1
|
Wei L, Xiao R, Guo Z, Wang P, Zhao K, Zhou Y, Sun W, Cao Y. Comparative urine proteomic study involving papillary thyroid carcinoma and benign thyroid nodules. Front Oncol 2025; 15:1551247. [PMID: 40265010 PMCID: PMC12011787 DOI: 10.3389/fonc.2025.1551247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/20/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction Accurately differentiating benign and malignant lesions is essential for treatment. We aimed to determine differences in urine proteomics between papillary thyroid carcinomas (PTCs) and benign thyroid nodules (BTNs) and identify biomarkers for the differential diagnosis of these diseases. Methods We collected 155 specimens. In the discovery group, 30 PTC and 31 BTN specimens were quantitatively compared using liquid chromatography-tandem mass spectrometry (MS). The diagnostic value of each significantly altered protein was calculated in the MS validation comprising 11 PTC and 10 BTN samples. Ultimately, 36 BTN and 37 PTC specimens were used for ELISA validation. Results and discussion Overall, 2,479 proteins were used for quantitative analysis. Compared with benign nodules, papillary carcinomas showed significant increases and decreases in the levels of 169 and 27 proteins, respectively. Neck and thyroid tumors were enriched in the disease or function category. More than 100 proteins showed good performance in the area under the receiver operating characteristic curve (>0.8) upon MS validation. Semaphorin-6D showed good performance (AUC = 0.763) in ELISA validation. Urine proteomics is an effective diagnostic tool for distinguishing benign and malignant thyroid diseases. Semaphorin-6D may serve as a disease marker for large-scale validation and use. Additionally, this study identified potential biomarkers that warrant further investigation.
Collapse
Affiliation(s)
- Lilong Wei
- Department of Clinical Laboratory Center, China-Japan Friendship Hospital, Beijing, China
| | - Rui Xiao
- Beijing University of Posts and Telecommunications Hospital, Beijing University of Posts and Telecommunications, Beijing, China
| | - Zhengguang Guo
- Core Facility of Instruments, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Pengpeng Wang
- Department of General Surgery & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, China
| | - Kexin Zhao
- Department of Clinical Laboratory Center, China-Japan Friendship Hospital, Beijing, China
| | - Yun Zhou
- Department of Clinical Laboratory Center, China-Japan Friendship Hospital, Beijing, China
| | - Wei Sun
- Core Facility of Instruments, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yongtong Cao
- Department of Clinical Laboratory Center, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
2
|
Binder AK, Bremm F, Dörrie J, Schaft N. Non-Coding RNA in Tumor Cells and Tumor-Associated Myeloid Cells-Function and Therapeutic Potential. Int J Mol Sci 2024; 25:7275. [PMID: 39000381 PMCID: PMC11242727 DOI: 10.3390/ijms25137275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
The RNA world is wide, and besides mRNA, there is a variety of other RNA types, such as non-coding (nc)RNAs, which harbor various intracellular regulatory functions. This review focuses on small interfering (si)RNA and micro (mi)RNA, which form a complex network regulating mRNA translation and, consequently, gene expression. In fact, these RNAs are critically involved in the function and phenotype of all cells in the human body, including malignant cells. In cancer, the two main targets for therapy are dysregulated cancer cells and dysfunctional immune cells. To exploit the potential of mi- or siRNA therapeutics in cancer therapy, a profound understanding of the regulatory mechanisms of RNAs and following targeted intervention is needed to re-program cancer cells and immune cell functions in vivo. The first part focuses on the function of less well-known RNAs, including siRNA and miRNA, and presents RNA-based technologies. In the second part, the therapeutic potential of these technologies in treating cancer is discussed, with particular attention on manipulating tumor-associated immune cells, especially tumor-associated myeloid cells.
Collapse
Affiliation(s)
- Amanda Katharina Binder
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
3
|
Zhou Y, Yang J, Huang L, Liu C, Yu M, Chen R, Zhou Q. Nudt21-mediated alternative polyadenylation of MZT1 3'UTR contributes to pancreatic cancer progression. iScience 2024; 27:108822. [PMID: 38303721 PMCID: PMC10831950 DOI: 10.1016/j.isci.2024.108822] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/26/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Alternative polyadenylation (APA) is an important post-transcriptional regulatory mechanism and is involved in many diseases, but its function and mechanism in regulating pancreatic cancer (PC) pathogenesis remain unclear. In this study, we found that the 3' UTR shortening of MZT1 was the most prominent APA event in PC liver metastases. The short-3'UTR isoform exerted a stronger effect in promoting cell proliferation and migration both in vitro and in vivo. NUDT21, a core cleavage factor involved in APA, promoted the usage of proximal polyadenylation sites (PASs) on MZT1 mRNA by binding to the UGUA element located upstream of the proximal PAS. High percentage of distal polyA site usage index of MZT1 was significantly associated with a better prognosis. These findings demonstrate a crucial mechanism that NUDT21-mediated APA of MZT1 could promote the progression of PC. Our findings provided a better understanding of the connection between PC progression and APA machinery.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiabin Yang
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Leyi Huang
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Chao Liu
- Department of Pathology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Min Yu
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Rufu Chen
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Quanbo Zhou
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
4
|
Liu W, Pang Y, Yu X, Lu D, Yang Y, Meng F, Xu C, Yuan L, Nan Y. Pan-cancer analysis of NUDT21 and its effect on the proliferation of human head and neck squamous cell carcinoma. Aging (Albany NY) 2024; 16:3363-3385. [PMID: 38349866 PMCID: PMC10929839 DOI: 10.18632/aging.205539] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Based on bioinformatics research of NUDT21 in pan-cancer, we aimed to clarify the mechanism of NUDT21 in HHNC by experiment. METHODS The correlation between differential expression of NUDT21 in pan-cancer and survival prognosis, genomic instability, tumor stemness, DNA repair, RNA methylation and with immune microenvironment were analyzed by the application of different pan-cancer analysis web databases. In addition, immunohistochemistry staining and genetic detection of NUDT21 in HHNCC tumor tissues by immunohistochemistry and qRT-PCR. Then, through in vitro cell experiments, NUDT21 was knocked down by lentivirus to detect the proliferation, cycle, apoptosis of FaDu and CNE-2Z cells, and finally by PathScan intracellular signaling array reagent to detect the apoptotic protein content. RESULTS Based on the pan-cancer analysis, we found that elevated expression of NUDT21 in most cancers was significantly correlated with TMB, MSI, neoantigens and chromosomal ploidy, and in epigenetics, elevated NUDT21 expression was strongly associated with genomic stability, mismatch repair genes, tumor stemness, and RNA methylation. Based on immunosuppressive score, we found that NUDT21 plays an essential role in the immunosuppressive environment by suppressing immune checkpointing effect in most cancers. In addition, using HHNSCC as a study target, PCR and pathological detection of NUDT21 in tumor tissues was significantly increased than that in paracancerous normal tissues. In vitro cellular assays, silencing NUDT21 inhibited proliferation and promoted apoptosis in FaDu and CNE-2Z cells, and blocked the cell cycle in the G2/M phase. Therefore, the experiments confirmed that NUDT21 promotes the proliferation of FaDu by suppressing the expression of apoptotic.
Collapse
Affiliation(s)
- Wenjing Liu
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yingna Pang
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130000, China
| | - Xiaolu Yu
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130000, China
| | - Doudou Lu
- Clinical Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yating Yang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Fandi Meng
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Chengbi Xu
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130000, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
5
|
Xiao S, Gu H, Deng L, Yang X, Qiao D, Zhang X, Zhang T, Yu T. Relationship between NUDT21 mediated alternative polyadenylation process and tumor. Front Oncol 2023; 13:1052012. [PMID: 36816917 PMCID: PMC9933127 DOI: 10.3389/fonc.2023.1052012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
Alternative polyadenylation (APA) is a molecular process that generates diversity at the 3' end of RNA polymerase II transcripts from over 60% of human genes. APA and microRNA regulation are both mechanisms of post-transcriptional regulation of gene expression. As a key molecular mechanism, Alternative polyadenylation often results in mRNA isoforms with the same coding sequence but different lengths of 3' UTRs, while microRNAs regulate gene expression by binding to specific mRNA 3' UTRs. Nudix Hydrolase 21 (NUDT21) is a crucial mediator involved in alternative polyadenylation (APA). Different studies have reported a dual role of NUDT21 in cancer (both oncogenic and tumor suppressor). The present review focuses on the functions of APA, miRNA and their interaction and roles in development of different types of tumors.NUDT21 mediated 3' UTR-APA changes can be used to generate specific signatures that can be used as potential biomarkers in development and disease. Due to the emerging role of NUDT21 as a regulator of the aforementioned RNA processing events, modulation of NUDT21 levels may be a novel viable therapeutic approach.
Collapse
Affiliation(s)
- Shan Xiao
- Department of Oncology, Affiliated Hospital of Southwest Medical University of China, Luzhou, China
| | - Huan Gu
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Deng
- Department of Oncology, Affiliated Hospital of Southwest Medical University of China, Luzhou, China
| | - Xiongtao Yang
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Qiao
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xudong Zhang
- Department of Anesthesia, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tian Zhang
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Tao Yu, ; Tian Zhang,
| | - Tao Yu
- Department of Oncology, Affiliated Hospital of Southwest Medical University of China, Luzhou, China,Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Tao Yu, ; Tian Zhang,
| |
Collapse
|
6
|
Zhong Y, Zhao P, Zhang C, Wu Z, Fang X, Zhu Z. NUDT21 relieves sevoflurane-induced neurological damage in rats by down-regulating LIMK2. Open Life Sci 2023; 18:20220486. [PMID: 37077345 PMCID: PMC10106971 DOI: 10.1515/biol-2022-0486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/22/2022] [Accepted: 07/28/2022] [Indexed: 04/21/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication of cognitive decline after surgery and anesthesia. Sevoflurane, as a commonly used anesthetic, was found to cause POCD. Nudix Hydrolase 21 (NUDT21), a conserved splicing factor, has been reported to exert important functions in multiple diseases' progression. In this study, the effect of NUDT21 on sevoflurane-induced POCD was elucidated. Results showed that NUDT21 was down-regulated in the hippocampal tissue of sevoflurane-induced rats. Morris water maze test results revealed that overexpression of NUDT21 improved sevoflurane-induced cognitive impairment. In addition, TUNEL assay results indicated that enhanced NUDT21 alleviated sevoflurane-induced apoptosis of hippocampal neurons. Furthermore, overexpression of NUDT21 suppressed the sevoflurane-induced LIMK2 expression. Taken together, NUDT21 alleviates sevoflurane-induced neurological damage in rats by down-regulating LIMK2, providing a novel target for the prevention of sevoflurane-induced POCD.
Collapse
Affiliation(s)
- Yuanping Zhong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
| | - Pengcheng Zhao
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
| | - Chao Zhang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
| | - Zhenyu Wu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
| | - Xu Fang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
| | - Zhaoqiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi City, Guizhou Province, 563000, China
| |
Collapse
|
7
|
Zheng Y, Zhang H, Guo Y, Chen Y, Chen H, Liu Y. X-ray repair cross-complementing protein 1 (XRCC1) loss promotes β-lapachone -induced apoptosis in pancreatic cancer cells. BMC Cancer 2021; 21:1234. [PMID: 34789190 PMCID: PMC8600733 DOI: 10.1186/s12885-021-08979-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
Background β-lapachone (β-lap), the NQO1 bioactivatable drug, is thought to be a promising anticancer agent. However, the toxic side effects of β-lap limit the drug use, highlighting the need for a thorough understanding of β-lap’s mechanism of action. β-lap undergoes NQO1-dependent futile redox cycling, generating massive ROS and oxidative DNA lesions, leading to cell death. Thus, base excision repair (BER) pathway is an important resistance factor. XRCC1, a scaffolding component, plays a critical role in BER. Methods We knocked down XRCC1 expression by using pLVX-shXRCC1 in the MiaPaCa2 cells and BxPC3 cells and evaluated β-lap-induced DNA lesions by γH2AX foci formation and alkaline comet assay. The cell death induced by XRCC1 knockdown + β-lap treatment was analysed by relative survival, flow cytometry and Western blotting analysis. Results We found that knockdown of XRCC1 significantly increased β-lap-induced DNA double-strand breaks, comet tail lengths and cell death in PDA cells. Furthermore, we observed combining XRCC1 knockdown with β-lap treatment switched programmed necrosis with β-lap monotherapy to caspase-dependent apoptosis. Conclusions These results indicate that XRCC1 is involved in the repair of β-lap-induced DNA damage, and XRCC1 loss amplifies sensitivity to β-lap, suggesting targeting key components in BER pathways may have the potential to expand use and efficacy of β-lap for gene-based therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08979-y.
Collapse
Affiliation(s)
- Yansong Zheng
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Hengce Zhang
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University/School of Basic Medical Science, Fujian Medical University, Fuzhou City, 350122, Fujian Province, China
| | - Yueting Guo
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University/School of Basic Medical Science, Fujian Medical University, Fuzhou City, 350122, Fujian Province, China
| | - Yuan Chen
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University/School of Basic Medical Science, Fujian Medical University, Fuzhou City, 350122, Fujian Province, China
| | - Hanglong Chen
- Fujian University of Traditional Chinese Medicine, Fuzhou City, 350122, Fujian Province, China
| | - Yingchun Liu
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University/School of Basic Medical Science, Fujian Medical University, Fuzhou City, 350122, Fujian Province, China.
| |
Collapse
|
8
|
Zhu Y, Zhang R, Zhang Y, Cheng X, Li L, Wu Z, Ding K. NUDT21 Promotes Tumor Growth and Metastasis Through Modulating SGPP2 in Human Gastric Cancer. Front Oncol 2021; 11:670353. [PMID: 34660260 PMCID: PMC8514838 DOI: 10.3389/fonc.2021.670353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 09/13/2021] [Indexed: 01/24/2023] Open
Abstract
Gastric cancer is one of the major malignancies with poor survival outcome. In this study, we reported that NUDT21 promoted cell proliferation, colony formation, cell migration and invasion in gastric cancer cells. The expression levels of NUDT21 were found to be much higher in human gastric cancer tissues compared with normal gastric tissues. NUDT21 expression was positively correlated with tumor size, lymph node metastasis and clinical stage in gastric cancer patients. High level of NUDT21 was associated with poor overall survival (OS) rates in gastric cancer patients. The expression levels of NUDT21 were also much higher in gastric cancer tissues from patients with tumor metastasis compared with those of patients without tumor metastasis. Moreover, forced expression of NUDT21 in gastric cancer cells promoted tumor growth and cell proliferation in xenograft nude mice, and depletion of NUDT21 in gastric cancer cells restrained lung metastasis in vivo. Through high throughput RNA-sequencing, SGPP2 was identified to be positively regulated by NUDT21 and mediated the tumor promoting role of NUDT21 in gastric cancer cells. Therefore, NUDT21 played an oncogenic role in human gastric cancer cells. NUDT21 could be considered as a novel potential target for gastric cancer therapy.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Pathophysiology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Rumeng Zhang
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Ying Zhang
- Department of Oncology of the First Affiliated Hospital, Division of Life Science and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| | - Xiao Cheng
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Lin Li
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Zhengsheng Wu
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Keshuo Ding
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|