1
|
Zhang J, Luo X, Guo C, Dai Z, Tang X, Zhang F, Jiao Q, Lin S, Zou L, Zhang Z, Lv XB. LncRNA GClnc1 promotes osteosarcoma progression by stabilizing NONO and blocking FBXW7-mediated ubiquitination. BMC Cancer 2024; 24:1375. [PMID: 39523321 PMCID: PMC11552323 DOI: 10.1186/s12885-024-13138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) plays a vital role in the occurrence and development of varieties of tumors. Previous studies have shown that lncRNA GClnc1 is highly expressed in osteosarcoma (OS). However, the mechanism of lncRNA GClnc1 in osteosarcoma has not been fully elucidated. In this study, we investigated the biological roles of lncRNA GClnc1 in osteosarcoma and unveiled its underlying mechanisms. METHODS The expression of lncRNA GClnc1 in OS cells was detected by real-time quantitative PCR (qRT-PCR). The functional roles of lncRNA GClnc1 were examined by CCK8, trans-well, scratch wound healing assay, colony formation, and apoptosis assays in osteosarcoma cells upon silencing or overexpressing GClnc1. Western blot analysis, qRT-PCR, and RNA co-immunoprecipitation (RIP) assays were used to detect the interaction between lncRNA GClnc1 and NONO. RESULTS The expression of lncRNA GClnc1 was up-regulated in osteosarcoma cell lines. Knockdown of lncRNA GClnc1 suppressed the cell growth, migration, and invasion of OS cells, whereas the over-expression of GClnc1 improved the proliferation, migration, and invasion of OS cells. Mechanistically, we identified that lncRNA GClnc1 regulates the stability of NONO by blocking FBXW7-mediated ubiquitination degradation. Additionally, overexpression of NONO can reverse GClnc1 silencing exerted suppression of the cell proliferation, migration, and invasion, and vice versa. CONCLUSIONS Our study elucidated that lncRNA GClnc1 participates in the progression of OS by regulating the NONO signal pathway. Targeting GClnc1 provides a potential target for future clinical treatment of OS.
Collapse
Affiliation(s)
- Jiongfeng Zhang
- Jiangxi Key Laboratory of Oncology, The Central Lab of The First Hospital of Nanchang, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, China
- Department of Orthopedics, Nanchang Key Laboratory of Orthopaedics, The First Hospital of Nanchang, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330008, China
| | - Xiaohui Luo
- Jiangxi Key Laboratory of Oncology, The Central Lab of The First Hospital of Nanchang, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, China
- Department of Orthopedics, Nanchang Key Laboratory of Orthopaedics, The First Hospital of Nanchang, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330008, China
| | - Chong Guo
- Jiangxi Key Laboratory of Oncology, The Central Lab of The First Hospital of Nanchang, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, China
- Department of Orthopedics, Nanchang Key Laboratory of Orthopaedics, The First Hospital of Nanchang, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330008, China
| | - Zhengzai Dai
- Jiangxi Key Laboratory of Oncology, The Central Lab of The First Hospital of Nanchang, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, China
| | - Xiaofeng Tang
- Department of Orthopedics, Nanchang Key Laboratory of Orthopaedics, The First Hospital of Nanchang, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330008, China
| | - Feifei Zhang
- Department of Orthopedics, Nanchang Key Laboratory of Orthopaedics, The First Hospital of Nanchang, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330008, China
| | - Quanhui Jiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Shifan Lin
- Jiangxi Key Laboratory of Oncology, The Central Lab of The First Hospital of Nanchang, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, China
| | - Le Zou
- Jiangxi Key Laboratory of Oncology, The Central Lab of The First Hospital of Nanchang, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, China
| | - Zhiping Zhang
- Jiangxi Key Laboratory of Oncology, The Central Lab of The First Hospital of Nanchang, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, China.
| | - Xiao-Bin Lv
- Department of Orthopedics, Nanchang Key Laboratory of Orthopaedics, The First Hospital of Nanchang, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330008, China.
| |
Collapse
|
2
|
Que Z, Yang K, Wang N, Li S, Li T. Functional Role of RBP in Osteosarcoma: Regulatory Mechanism and Clinical Therapy. Anal Cell Pathol (Amst) 2023; 2023:9849719. [PMID: 37426488 PMCID: PMC10328736 DOI: 10.1155/2023/9849719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/06/2023] [Accepted: 06/11/2023] [Indexed: 07/11/2023] Open
Abstract
Malignant bone neoplasms can be represented by osteosarcoma (OS), which accounts for 36% of all sarcomas. To reduce tumor malignancy, extensive efforts have been devoted to find an ideal target from numerous candidates, among which RNA-binding proteins (RBPs) have shown their unparalleled competitiveness. With the special structure of RNA-binding domains, RBPs have the potential to establish relationships with RNAs or small molecules and are considered regulators of different sections of RNA processes, including splicing, transport, translation, and degradation of RNAs. RBPs have considerable significant roles in various cancers, and experiments revealed that there was a strong association of RBPs with tumorigenesis and tumor cell progression. Regarding OS, RBPs are a new orientation, but achievements in hand are noteworthy. Higher or lower expression of RBPs was first found in tumor cells compared to normal tissue. By binding to different molecules, RBPs are capable of influencing tumor cell phenotypes through different signaling pathways or other axes, and researches on medical treatment have been largely inspired. Exploring the prognostic and therapeutic values of RBPs in OS is a hotspot where diverse avenues on regulating RBPs have achieved dramatical effects. In this review, we briefly summarize the contribution of RBPs and their binding molecules to OS oncogenicity and generally introduce distinctive RBPs as samples. Moreover, we focus on the attempts to differentiate RBP's opposite functions in predicting prognosis and collect possible strategies for treatment. Our review provides forwards insight into improving the understanding of OS and suggests RBPs as potential biomarkers for therapies.
Collapse
Affiliation(s)
- Ziyuan Que
- Yangzhou University Medical College, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Kang Yang
- Department of Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Nan Wang
- Yangzhou University Medical College, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Shuying Li
- Yangzhou University Medical College, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Tao Li
- Department of Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| |
Collapse
|
3
|
Xu K, Sun S, Yan M, Cui J, Yang Y, Li W, Huang X, Dou L, Chen B, Tang W, Lan M, Li J, Shen T. DDX5 and DDX17—multifaceted proteins in the regulation of tumorigenesis and tumor progression. Front Oncol 2022; 12:943032. [PMID: 35992805 PMCID: PMC9382309 DOI: 10.3389/fonc.2022.943032] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/07/2022] [Indexed: 12/15/2022] Open
Abstract
DEAD-box (DDX)5 and DDX17, which belong to the DEAD-box RNA helicase family, are nuclear and cytoplasmic shuttle proteins. These proteins are expressed in most tissues and cells and participate in the regulation of normal physiological functions; their abnormal expression is closely related to tumorigenesis and tumor progression. DDX5/DDX17 participate in almost all processes of RNA metabolism, such as the alternative splicing of mRNA, biogenesis of microRNAs (miRNAs) and ribosomes, degradation of mRNA, interaction with long noncoding RNAs (lncRNAs) and coregulation of transcriptional activity. Moreover, different posttranslational modifications, such as phosphorylation, acetylation, ubiquitination, and sumoylation, endow DDX5/DDX17 with different functions in tumorigenesis and tumor progression. Indeed, DDX5 and DDX17 also interact with multiple key tumor-promoting molecules and participate in tumorigenesis and tumor progression signaling pathways. When DDX5/DDX17 expression or their posttranslational modification is dysregulated, the normal cellular signaling network collapses, leading to many pathological states, including tumorigenesis and tumor development. This review mainly discusses the molecular structure features and biological functions of DDX5/DDX17 and their effects on tumorigenesis and tumor progression, as well as their potential clinical application for tumor treatment.
Collapse
Affiliation(s)
- Kun Xu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Shenghui Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- Peking University Fifth School of Clinical Medicine, Beijing, China
| | - Ju Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Yao Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Wenlin Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Beidong Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Ming Lan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- *Correspondence: Tao Shen,
| |
Collapse
|
4
|
Zhang F, Sun J, Tang X, Liang Y, Jiao Q, Yu B, Dai Z, Yuan X, Li J, Yan J, Zhang Z, Fan S, Wang M, Hu H, Zhang C, Lv XB. Stabilization of SAMHD1 by NONO is crucial for Ara-C resistance in AML. Cell Death Dis 2022; 13:590. [PMID: 35803902 PMCID: PMC9270467 DOI: 10.1038/s41419-022-05023-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 01/21/2023]
Abstract
Cytarabine (Ara-C) is the first-line drug for the treatment of acute myelogenous leukemia (AML). However, resistance eventually develops, decreasing the efficacy of Ara-C in AML patients. The expression of SAMHD1, a deoxynucleoside triphosphate (dNTP) triphosphohydrolase, has been reported to be elevated in Ara-C-resistant AML patients and to play a crucial role in mediating Ara-C resistance in AML. However, the mechanism by which SAMHD1 is upregulated in resistant AML remains unknown. In this study, NONO interacted with and stabilized SAMHD1 by inhibiting DCAF1-mediated ubiquitination/degradation of SAMHD1. Overexpression of NONO increased SAMHD1 expression and reduced the sensitivity of AML cells to Ara-C, and downregulation of NONO had the opposite effects. In addition, the DNA-damaging agents DDP and adriamycin (ADM) reduced NONO/SAMHD1 expression and sensitized AML cells to Ara-C. More importantly, NONO was upregulated in Ara-C-resistant AML cells, resulting in increased SAMHD1 expression in resistant AML cells, and DDP and ADM treatment resensitized resistant AML cells to Ara-C. This study revealed the mechanism by which SAMHD1 is upregulated in Ara-C-resistant AML cells and provided novel therapeutic strategies for Ara-C-resistant AML.
Collapse
Affiliation(s)
- Feifei Zhang
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| | - Jun Sun
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China ,College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004 China
| | - Xiaofeng Tang
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| | - Yiping Liang
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| | - Quanhui Jiao
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China ,College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004 China
| | - Bo Yu
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China ,grid.479689.dDepartment of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| | - Zhengzai Dai
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China ,grid.479689.dDepartment of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| | - Xuhui Yuan
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China ,grid.479689.dDepartment of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| | - Jiayu Li
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China ,grid.479689.dDepartment of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| | - Jinhua Yan
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| | - Zhiping Zhang
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China ,grid.479689.dDepartment of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| | - Song Fan
- grid.412536.70000 0004 1791 7851Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120 China
| | - Min Wang
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Haiyan Hu
- grid.412528.80000 0004 1798 5117Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Changhua Zhang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004 China
| | - Xiao-Bin Lv
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| |
Collapse
|