1
|
Wang Q, Liu JL, Liu J. CTPS cytoophidia in Drosophila: distribution, regulation, and physiological roles. Exp Cell Res 2025; 447:114536. [PMID: 40122502 DOI: 10.1016/j.yexcr.2025.114536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025]
Abstract
Intracellular compartmentalization plays a critical role in maintaining cellular homeostasis and regulating metabolic processes. A growing body of evidence suggests that various metabolic enzymes, including CTP synthase (CTPS), can dynamically assemble into membraneless filamentous structures. The formation of these membraneless organelles is precisely regulated by the cellular metabolic state. CTPS, a rate-limiting enzyme in the de novo biosynthesis of CTP, has been shown to assemble into filamentous structures known as cytoophidium. First identified in 2010 by three independent research groups, cytoophidia are evolutionarily conserved across diverse organisms, including bacteria, archaea, yeast, mammals, and plants, suggesting a fundamental biological function. Given the well-established advantages of Drosophila melanogaster as a genetic model, this organism provides a powerful system for investigating the physiological roles of cytoophidia. This review synthesizes current findings on CTPS cytoophidia in Drosophila, with a particular focus on their spatiotemporal distribution in tissues and their regulatory roles in three key biological processes: intestinal homeostasis, lipid metabolism, and reproductive physiology. Furthermore, we discuss the challenges and future directions in cytoophidia research, offering insights into their broader implications in cellular metabolism and physiology.
Collapse
Affiliation(s)
- Qingyi Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jingnan Liu
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
2
|
Zhang Y, Liu JL. The Impact of Developmental and Metabolic Cues on Cytoophidium Formation. Int J Mol Sci 2024; 25:10058. [PMID: 39337544 PMCID: PMC11432437 DOI: 10.3390/ijms251810058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The cytoophidium, composed mainly of CTP synthase (CTPS), is a newly discovered dynamic filamentous structure in various organisms such as archaea, bacteria, and humans. These filamentous structures represent a fascinating example of intracellular compartmentation and dynamic regulation of metabolic enzymes. Currently, cytoophidia have been proven to be tightly regulated and highly dynamic, responding rapidly to developmental and metabolic cues and playing a critical role in maintaining cellular homeostasis. In this review, we would like to discuss in detail the characteristics, mechanisms, functions, and potential applications of this conservative but promising organelle.
Collapse
Affiliation(s)
- Yuanbing Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Experimental Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
3
|
Uttekar B, Verma RK, Tomer D, Rikhy R. Mitochondrial morphology dynamics and ROS regulate apical polarity and differentiation in Drosophila follicle cells. Development 2024; 151:dev201732. [PMID: 38345270 PMCID: PMC7616099 DOI: 10.1242/dev.201732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 01/23/2024] [Indexed: 03/01/2024]
Abstract
Mitochondrial morphology dynamics regulate signaling pathways during epithelial cell formation and differentiation. The mitochondrial fission protein Drp1 affects the appropriate activation of EGFR and Notch signaling-driven differentiation of posterior follicle cells in Drosophila oogenesis. The mechanisms by which Drp1 regulates epithelial polarity during differentiation are not known. In this study, we show that Drp1-depleted follicle cells are constricted in early stages and present in multiple layers at later stages with decreased levels of apical polarity protein aPKC. These defects are suppressed by additional depletion of mitochondrial fusion protein Opa1. Opa1 depletion leads to mitochondrial fragmentation and increased reactive oxygen species (ROS) in follicle cells. We find that increasing ROS by depleting the ROS scavengers, mitochondrial SOD2 and catalase also leads to mitochondrial fragmentation. Further, the loss of Opa1, SOD2 and catalase partially restores the defects in epithelial polarity and aPKC, along with EGFR and Notch signaling in Drp1-depleted follicle cells. Our results show a crucial interaction between mitochondrial morphology, ROS generation and epithelial cell polarity formation during the differentiation of follicle epithelial cells in Drosophila oogenesis.
Collapse
Affiliation(s)
- Bhavin Uttekar
- Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune 411008, India
| | - Rahul Kumar Verma
- Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune 411008, India
| | - Darshika Tomer
- Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune 411008, India
| | - Richa Rikhy
- Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
4
|
Weng RY, Zhang L, Liu JL. Connecting Hippo Pathway and Cytoophidia in Drosophila Posterior Follicle Cells. Int J Mol Sci 2024; 25:1453. [PMID: 38338731 PMCID: PMC10855297 DOI: 10.3390/ijms25031453] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
CTP synthase (CTPS), the rate-limiting enzyme in the de novo synthesis of CTP, assembles into a filamentous structure termed the cytoophidium. The Hippo pathway regulates cell proliferation and apoptosis. The relationship of the nucleotide metabolism with the Hippo pathway is little known. Here, we study the impact of the Hippo pathway on the cytoophidium in Drosophila melanogaster posterior follicle cells (PFCs). We find that the inactivation of the Hippo pathway correlates with reduced cytoophidium length and number within PFCs. During the overexpression of CTPS, the presence of Hippo mutations also reduces the length of cytoophidia in PFCs. In addition, we observe that knocking down CTPS mitigates hpo (Hippo)-associated over-proliferation. In summary, our results suggest that there is a connection between the Hippo pathway and the nucleotide biosynthesis enzyme CTPS in PFCs.
Collapse
Affiliation(s)
- Rui-Yu Weng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; (R.-Y.W.)
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; (R.-Y.W.)
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; (R.-Y.W.)
| |
Collapse
|
5
|
You DD, Zhou XL, Wang QQ, Liu JL. Cytoophidia safeguard binucleation of Drosophila male accessory gland cells. Exp Cell Res 2023; 422:113433. [PMID: 36423659 DOI: 10.1016/j.yexcr.2022.113433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Although most cells are mononuclear, the nucleus can exist in the form of binucleate or even multinucleate to respond to different physiological processes. The male accessory gland of Drosophila is the organ that produces semen, and its main cells are binucleate. Here we observe that CTP synthase (CTPS) forms filamentous cytoophidia in binuclear main cells, primarily located at the cell boundary. In CTPSH355A, a point mutation that destroys the formation of cytoophidia, we find that the nucleation mode of the main cells changes, including mononucleates and vertical distribution of binucleates. Although the overexpression of CTPSH355A can restore the level of CTPS protein, it will neither form cytoophidia nor eliminate the abnormal nucleation pattern. Therefore, our data indicate that there is an unexpected functional link between the formation of cytoophidia and the maintenance of binucleation in Drosophila main cells.
Collapse
Affiliation(s)
- Dong-Dong You
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiao-Li Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Qiao-Qi Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.
| |
Collapse
|
6
|
Wang QQ, You DD, Liu JL. Cytoophidia Maintain the Integrity of Drosophila Follicle Epithelium. Int J Mol Sci 2022; 23:ijms232315282. [PMID: 36499609 PMCID: PMC9740582 DOI: 10.3390/ijms232315282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
CTP synthase (CTPS) forms a filamentous structure termed the cytoophidium in all three domains of life. The female reproductive system of Drosophila is an excellent model for studying the physiological function of cytoophidia. Here, we use CTPSH355A, a point mutation that destroys the cytoophidium-forming ability of CTPS, to explore the in vivo function of cytoophidia. In CTPSH355A egg chambers, we observe the ingression and increased heterogeneity of follicle cells. In addition, we find that the cytoophidium-forming ability of CTPS, rather than the protein level, is the cause of the defects observed in CTPSH355A mutants. To sum up, our data indicate that cytoophidia play an important role in maintaining the integrity of follicle epithelium.
Collapse
Affiliation(s)
- Qiao-Qi Wang
- School of Life Science and Technology, Shanghai Technology University, Shanghai 201210, China
| | - Dong-Dong You
- School of Life Science and Technology, Shanghai Technology University, Shanghai 201210, China
| | - Ji-Long Liu
- School of Life Science and Technology, Shanghai Technology University, Shanghai 201210, China
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Correspondence: or
| |
Collapse
|
7
|
Fang YF, Li YL, Li XM, Liu JL. Super-Resolution Imaging Reveals Dynamic Reticular Cytoophidia. Int J Mol Sci 2022; 23:11698. [PMID: 36233000 PMCID: PMC9569780 DOI: 10.3390/ijms231911698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
CTP synthase (CTPS) can form filamentous structures termed cytoophidia in cells in all three domains of life. In order to study the mesoscale structure of cytoophidia, we perform fluorescence recovery after photobleaching (FRAP) and stimulated emission depletion (STED) microscopy in human cells. By using an EGFP dimeric tag as a tool to explore the physical properties of cytoophidia, we find that cytoophidia are dynamic and reticular. The reticular structure of CTPS cytoophidia may provide space for other components, such as IMPDH. In addition, we observe CTPS granules with tentacles.
Collapse
Affiliation(s)
- Yi-Fan Fang
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Yi-Lan Li
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Xiao-Ming Li
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Ji-Long Liu
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
8
|
Wu Z, Liu JL. CTP synthase does not form cytoophidia in Drosophila interfollicular stalks. Exp Cell Res 2022; 418:113250. [PMID: 35691380 DOI: 10.1016/j.yexcr.2022.113250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022]
Abstract
CTP synthase (CTPS) catalyzes the final step of de novo synthesis of the nucleotide CTP. In 2010, CTPS has been found to form filamentous structures termed cytoophidia in Drosophila follicle cells and germline cells. Subsequently, cytoophidia have been reported in many species across three domains of life: bacteria, eukaryotes and archaea. Forming cytoophidia appears to be a highly conserved and ancient property of CTPS. To our surprise, here we find that polar cells and stalk cells, two specialized types of cells composing Drosophila interfollicular stalks, do not possess obvious cytoophidia. We show that Myc level is low in these two types of cells. Treatment with a glutamine analog, 6-diazo-5-oxo-l-norleucine (DON), increases cytoophidium assembly in main follicle cells, but not in polar cells or stalk cells. Moreover, overexpressing Myc induces cytoophidium formation in stalk cells. When CTPS is overexpressed, cytoophidia can be observed both in stalk cells and polar cells. Our findings provide an interesting paradigm for the in vivo study of cytoophidium assembly and disassembly among different populations of follicle cells.
Collapse
Affiliation(s)
- Zheng Wu
- School of Life Science and Technology, ShanghaiTech University, 230 Haike Road, 201210, Shanghai, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, 230 Haike Road, 201210, Shanghai, China; Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, United Kingdom.
| |
Collapse
|
9
|
Connecting Ras and CTP synthase in Drosophila. Exp Cell Res 2022; 416:113155. [DOI: 10.1016/j.yexcr.2022.113155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 11/04/2022]
|
10
|
Chang CC, Keppeke GD, Antos CL, Peng M, Andrade LEC, Sung LY, Liu JL. CTPS forms the cytoophidium in zebrafish. Exp Cell Res 2021; 405:112684. [PMID: 34129847 DOI: 10.1016/j.yexcr.2021.112684] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/26/2022]
Abstract
Cytidine triphosphate synthase (CTPS) catalyzes the rate-limiting step of de novo CTP biosynthesis. An intracellular structure of CTPS, the cytoophidium, has been found in many organisms including prokaryotes and eukaryotes. Formation of the cytoophidium has been suggested to regulate the activity and stability of CTPS and may participate in certain physiological events. Herein, we demonstrate that both CTPS1a and CTPS1b in zebrafish are able to form the cytoophidium in cultured cells. A point mutation, H355A, abrogates cytoophidium assembly of zebrafish CTPS1a and CTPS1b. In addition, we show the presence of CTPS cytoophidia in multiple tissues of larval and adult fish under normal conditions, while treatment with a CTPS inhibitor 6-diazo-5-oxo-l-norleucine (DON) can induce more cytoophidia in some tissues. Our findings reveal that forming the CTPS cytoophidium is a natural phenomenon of zebrafish and provide valuable information for future research on the physiological importance of this intracellular structure in vertebrates.
Collapse
Affiliation(s)
- Chia-Chun Chang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Gerson Dierley Keppeke
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, SP 04023-062, Brazil
| | - Christopher L Antos
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Min Peng
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Luis Eduardo Coelho Andrade
- Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, SP 04023-062, Brazil
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.
| |
Collapse
|
11
|
Peng M, Chang CC, Liu JL, Sung LY. CTPS and IMPDH form cytoophidia in developmental thymocytes. Exp Cell Res 2021; 405:112662. [PMID: 34022203 DOI: 10.1016/j.yexcr.2021.112662] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 02/06/2023]
Abstract
The cytoophidium, a filamentous structure formed by metabolic enzymes, has emerged as a novel regulatory machinery for certain proteins. The rate-limiting enzymes of de novo CTP and GTP synthesis, cytidine triphosphate synthase (CTPS) and inosine monophosphate dehydrogenase (IMPDH), are the most characterized cytoophidium-forming enzymes in mammalian models. Although the assembly of CTPS cytoophidia has been demonstrated in various organisms including multiple human cancers, a systemic survey for the presence of CTPS cytoophidia in mammalian tissues in normal physiological conditions has not yet been reported. Herein, we examine major organs of adult mouse and observe that CTPS cytoophidia are displayed by a specific thymocyte population ranging between DN3 to early DP stages. Most of these cytoophidium-presenting cells have both CTPS and IMPDH cytoophidia and undergo rapid cell proliferation. In addition, we show that cytoophidium formation is associated with active glycolytic metabolism as the cytoophidium-presenting cells exhibit higher levels of c-Myc, phospho-Akt and PFK. Inhibition of glycolysis with 2DG, however, disrupts most of cytoophidium structures and impairs cell proliferation. Our findings not only indicate that the regulation of CTPS and IMPDH cytoophidia are correlated with the metabolic switch triggered by pre-TCR signaling, but also suggest physiological roles of the cytoophidium in thymocyte development.
Collapse
Affiliation(s)
- Min Peng
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Chia-Chun Chang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan; Animal Resource Center, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|