1
|
Liu D, Liu L, Zhang X, Zhao X, Li X, Che X, Wu G. Decoding driver and phenotypic genes in cancer: Unveiling the essence behind the phenomenon. Mol Aspects Med 2025; 103:101358. [PMID: 40037122 DOI: 10.1016/j.mam.2025.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/25/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Gray hair, widely regarded as a hallmark of aging. While gray hair is associated with aging, reversing this trait through gene targeting does not alter the fundamental biological processes of aging. Similarly, certain oncogenes (such as CXCR4, MMP-related genes, etc.) can serve as markers of tumor behavior, such as malignancy or prognosis, but targeting these genes alone may not lead to tumor regression. We pioneered the name of this class of genes as "phenotypic genes". Historically, cancer genetics research has focused on tumor driver genes, while genes influencing cancer phenotypes have been relatively overlooked. This review explores the critical distinction between driver genes and phenotypic genes in cancer, using the MAPK and PI3K/AKT/mTOR pathways as key examples. We also discuss current research techniques for identifying driver and phenotypic genes, such as whole-genome sequencing (WGS), RNA sequencing (RNA-seq), RNA interference (RNAi), CRISPR-Cas9, and other genomic screening methods, alongside the concept of synthetic lethality in driver genes. The development of these technologies will help develop personalized treatment strategies and precision medicine based on the characteristics of relevant genes. By addressing the gap in discussions on phenotypic genes, this review significantly contributes to clarifying the roles of driver and phenotypic genes, aiming at advancing the field of targeted cancer therapy.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Lei Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaoman Zhang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xinming Zhao
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China.
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
2
|
Dehuo Y, Ying W, Lin C. Regulation of the MAPK/ERK Pathway by miRNA-27b in Gastric Cancer: Diagnostic Implications and Therapeutic Potential of Aloin. Asia Pac J Clin Oncol 2025. [PMID: 40240889 DOI: 10.1111/ajco.14171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/09/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND Globally, gastric cancer (GC) ranks as the fourth most deadly and fifth most prevalent kind of cancer. Appropriate treatment methods, precise etiology, and molecular processes of GC are still unclear. METHODS In silico and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR)-based expression of miRNA-27b was quantified in GC cell lines (AGS, MKN-28, MKN-45, NCI-N87, SNU-1), and ROC curve analysis was done to evaluate their diagnostic efficiency. In silico target prediction through miRDB and TargetScan followed by in vitro validation was done using luciferase assays. Expression analysis of MAPK/ERK target genes including GRB2, SOS1, KRAS, BRAF, MAP2K1, and MAPK1 was done using qRT-PCR and Western blot analysis, followed by ROC curve analysis to evaluate their diagnostic efficiency. GC cell lines were treated with Aloin (ALO), followed by cell viability, wound healing, and apoptosis assays. Furthermore, the expression of MAPK/ERK pathway genes in GC cell lines was evaluated by qRT-PCR following ALO treatment. RESULTS The in silico analysis identified specific binding sites for miRNA-27b within the 3'UTRs of key components in the MAPK/ERK signaling pathway, including GRB2, SOS1, KRAS, BRAF, MAP2K1, and MAPK1. Luciferase reporter assays confirmed the direct interaction of miRNA-27b with these target genes, showing significantly reduced luciferase activity in cells transfected with wild-type 3'UTRs compared to controls. Expression analysis revealed that miRNA-27b was significantly downregulated in GC patients and cell lines when compared to normal controls. The downregulation of miRNA-27b was further validated through qRT-PCR in a variety of GC cell lines. ROC curve analysis demonstrated an AUC of 100 for miRNA-27b, suggesting its strong potential as a diagnostic biomarker for GC. In contrast, the expression of MAPK/ERK pathway genes was significantly upregulated in GC cell lines, with ROC analysis revealing high diagnostic accuracy for several genes, including GRB2, SOS1, and KRAS. Protein expression analysis via Western blot confirmed the upregulation of these pathway components in GC cells. Further investigation into the effects of ALO treatment showed a dose-dependent reduction in cell viability, migration, and colony formation in GC cell lines. ALO treatment also induced apoptosis, as evidenced by the upregulation of apoptotic markers and the downregulation of the anti-apoptotic molecule Bcl-2. CONCLUSION MiRNA-27b and MAPK/ERK pathway genes (GRB2, SOS1, KRAS, BRAF, MAP2K1, and MAPK1) could serve as efficient diagnostic, prognostic, and therapeutic targets for GC patients. Furthermore, this study's findings shed light on ALO's anti-tumor capabilities by demonstrating that it inhibits GC cell migration and proliferation while restoring the expression status of MAPK/ERK pathway genes.
Collapse
Affiliation(s)
- Yang Dehuo
- Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| | - Wang Ying
- Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| | - Cao Lin
- Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| |
Collapse
|
3
|
García-Hernández VM, Torres-Román AL, Ruiz-García E, Santamaría A, Manzo-Merino J, García-López A, Angélica-Lezama R, Matus-Santos JA, Prospéro-García O, Navarro-Ríos J, Ortega-Gómez A. Pro-Apoptotic Effects of Anandamide in Human Gastric Cancer Cells Are Mediated by AKT and ERK Signaling Pathways. Int J Mol Sci 2025; 26:2033. [PMID: 40076652 PMCID: PMC11900069 DOI: 10.3390/ijms26052033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 03/14/2025] Open
Abstract
Gastric cancer is one of the most common forms of cancer worldwide. A growing number of studies have addressed the anti-proliferative effects of cannabinoids on several tumor cells. The molecular mechanisms underlying the anti-proliferative effects of the endogenous cannabinoid anandamide (AEA) on gastric tumor cell lines have yet to be characterized. Here, we investigated the anti-proliferative mechanisms elicited by AEA on the AGS human gastric cancer cell line employing an Oncoprint database, Western blotting, and immunofluorescence. We observed that AEA (5 µM) inhibited phosphorylated AKT's expression level. This point is relevant because AKT is mutated in AGS cells, according to Oncoprint. In addition, AEA induced the up-regulation of phosphorylated ERK and, in turn, inhibited Bcl-2 expression and activated pro-apoptotic signals induced by pro-apoptotic Bax and Bak, which resulted in caspase-3 activation. The effect of anandamide on phosphorylated AKT was dependent on cannabinoid receptor 2 activation (CB2R) as revealed by the selective inverse agonist JTE-907, which reverted the anandamide-induced expression in the phosphorylated AKT/total AKT ratio. In contrast, changes in phosphorylated ERK evoked an increase in pro-apoptotic pathways that culminated in cell death by caspase-3 activation. These results indicate that the endogenous cannabinoid anandamide in gastric cancer cells increases caspase-3 activity via mitochondrial pro-apoptotic Bax/Bak proteins and decreases viability through CB2R via AKT down-regulation's trophic mechanisms. These effects constitute a promising tool for the design of gastric cancer therapies.
Collapse
Affiliation(s)
- Víctor M. García-Hernández
- Translational Medicine Laboratory, National Cancer Institute, S.S.A., Mexico City 14080, Mexico; (V.M.G.-H.); (A.L.T.-R.); (E.R.-G.)
| | - Ana Laura Torres-Román
- Translational Medicine Laboratory, National Cancer Institute, S.S.A., Mexico City 14080, Mexico; (V.M.G.-H.); (A.L.T.-R.); (E.R.-G.)
| | - Erika Ruiz-García
- Translational Medicine Laboratory, National Cancer Institute, S.S.A., Mexico City 14080, Mexico; (V.M.G.-H.); (A.L.T.-R.); (E.R.-G.)
| | - Abel Santamaría
- Nanotecnology and Nanomedicine Laboratory, Metropolitan Autonomous University-Xochimilco, Mexico City 04960, Mexico;
| | - Joaquín Manzo-Merino
- Chemistry Science Faculty, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Alejandro García-López
- Biochemistry Unit, National Institute of Nutrition and Medical Science Salvador Suvirán, S.S.A., Mexico City 14080, Mexico;
| | - Ruth Angélica-Lezama
- Cytology Laboratory, National School of Biological Sciences, National Polytechnic Institute (IPN), Mexico City 11340, Mexico;
| | | | - Oscar Prospéro-García
- Cannabinoids Laboratory, Department of Physiology, School of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico;
| | - Julián Navarro-Ríos
- Basic Investigation Department, National Cancer Institute, S.S.A., Mexico City 14080, Mexico;
| | - Alette Ortega-Gómez
- Translational Medicine Laboratory, National Cancer Institute, S.S.A., Mexico City 14080, Mexico; (V.M.G.-H.); (A.L.T.-R.); (E.R.-G.)
| |
Collapse
|
4
|
Yuan W, Shi Y, Dai S, Deng M, Zhu K, Xu Y, Chen Z, Xu Z, Zhang T, Liang S. The role of MAPK pathway in gastric cancer: unveiling molecular crosstalk and therapeutic prospects. J Transl Med 2024; 22:1142. [PMID: 39719645 PMCID: PMC11667996 DOI: 10.1186/s12967-024-05998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/15/2024] [Indexed: 12/26/2024] Open
Abstract
Gastric cancer remains a significant health burden globally, especially prevalent in Asian and European regions. Despite a notable decline in incidence in the United States and Western Europe over recent decades, the disease's persistence underscores the urgency for advanced research in its pathogenesis and treatment strategies. Central to this pursuit is the exploration of the mitogen-activated protein kinase (MAPK) pathway, a pivotal cellular mechanism implicated in the complex processes of gastric cancer development, including cellular proliferation, invasion, migration, and metastasis. The MAPK or extracellular signal-regulated kinase pathway serves as a crucial conduit for transmitting extracellular signals to elicit intracellular responses, with its signaling cascades subject to alterations due to genetic and epigenetic variations across various diseases, prominently cancer. This review delves into the intricate role of the MAPK signaling pathway in the pathogenesis of gastric cancer, drawing upon the most recent and critical studies that shed light on MAPK pathway alterations as a gateway to the disease. It highlights the pathway's involvement in Helicobacter pylori-mediated gastric carcinogenesis and the tumorigenic processes induced by the Epstein-Barr virus, showcasing the substantial influence of miRNAs and lncRNAs in modulating gastric cancer's biological properties through their interaction with the MAPK pathway. Furthermore, the review extends into the therapeutic arena, discussing the promising impacts of herbal medicines, MAPK pathway inhibitors, and immunosuppressants on mitigating gastric cancer's progression. Through an exhaustive examination of the MAPK pathway's multifaceted role in gastric cancer, from molecular crosstalks to therapeutic prospects, this review aspires to contribute to the ongoing efforts in understanding and combating this global health challenge, paving the way for novel therapeutic interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Weiwei Yuan
- Department of Thyroid Surgery, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China
| | - Yin Shi
- Department of Internal Medicine, Yiwu Maternity and Children Hospital, Yiwu, Zhejiang, China
| | - Shiping Dai
- Department of General Surgery, Wuwei City People's Hospital, No.256, West Street, Wuwei, 238300, China
| | - Mao Deng
- Department of General Surgery, Wuwei City People's Hospital, No.256, West Street, Wuwei, 238300, China
| | - Kai Zhu
- Department of General Surgery, Wuwei City People's Hospital, No.256, West Street, Wuwei, 238300, China
| | - Yuanmin Xu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhangming Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhou Xu
- Department of Thyroid Surgery, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China.
| | - Tianlong Zhang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
| | - Song Liang
- Department of General Surgery, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an People's Hospital, Lu'an, 237000, China.
| |
Collapse
|
5
|
Jiang YK, Li W, Qiu YY, Yue M. Advances in targeted therapy for human epidermal growth factor receptor 2 positive in advanced gastric cancer. World J Gastrointest Oncol 2024; 16:2318-2334. [PMID: 38994153 PMCID: PMC11236256 DOI: 10.4251/wjgo.v16.i6.2318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 06/13/2024] Open
Abstract
Emerging therapeutic methods represented by targeted therapy are effective supplements to traditional first-line chemoradiotherapy resistance. Human epidermal growth factor receptor 2 (HER2) is one of the most important targets in targeted therapy for gastric cancer. Trastuzumab combined with chemotherapy has been used as the first-line treatment for advanced gastric cancer. The safety and efficacy of pertuzumab and margetuximab in the treatment of gastric cancer have been verified. However, monoclonal antibodies, due to their large molecular weight, inability to penetrate the blood-brain barrier, and drug resistance, lead to decreased therapeutic efficacy, so it is necessary to explore the efficacy of other HER2-targeting therapies in gastric cancer. Small-molecule tyrosine kinase inhibitors, such as lapatinib and pyrrotinib, have the advantages of small molecular weight, penetrating the blood-brain barrier and high oral bioavailability, and are expected to become the drugs of choice for perioperative treatment and neoadjuvant therapy of gastric cancer after validation by large-scale clinical trials in the future. Antibo-drug conjugate, such as T-DM1 and T-DXd, can overcome the resistance of monoclonal antibodies despite their different mechanisms of tumor killing, and are a supplement for the treatment of patients who have failed the treatment of monoclonal antibodies such as trastuzumab. Therefore, after more detailed stratification of gastric cancer patients, various gastric cancer drugs targeting HER2 are expected to play a more significant role.
Collapse
Affiliation(s)
- Ya-Kun Jiang
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| | - Wei Li
- Health Management Center, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| | - Ying-Yang Qiu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Meng Yue
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| |
Collapse
|
6
|
Ji P, Wang P, Chen H, Xu Y, Ge J, Tian Z, Yan Z. Potential of Copper and Copper Compounds for Anticancer Applications. Pharmaceuticals (Basel) 2023; 16:234. [PMID: 37259382 PMCID: PMC9960329 DOI: 10.3390/ph16020234] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 08/01/2023] Open
Abstract
Inducing cancer cell death has always been a research hotspot in life sciences. With the continuous deepening and diversification of related research, the potential value of metal elements in inducing cell death has been explored. Taking iron as an example, ferroptosis, mainly characterized by increasing iron load and driving the production of large amounts of lipid peroxides and eventually leading to cell death, has recently attracted great interest in the cancer research community. After iron, copper, a trace element, has received extensive attention in cell death, especially in inducing tumor cell death. Copper and its complexes can induce autophagy or apoptosis in tumor cells through a variety of different mechanisms of action (activation of stress pathways, arrest of cell cycle, inhibition of angiogenesis, cuproptosis, and paraptosis), which are promising in cancer therapy and have become new hotspots in cancer treatment research. This article reviews the main mechanisms and potential applications of novel copper and copper compound-induced cell death, focusing on copper compounds and their anticancer applications.
Collapse
Affiliation(s)
- Peng Ji
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Peng Wang
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Hao Chen
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Yajing Xu
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Jianwen Ge
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Zechong Tian
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Zhirong Yan
- Fujian Key Laboratory of Women and Children’s Critical Diseases Research, Department of Anesthesiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
7
|
Xu M, Zhang L, Feng J, Yang S, Wang Y, Wang Y, Chen M, Zhou L, Zhang J, Qin Q. Establishment and characterization of two Epstein-Barr virus-positive gastric cancer cell lines with epitheliotropic M81 strain undergoing distinct viral and altered cellular expression profiles. J Med Virol 2023; 95:e28387. [PMID: 36478267 DOI: 10.1002/jmv.28387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/09/2022]
Abstract
Epstein-Barr virus (EBV)-associated gastric cancer (EBVaGC) is a distinct subtype of gastric cancer (GC) distinguished by the presence of the EBV genome and limited viral gene expression within malignant epithelial cells. EBV infection is generally thought to be a relatively late event following atrophic gastritis in carcinogenesis, which implies the heterogeneity of EBVaGC. To facilitate the study of the role of EBV in EBVaGC, we established two EBV-positive GC cell lines (AGS-EBV and HGC27-EBV) with an epitheliotropic EBV strain M81 and characterized viral and cellular gene expression profiles in comparison to SNU719, a naturally derived EBV-positive GC cell line. Like SNU719, AGS-EBV and HGC27-EBV stably maintained their EBV genomes and expressed EBV-encoded small RNAs and nuclear antigen EBNA1. Comprehensive analysis of the expression of EBV-encoded miRNAs within the BamHI-A region rightward transcript region, and the transcripts of EBV latent and lytic genes in cell lines, as well as xenografts, reveals that AGS-EBV and HGC27-EBV cells undergo distinct viral expression profiles. A very small fraction of AGS-EBV and SNU719 cells can spontaneously produce infectious progeny virions, while HGC27-EBV does not. AGS-EBV (both M81 and Akata) cells largely mimic SNU719 cells in viral gene expression profiles, and altered cellular functions and pathways perturbed by EBV infection. Phylogenetic analysis of the EBV genome shows both M81 and Akata EBV strains are closely related to clinical EBVaGC isolates. Taken together, these two newly established EBV-positive GC cell lines can serve as models to further investigate the role of EBV in different contexts of gastric carcinogenesis and identify novel therapeutics against EBVaGC.
Collapse
Affiliation(s)
- Mingqian Xu
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, China
| | - Liang Zhang
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jinfu Feng
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, China
| | - Shuaibing Yang
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yixuan Wang
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yuyi Wang
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, China
| | - Meiyang Chen
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, China
| | - Li Zhou
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Junjie Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, China
| | - Qingsong Qin
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, Guangdong, China
- Center of Pathogen Biology and Immunology, Institute of Basic Medical Research, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|