1
|
Nakamura R, Bing R, Gartling GJ, Garabedian MJ, Branski RC. High dose methylprednisolone mediates YAP/TAZ-TEAD in vocal fold fibroblasts with macrophages. Sci Rep 2025; 15:11005. [PMID: 40164663 PMCID: PMC11958790 DOI: 10.1038/s41598-025-95459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 03/21/2025] [Indexed: 04/02/2025] Open
Abstract
The pro-fibrotic effects of glucocorticoids may lead to a suboptimal therapeutic response for vocal fold (VF) pathology. Targeting macrophage-fibroblast interactions is an interesting therapeutic strategy; macrophages alter their phenotype to mediate both inflammation and fibrosis. In the current study, we investigated concentration-dependent effects of methylprednisolone on the fibrotic response, with an emphasis on YAP/TAZ-TEAD signaling, and inflammatory gene expression in VF fibroblasts in physical contact with macrophages. We sought to provide foundational data to optimize therapeutic strategies for millions of patients with voice/laryngeal disease-related disability. Following induction of inflammatory (M(IFN/LPS)) and fibrotic (M(TGF)) phenotypes, THP-1-derived macrophages were seeded onto HVOX vocal fold fibroblasts. Cells were co-cultured ± 0.3-3000 nM methylprednisolone ± 3 µM verteporfin, a YAP/TAZ inhibitor. Inflammatory (CXCL10, TNF, PTGS2) and fibrotic genes (ACTA2, CCN2, COL1A1) in fibroblasts were analyzed by real-time polymerase chain reaction after cell sorting. Ser211-phosphorylated glucocorticoid receptor (S211-pGR) was assessed by Western blotting. Nuclear localization of S211-pGR and YAP/TAZ was analyzed by immunocytochemistry. Methylprednisolone decreased TNF and PTGS2 in fibroblasts co-cultured with M(IFN/LPS) macrophages and increased ACTA2 and CCN2 in fibroblasts co-cultured with M(IFN/LPS) and M(TGF). Lower concentrations were required to decrease TNF and PTGS2 expression and to increase S211-pGR than to increase ACTA2 and CCN2 expression and nuclear localization of S211-pGR. Methylprednisolone also increased YAP/TAZ nuclear localization. Verteporfin attenuated upregulation of CCN2, but not PTGS2 downregulation. High concentration methylprednisolone induced nuclear localization of S211-pGR and upregulated fibrotic genes mediated by YAP/TAZ activation.
Collapse
Affiliation(s)
- Ryosuke Nakamura
- Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Renjie Bing
- Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Gary J Gartling
- Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Ryan C Branski
- Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York, NY, USA.
- Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, 435 East 30th Street, Room 1011, New York, NY, 10016, USA.
| |
Collapse
|
2
|
Nakamura R, Bing R, Gartling GJ, Garabedian MJ, Branski RC. High-dose methylprednisolone mediates YAP/TAZ-TEAD in vocal fold fibroblasts with macrophages. RESEARCH SQUARE 2024:rs.3.rs-4626638. [PMID: 39070624 PMCID: PMC11276011 DOI: 10.21203/rs.3.rs-4626638/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The pro-fibrotic effects of glucocorticoids may lead to a suboptimal therapeutic response for vocal fold (VF) pathology. Targeting macrophage-fibroblast interactions is an interesting therapeutic strategy; macrophages alter their phenotype to mediate both inflammation and fibrosis. In the current study, we investigated concentration-dependent effects of methylprednisolone on the fibrotic response, with an emphasis on YAP/TAZ-TEAD signaling, and inflammatory gene expression in VF fibroblasts in physical contact with macrophages. We sought to provide foundational data to optimize therapeutic strategies for millions of patients with voice/laryngeal disease-related disability. Following induction of inflammatory (M(IFN/LPS)) and fibrotic (M(TGF)) phenotypes, THP-1-derived macrophages were seeded onto HVOX vocal fold fibroblasts. Cells were co-cultured +/-0.3-3000nM methylprednisolone +/- 3μM verteporfin, a YAP/TAZ inhibitor. Inflammatory (CXCL10, TNF, PTGS2) and fibrotic genes (ACTA2, CCN2, COL1A1) in fibroblasts were analyzed by real-time polymerase chain reaction after cell sorting. Ser211-phosphorylated glucocorticoid receptor (S211-pGR) was assessed by Western blotting. Nuclear localization of S211-pGR and YAP/TAZ was analyzed by immunocytochemistry. Methylprednisolone decreased TNF and PTGS2 in fibroblasts co-cultured with M(IFN/LPS) macrophages and increased ACTA2 and CCN2 in fibroblasts co-cultured with M(IFN/LPS) and M(TGF). Lower concentrations were required to decrease TNF and PTGS2 expression and to increase S211-pGR than to increase ACTA2 and CCN2 expression and nuclear localization of S211-pGR. Methylprednisolone also increased YAP/TAZ nuclear localization. Verteporfin attenuated upregulation of CCN2, but not PTGS2 downregulation. High concentration methylprednisolone induced nuclear localization of S211-pGR and upregulated fibrotic genes mediated by YAP/TAZ activation.
Collapse
|
3
|
Laitman BM, Charytonowicz D, Zhu AJ, Lynch K, Varelas EA, Burton M, Andreou C, Kore P, Kirke DN, Chen YW, Beaumont KG, Sebra R, Genden EM, Courey MS. High-Resolution Profiling of Human Vocal Fold Cellular Landscapes With Single-Nuclei RNA Sequencing. Laryngoscope 2024; 134:3193-3200. [PMID: 38415934 DOI: 10.1002/lary.31334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/28/2023] [Accepted: 01/23/2024] [Indexed: 02/29/2024]
Abstract
INTRODUCTION The function of the vocal folds (VFs) is determined by the phenotype, abundance, and distribution of differentiated cells within specific microenvironments. Identifying this histologic framework is crucial in understanding laryngeal disease. A paucity of studies investigating VF cellular heterogeneity has been undertaken. Here, we examined the cellular landscape of human VFs by utilizing single-nuclei RNA-sequencing. METHODS Normal true VF tissue was excised from five patients undergoing pitch elevation surgery. Tissue was snap frozen in liquid nitrogen and subjected to cellular digestion and nuclear extraction. Nuclei were processed for single-nucleus sequencing using the 10X Genomics Chromium platform. Sequencing reads were assembled using cellranger and analyzed with the scanpy package in python. RESULTS RNA sequencing revealed 18 global cell clusters. While many were of epithelial origin, expected cell types, such as fibroblasts, immune cells, muscle cells, and endothelial cells were present. Subcluster analysis defined unique epithelial, immune, and fibroblast subpopulations. CONCLUSION This study evaluated the cellular heterogeneity of normal human VFs by utilizing single-nuclei RNA-sequencing. With further confirmation through additional spatial sequencing and microscopic imaging, a novel cellular map of the VFs may provide insight into new cellular targets for VF disease. LEVEL OF EVIDENCE NA Laryngoscope, 134:3193-3200, 2024.
Collapse
Affiliation(s)
- Benjamin M Laitman
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, U.S.A
| | | | - Ashley J Zhu
- Icahn School of Medicine at Mount Sinai, New York, New York, 10029, U.S.A
| | - Katie Lynch
- Icahn School of Medicine at Mount Sinai, New York, New York, 10029, U.S.A
| | - Eleni A Varelas
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, U.S.A
| | - Madeline Burton
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, U.S.A
| | - Christina Andreou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, U.S.A
| | - Pragati Kore
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, U.S.A
| | - Diana N Kirke
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, U.S.A
| | - Ya-Wen Chen
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, U.S.A
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, U.S.A
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, U.S.A
| | - Eric M Genden
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, U.S.A
| | - Mark S Courey
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, U.S.A
| |
Collapse
|
4
|
Harvey DH, Sugali CK, Mao W. Glucocorticoid-Induced Ocular Hypertension and Glaucoma. Clin Ophthalmol 2024; 18:481-505. [PMID: 38379915 PMCID: PMC10878139 DOI: 10.2147/opth.s442749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Glucocorticoid (GC) therapy is indicated in many diseases, including ocular diseases. An important side-effect of GC therapy is GC-induced ocular hypertension (GIOHT), which may cause irreversible blindness known as GC-induced glaucoma (GIG). Here, we reviewed the pathological changes that contribute to GIOHT including in the trabecular meshwork and Schlemm's canal at cellular and molecular levels. We also discussed the clinical aspects of GIOHT/GIG including disease prevalence, risk factors, the type of GCs, the route of GC administration, and management strategies.
Collapse
Affiliation(s)
- Devon Hori Harvey
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chenna Kesavulu Sugali
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Weiming Mao
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
5
|
Nakamura R, Bing R, Gartling GJ, Garabedian MJ, Branski RC. Concentration Effects of Methylprednisolone in Human Vocal Fold Fibroblast-Macrophage Co-Culture. Laryngoscope 2023; 133:3116-3122. [PMID: 37246727 PMCID: PMC10592568 DOI: 10.1002/lary.30763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 05/06/2023] [Indexed: 05/30/2023]
Abstract
OBJECTIVE The diversity of glucocorticoid (GC) properties may underlie variability of clinical efficacy for vocal fold (VF) disease. Optimized therapeutic approaches must account for tissue complexity as well as interactions between cell types. We previously reported that reduced GC concentrations inhibited inflammation without eliciting fibrosis in mono-cultured VF fibroblasts and macrophages. These data suggested that a refined approach to GC concentration may improve outcomes. In the current study, co-culture of VF fibroblasts and macrophages was employed to investigate the effects of different concentrations of methylprednisolone on fibrotic and inflammatory response genes in VF fibroblasts to optimize management paradigms. STUDY DESIGN In vitro. METHODS THP-1 monocyte-derived macrophages were stimulated with interferon-γ (IFN-γ), lipopolysaccharide (LPS), or transforming growth factor-β (TGF-β) to induce inflammatory (M(IFN/LPS)) and fibrotic (M(TGF)) phenotypes. Macrophages were then co-cultured with a human VF fibroblast cell line using a 0.4 μm pore membrane with or without 0.1-3000 nM methylprednisolone. Inflammatory (CXCL10, TNF, and PTGS2) and fibrotic (ACTA2, CCN2, and COL1A1) gene expression was quantified in fibroblasts. RESULTS Incubating VF fibroblasts with M(IFN/LPS) macrophages increased expression of TNF and PTGS2, and this effect was inhibited by methylprednisolone. Incubation of VF fibroblasts with M(TGF) macrophages increased expression of ACTA2, CCN2, and COL1A1, and this effect was enhanced by methylprednisolone. The concentration of methylprednisolone required to downregulate inflammatory genes (TNF and PTGS2) was lower than that to upregulate fibrotic genes (ACTA2, CCN2, and COL1A1). CONCLUSION Reduced concentration of methylprednisolone effectively suppressed inflammatory genes without enhancing fibrotic genes, suggesting that a refined approach to GC concentration may improve clinical outcomes. LEVEL OF EVIDENCE N/A Laryngoscope, 133:3116-3122, 2023.
Collapse
Affiliation(s)
- Ryosuke Nakamura
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY
| | - Renjie Bing
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY
| | - Gary J. Gartling
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY
| | | | - Ryan C. Branski
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY
- Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York, NY
| |
Collapse
|
6
|
Gartling G, Nakamura R, Bing R, Branski RC. A Novel Method for Thyroarytenoid Myofiber Culture. Laryngoscope 2023; 133:3109-3115. [PMID: 37227163 PMCID: PMC11881223 DOI: 10.1002/lary.30756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVES/HYPOTHESIS Myofiber culture has been employed to investigate muscle physiology in vitro and is well-established in the rodent hind limb. Thyroarytenoid (TA) myofiber culture has not been described, providing an opportunity to employ this method to investigate distinct TA myofiber functions. The purpose of this study was to assess the feasibility of a TA myofiber culture model. STUDY DESIGN In vitro. METHODS TA muscles from five Sprague Dawley rats were independently isolated and digested for 90 min. A smooth-tip, wide-bored pipette dissociated TA myofibers from cartilage, and the fibers were distributed on collagen-coated dishes and incubated at 37°C, 5% CO2 for 2 h. Myofiber specificity was determined via immunolabeling for desmin and myosin heavy chain (MHC). Myofibers viability was assessed over 7 days via esterase assay. Additional myofibers were immunolabeled for satellite cell marker Pax-7. Glucocorticoid (GC) receptor (GR) was immunolabeled following GC treatment. RESULTS The harvest technique yielded ~120 myofibers per larynx. By day 7, ~60% of the fibers remained attached and were calcein AM-positive/ethidium homodimer-negative, indicating viability. Myofibers were positive for desmin and MHC, indicating muscle specificity. Cells surrounding myofibers were positive for Pax-7, indicating the presence of myogenic satellite cells. Myofibers also responded to GC treatment as determined by GR nuclear translocation. CONCLUSION TA myofibers remained viable in culture for at least 7 days with a predictable response to exogenous stimuli. This technique provides novel investigative opportunities regarding TA structure and function. LEVEL OF EVIDENCE N/A Laryngoscope, 133:3109-3115, 2023.
Collapse
Affiliation(s)
- Gary Gartling
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York City, New York, USA
| | - Ryosuke Nakamura
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York City, New York, USA
| | - Renjie Bing
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York City, New York, USA
| | - Ryan C Branski
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York City, New York, USA
- Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York City, New York, USA
| |
Collapse
|
7
|
Nakamura R, Bing R, Gartling GJ, Garabedian MJ, Branski RC. Glucocorticoid Dose Dependency on Gene Expression in Vocal Fold Fibroblasts and Macrophages. Laryngoscope 2023; 133:1169-1175. [PMID: 36779842 PMCID: PMC9925845 DOI: 10.1002/lary.30330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Glucocorticoids (GCs) modulate multiple cellular activities including inflammatory and fibrotic responses. Outcomes of GC treatment for laryngeal disease vary, affording opportunity to optimize treatment. In the current study, three clinically employed GCs were evaluated to identify optimal in vitro concentrations at which GCs mediate favorable anti-inflammatory and fibrotic effects in multiple cell types. We hypothesize a therapeutic window will emerge as a foundation for optimized therapeutic strategies for patients with laryngeal disease. STUDY DESIGN In vitro. METHODS Human vocal fold fibroblasts and human macrophages derived from THP-1 monocytes were treated with 0.03-1000 nM dexamethasone, 0.3-10,000 nM methylprednisolone, and 0.3-10,000 nM triamcinolone in combination with interferon-γ, tumor necrosis factor-α, or interleukin-4. Real-time polymerase chain reaction was performed to analyze inflammatory (CXCL10, CXCl11, PTGS2, TNF, IL1B) and fibrotic (CCN2, LOX, TGM2) genes, and TSC22D3, a target gene of GC signaling. EC50 and IC50 to alter inflammatory and fibrotic gene expression was calculated. RESULTS Interferon-γ and tumor necrosis factor-α increased inflammatory gene expression in both cell types; this response was reduced by GCs. Interleukin-4 increased LOX and TGM2 expression in macrophages; this response was also reduced by GCs. GCs induced TSC22D3 and CCN2 expression independent of cytokine treatment. EC50 for each GC to upregulate CCN2 was higher than the IC50 to downregulate other genes. CONCLUSION Lower concentrations of GCs repressed inflammatory gene expression and only moderately induced genes involved in fibrosis. These data warrant consideration as a foundation for optimized clinical care paradigms to reduce inflammation and mitigate fibrosis. LEVEL OF EVIDENCE NA Laryngoscope, 133:1169-1175, 2023.
Collapse
Affiliation(s)
- Ryosuke Nakamura
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY
| | - Renjie Bing
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY
| | - Gary J. Gartling
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY
| | | | - Ryan C. Branski
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY
- Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York, NY
| |
Collapse
|