia, Australia.,Australian Centre for Oral Oncology Research & Education, Nedlands, Western Australia, Australia
| |
Collapse
|
17
|
Menzl I, Witalisz-Siepracka A, Sexl V. CDK8-Novel Therapeutic Opportunities. Pharmaceuticals (Basel) 2019; 12:E92. [PMID: 31248103 PMCID: PMC6630639 DOI: 10.3390/ph12020092] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/22/2022] Open
Abstract
Improvements in cancer therapy frequently stem from the development of new small-molecule inhibitors, paralleled by the identification of biomarkers that can predict the treatment response. Recent evidence supports the idea that cyclin-dependent kinase 8 (CDK8) may represent a potential drug target for breast and prostate cancer, although no CDK8 inhibitors have entered the clinics. As the available inhibitors have been recently reviewed, we focus on the biological functions of CDK8 and provide an overview of the complexity of CDK8-dependent signaling throughout evolution and CDK8-dependent effects that may open novel treatment avenues.
Collapse
Affiliation(s)
- Ingeborg Menzl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria.
| | | | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria.
| |
Collapse
|
18
|
Ježek J, Smethurst DGJ, Stieg DC, Kiss ZAC, Hanley SE, Ganesan V, Chang KT, Cooper KF, Strich R. Cyclin C: The Story of a Non-Cycling Cyclin. BIOLOGY 2019; 8:biology8010003. [PMID: 30621145 PMCID: PMC6466611 DOI: 10.3390/biology8010003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
The class I cyclin family is a well-studied group of structurally conserved proteins that interact with their associated cyclin-dependent kinases (Cdks) to regulate different stages of cell cycle progression depending on their oscillating expression levels. However, the role of class II cyclins, which primarily act as transcription factors and whose expression remains constant throughout the cell cycle, is less well understood. As a classic example of a transcriptional cyclin, cyclin C forms a regulatory sub-complex with its partner kinase Cdk8 and two accessory subunits Med12 and Med13 called the Cdk8-dependent kinase module (CKM). The CKM reversibly associates with the multi-subunit transcriptional coactivator complex, the Mediator, to modulate RNA polymerase II-dependent transcription. Apart from its transcriptional regulatory function, recent research has revealed a novel signaling role for cyclin C at the mitochondria. Upon oxidative stress, cyclin C leaves the nucleus and directly activates the guanosine 5’-triphosphatase (GTPase) Drp1, or Dnm1 in yeast, to induce mitochondrial fragmentation. Importantly, cyclin C-induced mitochondrial fission was found to increase sensitivity of both mammalian and yeast cells to apoptosis. Here, we review and discuss the biology of cyclin C, focusing mainly on its transcriptional and non-transcriptional roles in tumor promotion or suppression.
Collapse
Affiliation(s)
- Jan Ježek
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - Daniel G J Smethurst
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - David C Stieg
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - Z A C Kiss
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - Sara E Hanley
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - Vidyaramanan Ganesan
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - Kai-Ti Chang
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - Katrina F Cooper
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - Randy Strich
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| |
Collapse
|
19
|
Xi M, Chen T, Wu C, Gao X, Wu Y, Luo X, Du K, Yu L, Cai T, Shen R, Sun H. CDK8 as a therapeutic target for cancers and recent developments in discovery of CDK8 inhibitors. Eur J Med Chem 2018; 164:77-91. [PMID: 30594029 DOI: 10.1016/j.ejmech.2018.11.076] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 02/08/2023]
Abstract
Cyclin-dependent kinases 8 (CDK8) regulates transcriptional process via associating with the mediator complex or phosphorylating transcription factors (TF). Overexpression of CDK8 has been observed in various cancers. It mediates aberrant activation of Wnt/β-catenin signaling pathway, which is initially recognized and best studied in colorectal cancer (CRC). CDK8 acts as an oncogene and represents a potential target for developing novel CDK8 inhibitors in cancer therapeutics. However, other study has revealed its contrary role. The function of CDK8 is context dependent. Even so, a variety of potent and selective CDK8 inhibitors have been discovered after crystal structures were resolved in two states (active or inactive). In this review, we summarize co-crystal structures, biological mechanisms, dysregulation in cancers and recent progress in the field of CDK8 inhibitors, trying to offer an outlook of CDK8 inhibitors in cancer therapy in future.
Collapse
Affiliation(s)
- Meiyang Xi
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Tingkai Chen
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Chunlei Wu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Xiaozhong Gao
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Yonghua Wu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Xiang Luo
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Kui Du
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Lemao Yu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Tao Cai
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Runpu Shen
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
20
|
García-Reyes B, Kretz AL, Ruff JP, von Karstedt S, Hillenbrand A, Knippschild U, Henne-Bruns D, Lemke J. The Emerging Role of Cyclin-Dependent Kinases (CDKs) in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2018; 19:E3219. [PMID: 30340359 PMCID: PMC6214075 DOI: 10.3390/ijms19103219] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/27/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023] Open
Abstract
The family of cyclin-dependent kinases (CDKs) has critical functions in cell cycle regulation and controlling of transcriptional elongation. Moreover, dysregulated CDKs have been linked to cancer initiation and progression. Pharmacological CDK inhibition has recently emerged as a novel and promising approach in cancer therapy. This idea is of particular interest to combat pancreatic ductal adenocarcinoma (PDAC), a cancer entity with a dismal prognosis which is owed mainly to PDAC's resistance to conventional therapies. Here, we review the current knowledge of CDK biology, its role in cancer and the therapeutic potential to target CDKs as a novel treatment strategy for PDAC.
Collapse
Affiliation(s)
- Balbina García-Reyes
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Anna-Laura Kretz
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Jan-Philipp Ruff
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Silvia von Karstedt
- Department of Translational Genomics, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany.
| | - Andreas Hillenbrand
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| |
Collapse
|