1
|
Huang J, Zhao N, Li J, Zhu J, Liang G, Chen X, Wang N, Zhu H, Pang N, An C, Xiong X. Development of a potent BET inhibitor for the treatment of renal fibrosis. Eur J Med Chem 2025; 295:117822. [PMID: 40449119 DOI: 10.1016/j.ejmech.2025.117822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 05/19/2025] [Accepted: 05/26/2025] [Indexed: 06/02/2025]
Abstract
BRD4 serving as an attractive target for the treatment of renal fibrosis has recently received considerable attention. However, to date, the BRD4 inhibitors developed for renal fibrosis treatment were relatively few. Herein, we report the discovery of novel BRD4 inhibitors from virtual screening hit compound 1 with moderate inhibitory activity (IC50 = 7.5 ± 2.9 μM). Through the medicinal chemistry optimization program, leading to the discovery of three potent BRD4 inhibitors, 10, 19 and 31 with IC50 values of 20.0 ± 7.1, 17.5 ± 6.4 and 13.5 ± 4.9 nM, respectively. Among them, 31 showed an acceptable liver microsomal stability and displayed a desired pharmacokinetic profile. Further, we confirmed the therapeutic efficacy of 31 in alleviating renal fibrosis on both UUO and folic acid (FA)-induced renal fibrosis mouse models. Collectively, our results indicated that compound 31 might be a promising candidate for renal fibrosis treatment and deserves further investigations.
Collapse
Affiliation(s)
- Jianhang Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Na Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jian Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jiayi Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Guoao Liang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xing Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Naiyuan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Huilong Zhu
- School of Sciences, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Ningning Pang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Chunmei An
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Xiaochun Xiong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
2
|
Yang M, Li J, Huang X, Jin S, Wan S, Wu S. AT1, a small molecular degrader of BRD4 based on proteolysis targeting chimera technology alleviates renal fibrosis and inflammation in diabetic nephropathy. Bioorg Chem 2025; 156:108184. [PMID: 39862737 DOI: 10.1016/j.bioorg.2025.108184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/31/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Both type 1 and type 2 diabetes can lead to diabetic nephropathy (DN), a serious microvascular complication. Bromodomain 4 (BRD4), a member of the BET protein family, has been linked to various diseases, including cancer, inflammation, and fibrosis, and may be involved in the development of diabetes and its complications. In this study, we first explored the role and mechanism of BRD4 in DN. We found that BRD4 expression was upregulated in both diabetic cells and animal models, and that BRD4 knockdown alleviated DN. Therefore, we next investigated the effect of AT1, a small-molecule degrader of BRD4 based on proteolysis targeting chimera (PROTAC) technology, on DN improvement. PROTAC has seldom been applied to non-oncological diseases, and this study represents the first application of AT1 to DN. Finally, we explored the molecular mechanisms underlying DN improvement.
Collapse
Affiliation(s)
- Meng Yang
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Jialin Li
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Xiaocui Huang
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Songzhi Jin
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Shujing Wan
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Suzhen Wu
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
3
|
Xiong C, Chen H, Su B, Zhang L, Hu J, Wang Q, Zhuang S. PRMT1-mediated BRD4 arginine methylation and phosphorylation promote partial epithelial-mesenchymal transformation and renal fibrosis. FASEB J 2025; 39:e70293. [PMID: 39775984 DOI: 10.1096/fj.202401838r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/02/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025]
Abstract
Bromodomain-containing protein 4 (BRD4) plays a vital role in fibrosis of various organs. However, the underlying mechanism of BRD4 in renal fibrosis remains unclear. To construct in vitro and in vivo models of renal fibrosis, TCMK-1 cells were subjected to TGF-β1 treatment and mice were subjected to UUO surgery and adenine induction. IP assay was used for arginine asymmetric dimethylation (ADMA) level, ubiquitination degradation of Snail, and acetylation level of Snail test. Co-IP was used to validate the interactions of BRD4, protein arginine methyltransferase-1 (PRMT1), and Snail. HE staining and Masson staining were used for morphological examination of renal tissue. BRD4 was abnormally overexpressed during renal fibrosis. TGF-β1-induced fibrosis and partial epithelial-mesenchymal transition (pEMT) could be inhibited by BRD4 silencing. PRMT1 mediated ADMA level of BRD4 to enhance BRD4 phosphorylation and its protein stability. Snail protein degradation was attenuated by BRD4 overexpression in an acetylation-dependent manner in TCMK-1 cells. Furthermore, PRMT1 inhibitor abolished BRD4 overexpression-induced fibrosis and pEMT in TGF-β1-treated TCMK-1 cells and Snail overexpression reversed BRD4 silencing-induced inhibition of fibrosis and pEMT. What's more, the reduction of BRD4 arginine methylation inhibited BRD4 phosphorylation and Snail expression to alleviate renal fibrosis in UUO surgery and adenine induction mice. Collectively, PRMT1-mediated BRD4 arginine methylation and phosphorylation promoted pEMT and renal fibrosis through regulation of Snail expression.
Collapse
Affiliation(s)
- Chongxiang Xiong
- Department of Nephrology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, People's Republic of China
| | - Haishan Chen
- Department of Nephrology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, People's Republic of China
| | - Baoting Su
- Department of Nephrology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, People's Republic of China
| | - Li Zhang
- Department of Nephrology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, People's Republic of China
| | - Jingxiang Hu
- Department of Nephrology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, People's Republic of China
| | - Qiaowen Wang
- Department of Nephrology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, People's Republic of China
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital and Brown University School of Medicine, Providence, Rhode Island, USA
| |
Collapse
|
4
|
Yu S, Long L, Zhang X, Qiu Y, Huang Y, Huang X, Li X, Xu R, Fan C, Huang H. The current status and future trends of BET research in oncology. Heliyon 2024; 10:e36888. [PMID: 39281429 PMCID: PMC11399683 DOI: 10.1016/j.heliyon.2024.e36888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Background BET family proteins are important epigenetic and transcriptional regulators involved in the control of tumorigenesis and development and have become important targets for cancer therapy. However, there is no systematic bibliometric analysis in this field. A visual analysis of the research hotspots and trends of BET is helpful to understand the future development direction. Method We used CiteSpace, VOSviewer, and Excel to visualize and analyze the trends regarding authors, journals, countries or regions, highly cited papers, and keywords in the field. Result The results included a total of 946 publications. There are many more papers on BET proteins published since 2013. The papers are mainly from 44 countries, led by the U.S. and China. A total of 7381 authors were identified, among which Bradner, J.E. had the greatest number of articles and the greatest influence. Cancer Discovery was the journal with the most citations per article. Our analysis identified the most influential papers in the field, including highly cited papers and citation burst references. The most frequent keywords included 'expression', 'c-Myc', 'cancer', 'BRD4', 'BET inhibition', 'resistance', 'differentiation', and 'JQ1', which represent the focus of current and developing research fields. Conclusion Research on BET is thriving. Collaboration and exchanges between countries and institutions must be strengthened in the future, and the mechanisms of BET-related pathways, the relationship between BET and various diseases, and the development of new BET inhibitors have become the major focus of current research and the trend of future research.
Collapse
Affiliation(s)
- Siying Yu
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Linna Long
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaorui Zhang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yu Qiu
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yabo Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xueying Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xia Li
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of gynaecology, Xinjiang Cancer Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
- People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Rong Xu
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Chunmei Fan
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - He Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of gynaecology, Xinjiang Cancer Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
5
|
Zhang C, Wang K, Chen X, Li Y. Mechanistic study on lncRNA XIST/miR-124-3p/ITGB1 axis in renal fibrosis in obstructive nephropathy. Exp Cell Res 2024; 442:114194. [PMID: 39127440 DOI: 10.1016/j.yexcr.2024.114194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/04/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVE The purpose of this study was to investigate the role and possible mechanism of lncRNA XIST in renal fibrosis and to provide potential endogenous targets for renal fibrosis in obstructive nephropathy (ON). METHODS The study included 50 cases of ON with renal fibrosis (samples taken from patients undergoing nephrectomy due to ON) and 50 cases of normal renal tissue (samples taken from patients undergoing total or partial nephrectomy due to accidental injury, congenital malformations, and benign tumors). Treatment of human proximal renal tubular epithelium (HK-2) cells with TGF-β1 simulated renal fibrosis in vitro. Cell viability and proliferation were measured by CCK-8 and EdU, and cell migration was measured by transwell. XIST, miR-124-3p, ITGB1, and epithelial-mesenchymal transition (EMT)-related proteins (E-cadherin, α-SMA, and fibronectin) were detected by PCR and immunoblot. The targeting relationship between miR-124-3p and XIST or ITGB1 was verified by starBase and dual luciferase reporter gene experiments. In addition, The left ureter was ligated in mice as a model of unilateral ureteral obstruction (UUO), and the renal histopathology was observed by HE staining and Masson staining. RESULTS ON patients with renal fibrosis had elevated XIST and ITGB1 levels and reduced miR-124-3p levels. The administration of TGF-β1 exhibited a dose-dependent promotion of HK-2 cell viability, proliferation, migration, and EMT. Conversely, depleting XIST or enhancing miR-124-3p hindered HK-2 cell viability, proliferation, migration, and EMT in TGF-β1-damaged HK-2 cells HK-2 cells. XIST functioned as a miR-124-3p sponge. Additionally, miR-124-3p negatively regulated ITGB1 expression. Elevating ITGB1 weakened the impact of XIST depletion on TGF-β1-damaged HK-2 cells. Down-regulating XIST improved renal fibrosis in UUO mice. CONCLUSION XIST promotes renal fibrosis in ON by elevating miR-124-3p and reducing ITGB1 expressions.
Collapse
Affiliation(s)
- ChiTeng Zhang
- Department of Urology Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, China
| | - KangNing Wang
- Department of Urology Surgery, Xiangya Hospital Central South University, Changsha City, Hunan Province, 410000, China
| | - Xiang Chen
- Department of Urology Surgery, Xiangya Hospital Central South University, Changsha City, Hunan Province, 410000, China
| | - Yong Li
- Department of Urology Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, China.
| |
Collapse
|
6
|
Wei Q, Gan C, Sun M, Xie Y, Liu H, Xue T, Deng C, Mo C, Ye T. BRD4: an effective target for organ fibrosis. Biomark Res 2024; 12:92. [PMID: 39215370 PMCID: PMC11365212 DOI: 10.1186/s40364-024-00641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Fibrosis is an excessive wound-healing response induced by repeated or chronic external stimuli to tissues, significantly impacting quality of life and primarily contributing to organ failure. Organ fibrosis is reported to cause 45% of all-cause mortality worldwide. Despite extensive efforts to develop new antifibrotic drugs, drug discovery has not kept pace with the clinical demand. Currently, only pirfenidone and nintedanib are approved by the FDA to treat pulmonary fibrotic illness, whereas there are currently no available antifibrotic drugs for hepatic, cardiac or renal fibrosis. The development of fibrosis is closely related to epigenetic alterations. The field of epigenetics primarily studies biological processes, including chromatin modifications, epigenetic readers, DNA transcription and RNA translation. The bromodomain and extra-terminal structural domain (BET) family, a class of epigenetic readers, specifically recognizes acetylated histone lysine residues and promotes the formation of transcriptional complexes. Bromodomain-containing protein 4 (BRD4) is one of the most well-researched proteins in the BET family. BRD4 is implicated in the expression of genes related to inflammation and pro-fibrosis during fibrosis. Inhibition of BRD4 has shown promising anti-fibrotic effects in preclinical studies; however, no BRD4 inhibitor has been approved for clinical use. This review introduces the structure and function of BET proteins, the research progress on BRD4 in organ fibrosis, and the inhibitors of BRD4 utilized in fibrosis. We emphasize the feasibility of targeting BRD4 as an anti-fibrotic strategy and discuss the therapeutic potential and challenges associated with BRD4 inhibitors in treating fibrotic diseases.
Collapse
Affiliation(s)
- Qun Wei
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cailing Gan
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Sun
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuting Xie
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongyao Liu
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Taixiong Xue
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Conghui Deng
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tinghong Ye
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Ningxia Medical University, Yin Chuan, 640100, China.
| |
Collapse
|
7
|
Saiz ML, Lozano-Chamizo L, Florez AB, Marciello M, Diaz-Bulnes P, Corte-Iglesias V, Bernet CR, Rodrigues-Diez RR, Martin-Martin C, Rodriguez-Santamaria M, Fernandez-Vega I, Rodriguez RM, Diaz-Corte C, Suarez-Alvarez B, Filice M, Lopez-Larrea C. BET inhibitor nanotherapy halts kidney damage and reduces chronic kidney disease progression after ischemia-reperfusion injury. Biomed Pharmacother 2024; 174:116492. [PMID: 38537579 DOI: 10.1016/j.biopha.2024.116492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
Targeting epigenetic mechanisms has emerged as a potential therapeutic approach for the treatment of kidney diseases. Specifically, inhibiting the bromodomain and extra-terminal (BET) domain proteins using the small molecule inhibitor JQ1 has shown promise in preclinical models of acute kidney injury (AKI) and chronic kidney disease (CKD). However, its clinical translation faces challenges due to issues with poor pharmacokinetics and side effects. Here, we developed engineered liposomes loaded with JQ1 with the aim of enhancing kidney drug delivery and reducing the required minimum effective dose by leveraging cargo protection. These liposomes efficiently encapsulated JQ1 in both the membrane and core, demonstrating superior therapeutic efficacy compared to freely delivered JQ1 in a mouse model of kidney ischemia-reperfusion injury. JQ1-loaded liposomes (JQ1-NPs) effectively targeted the kidneys and only one administration, one-hour after injury, was enough to decrease the immune cell (neutrophils and monocytes) infiltration to the kidney-an early and pivotal step to prevent damage progression. By inhibiting BRD4, JQ1-NPs suppress the transcription of pro-inflammatory genes, such as cytokines (il-6) and chemokines (ccl2, ccl5). This success not only improved early the kidney function, as evidenced by decreased serum levels of BUN and creatinine in JQ1-NPs-treated mice, along with reduced tissue expression of the damage marker, NGAL, but also halted the production of extracellular matrix proteins (Fsp-1, Fn-1, α-SMA and Col1a1) and the fibrosis development. In summary, this work presents a promising nanotherapeutic strategy for AKI treatment and its progression and provides new insights into renal drug delivery.
Collapse
Affiliation(s)
- Maria Laura Saiz
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; ISCIII RICORS2040 Kidney Disease Research Network, Madrid, Spain
| | - Laura Lozano-Chamizo
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, Madrid E-28040, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernández Almagro 3, Madrid E-28029, Spain; Atrys Health, Madrid E-28001, Spain
| | - Aida Bernardo Florez
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; ISCIII RICORS2040 Kidney Disease Research Network, Madrid, Spain
| | - Marzia Marciello
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, Madrid E-28040, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernández Almagro 3, Madrid E-28029, Spain
| | - Paula Diaz-Bulnes
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; ISCIII RICORS2040 Kidney Disease Research Network, Madrid, Spain
| | - Viviana Corte-Iglesias
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; ISCIII RICORS2040 Kidney Disease Research Network, Madrid, Spain; Department of Immunology, Hospital Universitario Central de Asturias, Oviedo 33011, Spain
| | - Cristian Ruiz Bernet
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; ISCIII RICORS2040 Kidney Disease Research Network, Madrid, Spain
| | - Raul R Rodrigues-Diez
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; ISCIII RICORS2040 Kidney Disease Research Network, Madrid, Spain
| | - Cristina Martin-Martin
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; ISCIII RICORS2040 Kidney Disease Research Network, Madrid, Spain
| | - Mar Rodriguez-Santamaria
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain
| | - Ivan Fernandez-Vega
- Department of Pathology, Hospital Universitario Central de Asturias, Oviedo 33001, Spain; Biobank of Principality of Asturias, Oviedo 33011, Spain
| | - Ramon M Rodriguez
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa), Ctra. Valldemossa 79, Palma, Balearic Islands E-07120, Spain; Research Unit, University Hospital Son Espases, Ctra. Valldemossa79, Palma, Balearic Islands E-07120, Spain
| | - Carmen Diaz-Corte
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; Department of Nephrology, Hospital Universitario Central de Asturias, Oviedo 33001, Spain
| | - Beatriz Suarez-Alvarez
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; ISCIII RICORS2040 Kidney Disease Research Network, Madrid, Spain.
| | - Marco Filice
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, Madrid E-28040, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernández Almagro 3, Madrid E-28029, Spain.
| | - Carlos Lopez-Larrea
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, Oviedo, Asturias 33011, Spain; ISCIII RICORS2040 Kidney Disease Research Network, Madrid, Spain; Department of Immunology, Hospital Universitario Central de Asturias, Oviedo 33011, Spain
| |
Collapse
|
8
|
Huber AD, Poudel S, Wu J, Miller DJ, Lin W, Yang L, Bwayi MN, Rimmer MA, Gee RRF, Seetharaman J, Chai SC, Chen T. A bromodomain-independent mechanism of gene regulation by the BET inhibitor JQ1: direct activation of nuclear receptor PXR. Nucleic Acids Res 2024; 52:1661-1676. [PMID: 38084912 PMCID: PMC10899790 DOI: 10.1093/nar/gkad1175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 02/29/2024] Open
Abstract
Bromodomain and extraterminal (BET) proteins are extensively studied in multiple pathologies, including cancer. BET proteins modulate transcription of various genes, including those synonymous with cancer, such as MYC. Thus, BET inhibitors are a major area of drug development efforts. (+)-JQ1 (JQ1) is the prototype inhibitor and is a common tool to probe BET functions. While showing therapeutic promise, JQ1 is not clinically usable, partly due to metabolic instability. Here, we show that JQ1 and the BET-inactive (-)-JQ1 are agonists of pregnane X receptor (PXR), a nuclear receptor that transcriptionally regulates genes encoding drug-metabolizing enzymes such as CYP3A4, which was previously shown to oxidize JQ1. A PXR-JQ1 co-crystal structure identified JQ1's tert-butyl moiety as a PXR anchor and explains binding by (-)-JQ1. Analogs differing at the tert-butyl lost PXR binding, validating our structural findings. Evaluation in liver cell models revealed both PXR-dependent and PXR-independent modulation of CYP3A4 expression by BET inhibitors. We have characterized a non-BET JQ1 target, a mechanism of physiological JQ1 instability, a biological function of (-)-JQ1, and BET-dependent transcriptional regulation of drug metabolism genes.
Collapse
Affiliation(s)
- Andrew D Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Shyaron Poudel
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Monicah N Bwayi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mary Ashley Rimmer
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Rebecca R Florke Gee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jayaraman Seetharaman
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Sergio C Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
9
|
Marchant V, Trionfetti F, Tejedor-Santamaria L, Rayego-Mateos S, Rotili D, Bontempi G, Domenici A, Menè P, Mai A, Martín-Cleary C, Ortiz A, Ramos AM, Strippoli R, Ruiz-Ortega M. BET Protein Inhibitor JQ1 Ameliorates Experimental Peritoneal Damage by Inhibition of Inflammation and Oxidative Stress. Antioxidants (Basel) 2023; 12:2055. [PMID: 38136175 PMCID: PMC10740563 DOI: 10.3390/antiox12122055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Peritoneal dialysis (PD) is a current replacement therapy for end-stage kidney diseases (ESKDs). However, long-term exposure to PD fluids may lead to damage of the peritoneal membrane (PM) through mechanisms involving the activation of the inflammatory response and mesothelial-to-mesenchymal transition (MMT), leading to filtration failure. Peritoneal damage depends on a complex interaction among external stimuli, intrinsic properties of the PM, and subsequent activities of the local innate-adaptive immune system. Epigenetic drugs targeting bromodomain and extra-terminal domain (BET) proteins have shown beneficial effects on different experimental preclinical diseases, mainly by inhibiting proliferative and inflammatory responses. However the effect of BET inhibition on peritoneal damage has not been studied. To this aim, we have evaluated the effects of treatment with the BET inhibitor JQ1 in a mouse model of peritoneal damage induced by chlorhexidine gluconate (CHX). We found that JQ1 ameliorated the CHX-induced PM thickness and inflammatory cell infiltration. Moreover, JQ1 decreased gene overexpression of proinflammatory and profibrotic markers, together with an inhibition of the nuclear factor-κB (NF-κB) pathway. Additionally, JQ1 blocked the activation of nuclear factor erythroid 2-related factor 2 (NRF2) and restored changes in the mRNA expression levels of NADPH oxidases (NOX1 and NOX4) and NRF2/target antioxidant response genes. To corroborate the in vivo findings, we evaluated the effects of the BET inhibitor JQ1 on PD patients' effluent-derived primary mesothelial cells and on the MeT-5A cell line. JQ1 inhibited tumor necrosis factor-α (TNF-α)-induced proinflammatory gene upregulation and restored MMT phenotype changes, together with the downmodulation of oxidative stress. Taken together, these results suggest that BET inhibitors may be a potential therapeutic option to ameliorate peritoneal damage.
Collapse
Affiliation(s)
- Vanessa Marchant
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (V.M.); (L.T.-S.); (S.R.-M.)
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
| | - Flavia Trionfetti
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (F.T.); (G.B.); (R.S.)
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Lucia Tejedor-Santamaria
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (V.M.); (L.T.-S.); (S.R.-M.)
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
| | - Sandra Rayego-Mateos
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (V.M.); (L.T.-S.); (S.R.-M.)
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (D.R.); (A.M.)
| | - Giulio Bontempi
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (F.T.); (G.B.); (R.S.)
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandro Domenici
- Renal Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (A.D.); (P.M.)
| | - Paolo Menè
- Renal Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (A.D.); (P.M.)
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (D.R.); (A.M.)
| | - Catalina Martín-Cleary
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain;
| | - Alberto Ortiz
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain;
| | - Adrian M. Ramos
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain;
| | - Raffaele Strippoli
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (F.T.); (G.B.); (R.S.)
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (V.M.); (L.T.-S.); (S.R.-M.)
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
| |
Collapse
|
10
|
Gilham D, Wasiak S, Rakai BD, Fu L, Tsujikawa LM, Sarsons CD, Carestia A, Lebioda K, Johansson JO, Sweeney M, Kalantar-Zadeh K, Kulikowski E. Apabetalone Downregulates Fibrotic, Inflammatory and Calcific Processes in Renal Mesangial Cells and Patients with Renal Impairment. Biomedicines 2023; 11:1663. [PMID: 37371758 DOI: 10.3390/biomedicines11061663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Epigenetic mechanisms are implicated in transcriptional programs driving chronic kidney disease (CKD). Apabetalone is an orally available inhibitor of bromodomain and extraterminal (BET) proteins, which are epigenetic readers that modulate gene expression. In the phase 3 BETonMACE trial, apabetalone reduced risk of major adverse cardiac events (MACE) by 50% in the CKD subpopulation, indicating favorable effects along the kidney-heart axis. Activation of human renal mesangial cells (HRMCs) to a contractile phenotype that overproduces extracellular matrix (ECM) and inflammatory cytokines, and promotes calcification, frequently accompanies CKD to drive pathology. Here, we show apabetalone downregulated HRMC activation with TGF-β1 stimulation by suppressing TGF-β1-induced α-smooth muscle actin (α-SMA) expression, α-SMA assembly into stress fibers, enhanced contraction, collagen overproduction, and expression of key drivers of fibrosis, inflammation, or calcification including thrombospondin, fibronectin, periostin, SPARC, interleukin 6, and alkaline phosphatase. Lipopolysaccharide-stimulated expression of inflammatory genes IL6, IL1B, and PTGS2 was also suppressed. Transcriptomics confirmed apabetalone affected gene sets of ECM remodeling and integrins. Clinical translation of in vitro results was indicated in CKD patients where a single dose of apabetalone reduced plasma levels of key pro-fibrotic and inflammatory markers, and indicated inhibition of TGF-β1 signaling. While plasma proteins cannot be traced to the kidney alone, anti-fibrotic and anti-inflammatory effects of apabetalone identified in this study are consistent with the observed decrease in cardiovascular risk in CKD patients.
Collapse
Affiliation(s)
- Dean Gilham
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Sylwia Wasiak
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Brooke D Rakai
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Li Fu
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Laura M Tsujikawa
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | | | - Agostina Carestia
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Kenneth Lebioda
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Jan O Johansson
- Resverlogix Inc., 535 Mission St, 14th Floor, San Francisco, CA 94105, USA
| | - Michael Sweeney
- Resverlogix Inc., 535 Mission St, 14th Floor, San Francisco, CA 94105, USA
| | - Kamyar Kalantar-Zadeh
- Harbor-UCLA Medical Center, University of California Los Angeles, 1000 W Carson St, Torrance, CA 90502, USA
| | - Ewelina Kulikowski
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| |
Collapse
|
11
|
Huang R, Fu P, Ma L. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduct Target Ther 2023; 8:129. [PMID: 36932062 PMCID: PMC10023808 DOI: 10.1038/s41392-023-01379-7] [Citation(s) in RCA: 251] [Impact Index Per Article: 125.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Chronic kidney disease (CKD) is estimated to affect 10-14% of global population. Kidney fibrosis, characterized by excessive extracellular matrix deposition leading to scarring, is a hallmark manifestation in different progressive CKD; However, at present no antifibrotic therapies against CKD exist. Kidney fibrosis is identified by tubule atrophy, interstitial chronic inflammation and fibrogenesis, glomerulosclerosis, and vascular rarefaction. Fibrotic niche, where organ fibrosis initiates, is a complex interplay between injured parenchyma (like tubular cells) and multiple non-parenchymal cell lineages (immune and mesenchymal cells) located spatially within scarring areas. Although the mechanisms of kidney fibrosis are complicated due to the kinds of cells involved, with the help of single-cell technology, many key questions have been explored, such as what kind of renal tubules are profibrotic, where myofibroblasts originate, which immune cells are involved, and how cells communicate with each other. In addition, genetics and epigenetics are deeper mechanisms that regulate kidney fibrosis. And the reversible nature of epigenetic changes including DNA methylation, RNA interference, and chromatin remodeling, gives an opportunity to stop or reverse kidney fibrosis by therapeutic strategies. More marketed (e.g., RAS blockage, SGLT2 inhibitors) have been developed to delay CKD progression in recent years. Furthermore, a better understanding of renal fibrosis is also favored to discover biomarkers of fibrotic injury. In the review, we update recent advances in the mechanism of renal fibrosis and summarize novel biomarkers and antifibrotic treatment for CKD.
Collapse
Affiliation(s)
- Rongshuang Huang
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Reduced Renal CSE/CBS/H2S Contributes to the Progress of Lupus Nephritis. BIOLOGY 2023; 12:biology12020318. [PMID: 36829595 PMCID: PMC9953544 DOI: 10.3390/biology12020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023]
Abstract
The molecular mechanisms underlying lupus nephritis (LN) pathogenesis are not fully understood. Hydrogen sulfide (H2S) is involved in many pathological and physiological processes. We sought to investigate the roles of H2S in LN pathogenesis. H2S synthase cystathionine-lyase (CSE) and cystathionine-synthetase (CBS) expression was downregulated in renal tissues of patients with LN and their levels were associated with LN's prognosis using the Nephroseq database. Reduced CSE and CBS protein expression in kidney tissues of LN patients and MRL/lpr mice were confirmed by immunohistochemistry. CSE and CBS mRNA levels were reduced in MRL/lpr and pristine- and R848-induced lupus mice. Given that H2S exerts an anti-inflammatory role partly via regulating inflammatory transcription factors (TFs), we analyzed hub TFs by using a bioinformatics approach. It showed that STAT1, RELA, and T-cell-related signaling pathways were enriched in LN. Increased STAT1 and RELA expression were confirmed in renal tissues of LN patients. Treatment of MRL/lpr and pristine mice with H2S donors alleviated systemic lupus erythematosus (SLE) phenotypes and renal injury. H2S donors inhibited RELA level and T-cell infiltration in the kidneys of MRL/lpr and pristine mice. Our data indicated that CSE/CBS/H2S contributes to LN pathogenesis. Supplementation of H2S would be a potential therapeutic strategy for LN.
Collapse
|
13
|
Morgado-Pascual JL, Suarez-Alvarez B, Marchant V, Basantes P, Tharaux PL, Ortiz A, Lopez-Larrea C, Ruiz-Ortega M, Rayego-Mateos S. Type IV Collagen and SOX9 Are Molecular Targets of BET Inhibition in Experimental Glomerulosclerosis. Int J Mol Sci 2022; 24:486. [PMID: 36613933 PMCID: PMC9820124 DOI: 10.3390/ijms24010486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Progressive glomerulonephritis (GN) is characterized by an excessive accumulation of extracellular (ECM) proteins, mainly type IV collagen (COLIV), in the glomerulus leading to glomerulosclerosis. The current therapeutic approach to GN is suboptimal. Epigenetic drugs could be novel therapeutic options for human disease. Among these drugs, bromodomain and extra-terminal domain (BET) inhibitors (iBETs) have shown beneficial effects in experimental kidney disease and fibrotic disorders. Sex-determining region Y-box 9 (SOX9) is a transcription factor involved in regulating proliferation, migration, and regeneration, but its role in kidney fibrosis is still unclear. We investigated whether iBETs could regulate ECM accumulation in experimental GN and evaluated the role of SOX9 in this process. For this purpose, we tested the iBET JQ1 in mice with anti-glomerular basement membrane nephritis induced by nephrotoxic serum (NTS). In NTS-injected mice, JQ1 treatment reduced glomerular ECM deposition, mainly by inhibiting glomerular COLIV accumulation and Col4a3 gene overexpression. Moreover, chromatin immunoprecipitation assays demonstrated that JQ1 inhibited the recruitment and binding of BRD4 to the Col4a3 promoter and reduced its transcription. Active SOX9 was found in the nuclei of glomerular cells of NTS-injured kidneys, mainly in COLIV-stained regions. JQ1 treatment blocked SOX9 nuclear translocation in injured kidneys. Moreover, in vitro JQ1 blocked TGF-β1-induced SOX9 activation and ECM production in cultured mesangial cells. Additionally, SOX9 gene silencing inhibited ECM production, including COLIV production. Our results demonstrated that JQ1 inhibited SOX9/COLIV, to reduce experimental glomerulosclerosis, supporting further research of iBET as a potential therapeutic option in progressive glomerulosclerosis.
Collapse
Affiliation(s)
- José Luis Morgado-Pascual
- Cellular Biology in Renal Diseases Laboratory, Jiménez Díaz Foundation Health Research Institute, Autonomous University of Madrid, 28040 Madrid, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba University, 14004 Cordoba, Spain
| | - Beatriz Suarez-Alvarez
- REDINREN Spain/Ricord2040, 28029 Madrid, Spain
- Translational Immunology, Principality of Asturias Health Research Institute (ISPA), Central University Hospital of Asturias, 33011 Oviedo, Spain
| | - Vanessa Marchant
- Cellular Biology in Renal Diseases Laboratory, Jiménez Díaz Foundation Health Research Institute, Autonomous University of Madrid, 28040 Madrid, Spain
- REDINREN Spain/Ricord2040, 28029 Madrid, Spain
| | - Pamela Basantes
- Cellular Biology in Renal Diseases Laboratory, Jiménez Díaz Foundation Health Research Institute, Autonomous University of Madrid, 28040 Madrid, Spain
- REDINREN Spain/Ricord2040, 28029 Madrid, Spain
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Center—PARCC, INSERM, Paris Cité University, 75015 Paris, France
| | - Alberto Ortiz
- REDINREN Spain/Ricord2040, 28029 Madrid, Spain
- Division of Nephrology and Hypertension, Jiménez Díaz Foundation Health Research Institute, Autonomous University of Madrid, 28040 Madrid, Spain
| | - Carlos Lopez-Larrea
- REDINREN Spain/Ricord2040, 28029 Madrid, Spain
- Translational Immunology, Principality of Asturias Health Research Institute (ISPA), Central University Hospital of Asturias, 33011 Oviedo, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, Jiménez Díaz Foundation Health Research Institute, Autonomous University of Madrid, 28040 Madrid, Spain
- REDINREN Spain/Ricord2040, 28029 Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, Jiménez Díaz Foundation Health Research Institute, Autonomous University of Madrid, 28040 Madrid, Spain
- REDINREN Spain/Ricord2040, 28029 Madrid, Spain
| |
Collapse
|
14
|
Li X, Zhu H, Wen J, Huang J, Chen Y, Tian M, Ren J, Zhou L, Yang Q. Inhibition of BRD4 decreases fibrous scarring after ischemic stroke in rats by inhibiting the phosphorylation of Smad2/3. Brain Res 2022; 1797:148126. [PMID: 36244457 DOI: 10.1016/j.brainres.2022.148126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/17/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022]
Abstract
AIMS Fibrous scarring may play a much more important role in preventing secondary expansion of tissue damage and hindering repair and regeneration than glial scarring after central nervous system (CNS) injury. However, relatively little is known about how fibrous scars form and how fibrous scar formation is regulated after CNS injury. Bromodomain-containing protein 4 (BRD4) is involved in fibrosis in many tissues, and transforming growth factor-β1 (TGF-β1)/Smad2/3 signaling is one of the critical pathways of fibrosis. However, it is unclear whether and how BRD4 affects fibrous scar formation after ischemicbraininjury. In the present study, whether BRD4 can regulate the formation of fibrous scars after ischemic stroke via TGF-β1/Smad2/3 signaling was assessed. MATERIALS AND METHODS Primary meningeal fibroblasts isolated from neonatal SD rats were treated with TGF-β1, SB431542 (a TGF-β1 receptor inhibitor) and JQ1 (a small-molecule BET inhibitor that can also inhibit BRD4). BRD4 was knocked down in adult Sprague-Dawley (SD) rats by using adenovirus before middle cerebral artery occlusion/reperfusion (MCAO/R) injury. The proliferation and migration of meningeal fibroblasts in vitro were evaluated with the Cell Counting Kit-8 (CCK-8) assay and scratch test, respectively. Neurological function was assessed with Longa scores, modified Bederson Scores and modified neurological severity scores (mNSSs). The infarct volume was assessed with TTC staining. The protein expression of synaptophysin (SY), BRD4, Smad2/3, p-Smad2/3, α-smooth muscle actin (α-SMA), collagen-1 (COL1) and fibronectin (FN) in vivo and in vitro was examined with immunocytochemistry, immunofluorescence, and Western blotting. KEY FINDINGS BRD4 expression was upregulated in a TGF-β1-induced meningeal fibroblast fibrosis model and was downregulated by the TGF-β1 receptor inhibitor SB431542 in vitro. JQ1, a small-molecule BET inhibitor, inhibited BRD4 and decreased TGF-β1-induced meningeal fibroblast proliferation, migration and activation. Furthermore, MCAO/R injury induced fibrosis and upregulated BRD4 expression in the cerebral infarct center. BRD4 knockdown by adenovirus inhibited fibrous scarring, promoted synaptic survival, decreased the infarct volume, and improved neurological function after MCAO/R injury. Moreover, inhibition of BRD4, either by JQ1 in vitro or adenovirus in vivo, decreased the phosphorylation of Smad2/3. CONCLUSIONS This study is the first to indicate that inhibition of BRD4 delays fibrous scarring after ischemic stroke through mechanisms involving the phosphorylation of Smad2/3.
Collapse
Affiliation(s)
- Xuemei Li
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huimin Zhu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Wen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiagui Huang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingfen Tian
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiangxia Ren
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zhou
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Yang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
15
|
Novel plasma exosome biomarkers for prostate cancer progression in co-morbid metabolic disease. ADVANCES IN CANCER BIOLOGY - METASTASIS 2022; 6:100073. [PMID: 36644690 PMCID: PMC9836031 DOI: 10.1016/j.adcanc.2022.100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Comorbid Type 2 diabetes (T2D), a metabolic complication of obesity, associates with worse cancer outcomes for prostate, breast, head and neck, colorectal and several other solid tumors. However, the molecular mechanisms remain poorly understood. Emerging evidence shows that exosomes carry miRNAs in blood that encode the metabolic status of originating tissues and deliver their cargo to target tissues to modulate expression of critical genes. Exosomal communication potentially connects abnormal metabolism to cancer progression. Here, we hypothesized that T2D plasma exosomes induce epithelial-mesenchymal transition (EMT) and immune checkpoints in prostate cancer cells. We demonstrate that plasma exosomes from subjects with T2D induce EMT features in prostate cancer cells and upregulate the checkpoint genes CD274 and CD155. We demonstrate that specific exosomal miRNAs that are differentially abundant in plasma of T2D adults compared to nondiabetic controls (miR374a-5p, miR-93-5p and let-7b-3p) are delivered to cancer cells, thereby regulating critical target genes. We build on our previous reports showing BRD4 controls migration and dissemination of castration-resistant prostate cancer, and transcription of key EMT genes, to show that T2D exosomes require BRD4 to drive EMT and immune ligand expression. We validate our findings with gene set enrichment analysis of human prostate tumor tissue in TGCA genomic data. These results suggest novel, non-invasive approaches to evaluate and potentially block progression of prostate and other cancers in patients with comorbid T2D.
Collapse
|
16
|
Shen F, Zhuang S. Histone Acetylation and Modifiers in Renal Fibrosis. Front Pharmacol 2022; 13:760308. [PMID: 35559244 PMCID: PMC9086452 DOI: 10.3389/fphar.2022.760308] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/04/2022] [Indexed: 12/23/2022] Open
Abstract
Histones are the most abundant proteins bound to DNA in eukaryotic cells and frequently subjected to post-modifications such as acetylation, methylation, phosphorylation and ubiquitination. Many studies have shown that histone modifications, especially histone acetylation, play an important role in the development and progression of renal fibrosis. Histone acetylation is regulated by three families of proteins, including histone acetyltransferases (HATs), histone deacetylases (HDACs) and bromodomain and extraterminal (BET) proteins. These acetylation modifiers are involved in a variety of pathophysiological processes leading to the development of renal fibrosis, including partial epithelial-mesenchymal transition, renal fibroblast activation, inflammatory response, and the expression of pro-fibrosis factors. In this review, we summarize the role and regulatory mechanisms of HATs, HDACs and BET proteins in renal fibrosis and provide evidence for targeting these modifiers to treat various chronic fibrotic kidney diseases in animal models.
Collapse
Affiliation(s)
- Fengchen Shen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
17
|
Tao S, Tao S, Guo F, Zhang L, Zhao L, Fu P, Ma L. Discovery of indol-6-yl-pyrrolo[2,3-c]pyridin-7-one derivatives as bromodomain-containing protein 4 (BRD4) inhibitors for the treatment of kidney fibrosis. Eur J Med Chem 2022; 231:114153. [DOI: 10.1016/j.ejmech.2022.114153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/03/2022]
|
18
|
Xia WP, Chen X, Ru F, He Y, Liu PH, Gan Y, Zhang B, Li Y, Dai GY, Jiang ZX, Chen Z. Knockdown of lncRNA XIST inhibited apoptosis and inflammation in renal fibrosis via microRNA-19b-mediated downregulation of SOX6. Mol Immunol 2021; 139:87-96. [PMID: 34461493 DOI: 10.1016/j.molimm.2021.07.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/22/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Kidney damage often develops into renal fibrosis. Apoptosis and inflammatory response are the main factors driving the process of renal fibrosis. Here we showed that lncRNA XIST/ miR-19b / SOX6 signal axis regulated apoptosis and inflammation of renal fibrosis. METHODS HK-2 cells were treated with TGF-β1 to construct cell fibrosis model, and UUO surgery was performed to construct mouse renal fibrosis model. The expression of XIST, miR-19b and SOX6 were examined by qPCR. And levels of fibrosis-related proteins were detected by western blotting. Levels of IL-1β and TNF-α were assessed by qPCR and ELISA, respectively. Renal pathology and fibrosis were evaluated by HE and Masson staining. Flow cytometry and TUNEL staining were employed to evaluate cell apoptosis in cell fibrosis model and mouse renal fibrosis model, respectively. Besides, dual luciferase reporter assay was employed to verify whether XIST had a binding site to miR-19b, and whether miR-19b had a binding site to SOX6. RESULTS Here we showed that XIST and SOX6 were upregulated in both HK-2 cells treatment of TGF-β1 and kidneys of UUO mice, while miR-19b was downregulated. Dual luciferase reporter assay displayed that XIST directly bound to miR-19b, and SOX6 was the target of miR-19b. Knockdown of XIST inhibited apoptosis, inflammation and fibrosis in HK-2 cells treatment of TGF-β1 via miR-19b-mediated downregulation of SOX6, while inhibition of miR-19b reversed the effect. Similarly, knockdown of XIST in vivo inhibited apoptosis, inflammation and fibrosis in kidneys of UUO mice via miR-19b-mediated downregulation of SOX6. DISCUSSION These results provided evidence that knockdown of XIST inhibited apoptosis and inflammation of renal fibrosis via miR-19b-mediated downregulation of SOX6.
Collapse
Affiliation(s)
- Wei-Ping Xia
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China
| | - Feng Ru
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China
| | - Yao He
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China
| | - Pei-Hua Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China
| | - Bo Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China
| | - Yong Li
- Department of Urology, The Second Affiliated Hospital of University of South China, Hengyang 421000, Hunan Province, PR China
| | - Guo-Yu Dai
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China
| | - Ze-Xiang Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China
| | - Zhi Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China.
| |
Collapse
|
19
|
Kocic G, Gajic M, Tomovic K, Hadzi-Djokic J, Anderluh M, Smelcerovic A. Purine adducts as a presumable missing link for aristolochic acid nephropathy-related cellular energy crisis, potential anti-fibrotic prevention and treatment. Br J Pharmacol 2021; 178:4411-4427. [PMID: 34235731 DOI: 10.1111/bph.15618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022] Open
Abstract
Aristolochic acid nephropathy is a progressive exposome-induced disease characterized by tubular atrophy and fibrosis culminating in end-stage renal disease and malignancies. The molecular mechanisms of the energy crisis as a putative cause of fibrosis have not yet been elucidated. In light of the fact that aristolochic acid forms DNA and RNA adducts by covalent binding of aristolochic acid metabolites to exocyclic amino groups of (deoxy)adenosine and (deoxy)guanosine, we hypothesize here that similar aristolochic acid adducts may exist with other purine-containing molecules. We also provide new insights into the aristolochic acid-induced energy crisis and presumably a link between already known mechanisms. In addition, an overview of potential targets in fibrosis treatment is provided, which is followed by recommendations on possible preventive measures that could be taken to at least postpone or partially alleviate aristolochic acid nephropathy.
Collapse
Affiliation(s)
- Gordana Kocic
- Department of Biochemistry, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Mihajlo Gajic
- Department of Pharmacy, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Katarina Tomovic
- Department of Pharmacy, Faculty of Medicine, University of Nis, Nis, Serbia
| | | | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Andrija Smelcerovic
- Department of Chemistry, Faculty of Medicine, University of Nis, Nis, Serbia
| |
Collapse
|
20
|
Yang H, Wei L, Xun Y, Yang A, You H. BRD4: An emerging prospective therapeutic target in glioma. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:1-14. [PMID: 33851008 PMCID: PMC8010576 DOI: 10.1016/j.omto.2021.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite advances in treatment, the prognosis for glioma patients remains poor. Bromodomain-containing protein 4 (BRD4), a member of the bromodomain and extraterminal (BET) protein family, plays an important role in controlling oncogene expression and genome stability. In recent years, numerous BRD4 inhibitors have entered clinical trials and achieved exciting results in tumor treatment. Recent clinical studies have shown that BRD4 expression in glioma is significantly higher than in the adjacent normal brain tissue. BRD4 inhibitors effectively penetrate the blood-brain barrier and target glioma tumor tissues but have little effect on normal brain tissues. Thus, BRD4 is a target for the treatment of glioma. In this study, we discuss the progress in the use of BRD4 inhibitors for glioma treatment, their mechanism of action, and their broad potential clinical application.
Collapse
Affiliation(s)
- Hua Yang
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan 528000, Guangdong Province, China
| | - Li Wei
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong Province, China
| | - Yang Xun
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan 528000, Guangdong Province, China
| | - Anping Yang
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan 528000, Guangdong Province, China
| | - Hua You
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong Province, China
| |
Collapse
|
21
|
Xiong C, Deng J, Wang X, Shao X, Zhou Q, Zou H, Zhuang S. Pharmacologic Targeting of BET Proteins Attenuates Hyperuricemic Nephropathy in Rats. Front Pharmacol 2021; 12:636154. [PMID: 33664670 PMCID: PMC7921804 DOI: 10.3389/fphar.2021.636154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/18/2021] [Indexed: 12/14/2022] Open
Abstract
Hyperuricemia is an independent risk factor for renal damage and promotes the progression of chronic kidney disease. In this study, we investigated the effect of I-BET151, a small-molecule inhibitor targeting the bromodomain and extraterminal (BET) proteins, on the development of hyperuricemic nephropathy (HN), and the mechanisms involved. Expression levels of bromodomain-containing protein 2 and 4, but not 3 were increased in the kidney of rats with HN; administration of I-BET151 effectively prevented renal dysfunction, decreased urine microalbumin, and attenuated renal fibrosis as indicated by reduced activation of renal interstitial fibroblasts and expression of fibronectin and collagen I in HN rats. Mechanistic studies show that I-BET151 treatment inhibited transition of renal epithelial cells to a mesenchymal cell type as evidenced by preservation of E-cadherin and reduction of vimentin expression. This was coincident with reduced expression of TGF-β1 and dephosphorylation of Smad3 and ERK1/2. I-BET151 was also effective in inhibiting phosphorylation of NF-κB, expression of multiple cytokines and chemokines, and infiltration of macrophages to the injured kidney. Although there were increased serum levels of uric acid and xanthine oxidase, an enzyme that catalyzes production of uric acid, and decreased expression of renal organic anion transporter 1 and 3 that promote urate excretion in the model of HN, and reduced expression levels of urine uric acid, I-BET151 treatment did not affect these responses. Collectively, our results indicate that I-BET151 alleviates HN by inhibiting epithelial to mesenchymal transition and inflammation in association with blockade of TGF-β, ERK1/2 and NF-κB signaling.
Collapse
Affiliation(s)
- Chongxiang Xiong
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jin Deng
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xin Wang
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiaofei Shao
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qin Zhou
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hequn Zou
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Alpert Medical School and Rhode Island Hospital, Brown University, Providence, RI, United States
| |
Collapse
|
22
|
He J, Li Z, Yu T, Wang W, Tao M, Wang S, Ma Y, Fan J, Tian X, Wang X, Javed R, Ao Q. In vitro and in vivo biocompatibility study on acellular sheep periosteum for guided bone regeneration. Biomed Mater 2020; 15:015013. [DOI: 10.1088/1748-605x/ab597f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Morgado-Pascual JL, Rayego-Mateos S, Tejedor L, Suarez-Alvarez B, Ruiz-Ortega M. Bromodomain and Extraterminal Proteins as Novel Epigenetic Targets for Renal Diseases. Front Pharmacol 2019; 10:1315. [PMID: 31780938 PMCID: PMC6857099 DOI: 10.3389/fphar.2019.01315] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Epigenetic mechanisms, especially DNA methylation and histone modifications, are dynamic processes that regulate the gene expression transcriptional program in normal and diseased states. The bromodomain and extraterminal (BET) protein family (BRD2, BRD3, BRD4, and BRDT) are epigenetic readers that, via bromodomains, regulate gene transcription by binding to acetylated lysine residues on histones and master transcriptional factors. Experimental data have demonstrated the involvement of some BET proteins in many pathological conditions, including tumor development, infections, autoimmunity, and inflammation. Selective bromodomain inhibitors are epigenetic drugs that block the interaction between BET proteins and acetylated proteins, thus exerting beneficial effects. Recent data have described the beneficial effect of BET inhibition on experimental renal diseases. Emerging evidence underscores the importance of environmental modifications in the origin of pathological features in chronic kidney diseases (CKD). Several cellular processes such as oxidation, metabolic disorders, cytokines, inflammation, or accumulated uremic toxins may induce epigenetic modifications that regulate key processes involved in renal damage and in other pathological conditions observed in CKD patients. Here, we review how targeting bromodomains in BET proteins may regulate essential processes involved in renal diseases and in associated complications found in CKD patients, such as cardiovascular damage, highlighting the potential of epigenetic therapeutic strategies against BET proteins for CKD treatment and associated risks.
Collapse
Affiliation(s)
- Jose Luis Morgado-Pascual
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Sandra Rayego-Mateos
- Red de Investigación Renal (REDinREN), Madrid, Spain.,Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Lucia Tejedor
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Beatriz Suarez-Alvarez
- Red de Investigación Renal (REDinREN), Madrid, Spain.,Translational Immunology Laboratory, Health Research Institute of the Principality of Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| |
Collapse
|