1
|
Wang Y, Chen J, Gao Y, Chai KXY, Hong JH, Wang P, Chen J, Yu Z, Liu L, Huang C, Taib NAM, Lim KMH, Guan P, Chan JY, Huang D, Teh BT, Li W, Lim ST, Yu Q, Ong CK, Huang H, Tan J. CDK4/6 inhibition augments anti-tumor efficacy of XPO1 inhibitor selinexor in natural killer/T-cell lymphoma. Cancer Lett 2024; 597:217080. [PMID: 38908542 DOI: 10.1016/j.canlet.2024.217080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
XPO1 is an attractive and promising therapeutic target frequently overexpressed in multiple hematological malignancies. The clinical use of XPO1 inhibitors in natural killer/T-cell lymphoma (NKTL) is not well documented. Here, we demonstrated that XPO1 overexpression is an indicator of poor prognosis in patients with NKTL. The compassionate use of the XPO1 inhibitor selinexor in combination with chemotherapy showed favorable clinical outcomes in three refractory/relapsed (R/R) NKTL patients. Selinexor induced complete tumor regression and prolonged survival in sensitive xenografts but not in resistant xenografts. Transcriptomic profiling analysis indicated that sensitivity to selinexor was correlated with deregulation of the cell cycle machinery, as selinexor significantly suppressed the expression of cell cycle-related genes. CDK4/6 inhibitors were identified as sensitizers that reversed selinexor resistance. Mechanistically, targeting CDK4/6 could enhance the anti-tumor efficacy of selinexor via the suppression of CDK4/6-pRb-E2F-c-Myc pathway in resistant cells, while selinexor alone could dramatically block this pathway in sensitive cells. Overall, our study provids a preclinical proof-of-concept for the use of selinexor alone or in combination with CDK4/6 inhibitors as a novel therapeutic strategy for patients with R/R NKTL.
Collapse
Affiliation(s)
- Yali Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Jianfeng Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yan Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Kelila Xin Ye Chai
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Jing Han Hong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Peili Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jinghong Chen
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Zhaoliang Yu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lizhen Liu
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Cheng Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Nur Ayuni Muhammad Taib
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Kerry May Huifen Lim
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Peiyong Guan
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Jason Yongsheng Chan
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Dachuan Huang
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore; Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China; Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Wenyu Li
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Soon Thye Lim
- Director's Office, National Cancer Centre Singapore, Singapore
| | - Qiang Yu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore; Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Choon Kiat Ong
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Huiqiang Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jing Tan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Hainan Academy of Medical Science, Hainan Medical University, Haikou, China.
| |
Collapse
|
2
|
Aumann WK, Kazi R, Harrington AM, Wechsler DS. Novel-and Not So Novel-Inhibitors of the Multifunctional CRM1 Protein. Oncol Rev 2024; 18:1427497. [PMID: 39161560 PMCID: PMC11330842 DOI: 10.3389/or.2024.1427497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
Chromosome Region Maintenance 1 (CRM1), also known as Exportin 1 (XPO1), is a protein that is critical for transport of proteins and RNA to the cytoplasm through the nuclear pore complex. CRM1 inhibition with small molecule inhibitors is currently being studied in many cancers, including leukemias, solid organ malignancies and brain tumors. We review the structure of CRM1, its role in nuclear export, the current availability of CRM1 inhibitors, and the role of CRM1 in a number of distinct cellular processes. A deeper understanding of how CRM1 functions in nuclear export as well as other cellular processes may allow for the development of additional novel CRM1 inhibitors.
Collapse
Affiliation(s)
- Waitman K. Aumann
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Rafi Kazi
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Rochester Medical Center, Rochester, NY, United States
| | - Amanda M. Harrington
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Daniel S. Wechsler
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
3
|
Lai C, Xu L, Dai S. The nuclear export protein exportin-1 in solid malignant tumours: From biology to clinical trials. Clin Transl Med 2024; 14:e1684. [PMID: 38783482 PMCID: PMC11116501 DOI: 10.1002/ctm2.1684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Exportin-1 (XPO1), a crucial protein regulating nuclear-cytoplasmic transport, is frequently overexpressed in various cancers, driving tumor progression and drug resistance. This makes XPO1 an attractive therapeutic target. Over the past few decades, the number of available nuclear export-selective inhibitors has been increasing. Only KPT-330 (selinexor) has been successfully used for treating haematological malignancies, and KPT-8602 (eltanexor) has been used for treating haematologic tumours in clinical trials. However, the use of nuclear export-selective inhibitors for the inhibition of XPO1 expression has yet to be thoroughly investigated in clinical studies and therapeutic outcomes for solid tumours. METHODS We collected numerous literatures to explain the efficacy of XPO1 Inhibitors in preclinical and clinical studies of a wide range of solid tumours. RESULTS In this review, we focus on the nuclear export function of XPO1 and results from clinical trials of its inhibitors in solid malignant tumours. We summarized the mechanism of action and therapeutic potential of XPO1 inhibitors, as well as adverse effects and response biomarkers. CONCLUSION XPO1 inhibition has emerged as a promising therapeutic strategy in the fight against cancer, offering a novel approach to targeting tumorigenic processes and overcoming drug resistance. SINE compounds have demonstrated efficacy in a wide range of solid tumours, and ongoing research is focused on optimizing their use, identifying response biomarkers, and developing effective combination therapies. KEY POINTS Exportin-1 (XPO1) plays a critical role in mediating nucleocytoplasmic transport and cell cycle. XPO1 dysfunction promotes tumourigenesis and drug resistance within solid tumours. The therapeutic potential and ongoing researches on XPO1 inhibitors in the treatment of solid tumours. Additional researches are essential to address safety concerns and identify biomarkers for predicting patient response to XPO1 inhibitors.
Collapse
Affiliation(s)
- Chuanxi Lai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Lingna Xu
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Sheng Dai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
4
|
Chakravarti N, Boles A, Burzinski R, Sindaco P, Isabelle C, McConnell K, Mishra A, Porcu P. XPO1 blockade with KPT-330 promotes apoptosis in cutaneous T-cell lymphoma by activating the p53-p21 and p27 pathways. Sci Rep 2024; 14:9305. [PMID: 38653804 PMCID: PMC11039474 DOI: 10.1038/s41598-024-59994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Dysregulated nuclear-cytoplasmic trafficking has been shown to play a role in oncogenesis in several types of solid tumors and hematological malignancies. Exportin 1 (XPO1) is responsible for the nuclear export of several proteins and RNA species, mainly tumor suppressors. KPT-330, a small molecule inhibitor of XPO1, is approved for treating relapsed multiple myeloma and diffuse large B-cell lymphoma. Cutaneous T-cell lymphoma (CTCL) is an extranodal non-Hodgkin lymphoma with an adverse prognosis and limited treatment options in advanced stages. The effect of therapeutically targeting XPO1 with KPT-330 in CTCL has not been established. We report that XPO1 expression is upregulated in CTCL cells. KPT-330 reduces cell proliferation, induces G1 cell cycle arrest and apoptosis. RNA-sequencing was used to explore the underlying mechanisms. Genes associated with the cell cycle and the p53 pathway were significantly enriched with KPT-330 treatment. KPT-330 suppressed XPO1 expression, upregulated p53, p21WAF1/Cip1, and p27Kip1 and their nuclear localization, and downregulated anti-apoptotic protein (Survivin). The in vivo efficacy of KPT-330 was investigated using a bioluminescent xenograft mouse model of CTCL. KPT-330 blocked tumor growth and prolonged survival (p < 0.0002) compared to controls. These findings support investigating the use of KPT-330 and next-generation XPO1 inhibitors in CTCL.
Collapse
MESH Headings
- Humans
- Exportin 1 Protein
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Lymphoma, T-Cell, Cutaneous/drug therapy
- Lymphoma, T-Cell, Cutaneous/pathology
- Lymphoma, T-Cell, Cutaneous/metabolism
- Lymphoma, T-Cell, Cutaneous/genetics
- Apoptosis/drug effects
- Animals
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p27/metabolism
- Cyclin-Dependent Kinase Inhibitor p27/genetics
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Protein p53/genetics
- Karyopherins/metabolism
- Karyopherins/antagonists & inhibitors
- Mice
- Cell Line, Tumor
- Triazoles/pharmacology
- Cell Proliferation/drug effects
- Hydrazines/pharmacology
- Hydrazines/therapeutic use
- Xenograft Model Antitumor Assays
- Signal Transduction/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
Collapse
Affiliation(s)
- Nitin Chakravarti
- Division of Hematologic Malignancies, Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, BLSB 328, Philadelphia, PA, 19107, USA.
| | - Amy Boles
- Division of Hematologic Malignancies, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Rachel Burzinski
- Division of Hematologic Malignancies, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Paola Sindaco
- Division of Hematologic Malignancies, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Colleen Isabelle
- Division of Hematologic Malignancies, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Kathleen McConnell
- Division of Hematologic Malignancies, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Anjali Mishra
- Division of Hematologic Malignancies, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Pierluigi Porcu
- Division of Hematologic Malignancies, Sidney Kimmel Cancer Center, Thomas Jefferson University, 834 Chestnut Street, Suite 320, Philadelphia, PA, 19107, USA.
| |
Collapse
|
5
|
Dong Z, Guo Z, Li H, Han D, Xie W, Cui S, Zhang W, Huang S. FOXO3a-interacting proteins' involvement in cancer: a review. Mol Biol Rep 2024; 51:196. [PMID: 38270719 DOI: 10.1007/s11033-023-09121-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024]
Abstract
Due to its role in apoptosis, differentiation, cell cycle arrest, and DNA damage repair in stress responses (oxidative stress, hypoxia, chemotherapeutic drugs, and UV irradiation or radiotherapy), FOXO3a is considered a key tumor suppressor that determines radiotherapeutic and chemotherapeutic responses in cancer cells. Mutations in the FOXO3a gene are rare, even in cancer cells. Post-translational regulations are the main mechanisms for inactivating FOXO3a. The subcellular localization, stability, transcriptional activity, and DNA binding affinity for FOXO3a can be modulated via various post-translational modifications, including phosphorylation, acetylation, and interactions with other transcriptional factors or regulators. This review summarizes how proteins that interact with FOXO3a engage in cancer progression.
Collapse
Affiliation(s)
- Zhiqiang Dong
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China
| | - Zongming Guo
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China
| | - Hui Li
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China
| | - Dequan Han
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China
| | - Wei Xie
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China
| | - Shaoning Cui
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China
| | - Wei Zhang
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China.
| | - Shuhong Huang
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China.
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China.
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China.
| |
Collapse
|
6
|
Tan Y, Chen G, He RQ, Huang ZG, Dang YW, Luo JY, Huang WY, Huang SN, Liu R, Feng ZB. Clinicopathological and prognostic significance of XPO1 in solid tumors: meta-analysis and TCGA analysis. Expert Rev Mol Diagn 2023; 23:607-618. [PMID: 37335774 DOI: 10.1080/14737159.2023.2224505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
INTRODUCTION Exportin 1 (XPO1) is overexpressed in several solid tumors, and is associated with poor prognosis. Here, we aimed to evaluate the implication of XPO1 expression in solid tumors through a meta-analysis. METHODS PubMed, Web of Science, and Embase databases were searched for articles published until February 2023. Statistical data of the patients, odds ratios and hazard ratios (HRs), together with their corresponding 95% confidence intervals (CIs) were pooled to assess clinicopathological features and survival outcomes. Besides, the Cancer Genome Atlas (TCGA) was used to explore the prognostic significance of XPO1 in solid tumors. RESULTS A total of 22 works, comprising 2595 patients were included in this study. The results suggested that increased XPO1 expression was associated with a higher tumor grade, more lymph node metastasis, advanced tumor stage, and progressively worse total clinical stage. Additionally, high XPO1 expression was associated with worse overall survival (OS) (HR = 1.43, 95% CI = 1.12-1.81, P = 0.004) and shorter progression-free survival (HR = 1.40, 95% CI = 1.07-1.84, P = 0.01). An analysis using the TCGA dataset showed that high XPO1 expression was associated with poor OS and disease-free survival. CONCLUSIONS XPO1 is a promising prognostic biomarker and may constitute a therapeutic target for solid tumors.PROSPERO registration number: CRD42023399159.
Collapse
Affiliation(s)
- Yang Tan
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jia-Yuan Luo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wan-Ying Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Run Liu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhen-Bo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|