1
|
Li T, Tang J, Li C, Liu G, Li Y, Guo S, Fang Q, Li J, Qi X, Liu X, Du J, Zhang D, Xiong S, Li J, Tan Y, Li B, Dai C, Zhang Q, Li J, Wu X. Evaluating the efficacy and safety of polyglycolic acid-loading mitomycin nanoparticles in inhibiting the scar proliferation after glaucoma filtering surgery. Ann Med 2025; 57:2436458. [PMID: 39632730 PMCID: PMC11622377 DOI: 10.1080/07853890.2024.2436458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/05/2024] [Indexed: 12/07/2024] Open
Abstract
PURPOSE To prepare a polyglycolic acid-loaded mitomycin drug (MMC-ATS-@PLGA) to inhibit scar proliferation after glaucoma filtering surgery (GFS) via an anti-inflammatory mechanism that minimally affected intraocular pressure, which provided another therapeutic strategy for this disease. METHODS We first detected the physicochemical properties of MMC-ATS-@PLGA. Next, we tested the biosafety of MMC-ATS-@PLGA in vivo and in vitro. Then, we assessed the therapeutic effects of MMC-ATS-@PLGA by laboratory and clinical examinations. RESULTS In this study, we synthesized a new type of nanomedicine (MMC-ATS-@PLGA) with good stability and biocompatibility for inhibiting scar proliferation after GFS. The break-up time (BUT), Schimer test and intraocular pressure changes in GFS rabbits before and after treatment with MMC-ATS-@PLGA were not significantly different. Three weeks after GFS, the MMC-ATS-@PLGA group displayed significant decreases in nuclear volume, corneal cell oedema, type I and III collagen fibre expression, normal organelle morphology and collagen fibre arrangement. Compared with those in the FML and MMC groups, the α-SMA, CTGF and type III collagen fibres in the MMC-ATS-@PLGA group decreased more significantly, indicating that MMC-ATS-@PLGA can effectively inhibit the expression of these inflammatory factors during the inhibition of scar proliferation after GFS. CONCLUSION We successfully synthesized MMC-ATS-@PLGA, which could effectively inhibit scar proliferation after GFS via anti-inflammatory effects but had little effect on intraocular pressure. This new type of nanomedicine has good biosafety and stability and is worthy of further exploration in clinical practice.
Collapse
Affiliation(s)
- Tao Li
- Department of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
- Department of Ophthalmology, Key Laboratory of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
| | - Juan Tang
- Department of Ophthalmology, Key Laboratory of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
- Department of Endocrinology, Zi Yang Central Hospital, Sichuan, China
| | - Changfen Li
- Department of Pathology, Zi Yang Central Hospital, Sichuan, China
| | - Guogang Liu
- Department of Dermatology, Zi Yang Central Hospital, Sichuan, China
| | - Ying Li
- Department of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
- Department of Ophthalmology, Key Laboratory of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
| | - Shanlan Guo
- Department of Pathology, Zi Yang Central Hospital, Sichuan, China
| | - Qilin Fang
- Department of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
- Department of Ophthalmology, Key Laboratory of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
| | - Jing Li
- Department of Pathology, Zi Yang Central Hospital, Sichuan, China
| | - Xing Qi
- Department of Experimental Medicine, Zi Yang Central Hospital, Sichuan, China
| | - Xingde Liu
- Department of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
- Department of Ophthalmology, Key Laboratory of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
| | - Juan Du
- Department of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
- Department of Ophthalmology, Key Laboratory of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
| | - Dan Zhang
- Department of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
- Department of Ophthalmology, Key Laboratory of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
| | - Silun Xiong
- Department of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
- Department of Ophthalmology, Key Laboratory of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
| | - Jiaqian Li
- Department of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
- Department of Ophthalmology, Key Laboratory of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
| | - Yueyue Tan
- Department of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
- Department of Ophthalmology, Key Laboratory of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
| | - Biao Li
- Department of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
- Department of Ophthalmology, Key Laboratory of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
| | - Chuanqiang Dai
- Department of Medical Education, Zi Yang Central Hospital, Sichuan, China
| | - Qinqin Zhang
- Department of Medical Education, Zi Yang Central Hospital, Sichuan, China
| | - Jiaman Li
- Department of Anesthesia Operation Center, Zi Yang Central Hospital, Sichuan, China
| | - Xiaoli Wu
- Department of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
- Department of Ophthalmology, Key Laboratory of Ophthalmology, Zi Yang Central Hospital, Sichuan, China
| |
Collapse
|
2
|
Grigorieva O, Basalova N, Dyachkova U, Novoseletskaya E, Vigovskii M, Arbatskiy M, Kulebyakina M, Efimenko A. Modeling the profibrotic microenvironment in vitro: Model validation. Biochem Biophys Res Commun 2024; 733:150574. [PMID: 39208646 DOI: 10.1016/j.bbrc.2024.150574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/03/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Establishing the molecular and cellular mechanisms of fibrosis requires the development of validated and reproducible models. The complexity of in vivo models challenges the monitoring of an individual cell fate, in some cases making it impossible. However, the set of factors affecting cells in vitro culture systems differ significantly from in vivo conditions, insufficiently reproducing living systems. Thus, to model profibrotic conditions in vitro, usually the key profibrotic factor, transforming growth factor beta (TGFβ-1) is used as a single factor. TGFβ-1 stimulates the differentiation of fibroblasts into myofibroblasts, the main effector cells promoting the development and progression of fibrosis. However, except for soluble factors, the rigidity and composition of the extracellular matrix (ECM) play a critical role in the differentiation process. To develop the model of more complex profibrotic microenvironment in vitro, we used a combination of factors: decellularized ECM synthesized by human dermal fibroblasts in the presence of ascorbic acid if cultured as cell sheets and recombinant TGFβ-1 as a supplement. When culturing human mesenchymal stromal cells derived from adipose tissue (MSCs) under described conditions, we observed differentiation of MSCs into myofibroblasts due to increased number of cells with stress fibrils with alpha-smooth muscle actin (αSMA), and increased expression of myofibroblast marker genes such as collagen I, EDA-fibronectin and αSMA. Importantly, secretome of MSCs changed in these profibrotic microenvironment: the secretion of the profibrotic proteins SPARC and fibulin-2 increased, while the secretion of the antifibrotic hepatocyte growth factor (HGF) decreased. Analysis of transciptomic pattern of regulatory microRNAs in MSCs revealed 49 miRNAs with increased expression and 3 miRNAs with decreased expression under profibrotic stimuli. Bioinformatics analysis confirmed that at least 184 gene targets of the differently expressed miRNAs genes were associated with fibrosis. To further validate the developed model of profibrotic microenvironment, we cultured human dermal fibroblasts in these conditions and observed increased expression of fibroblast activation protein (FAPa) after 12 h of cultivation as well as increased level of αSMA and higher number of αSMA + stress fibrils after 72 h. The data obtained allow us to conclude that the conditions formed by the combination of profibrotic ECM and TGFβ-1 provide a complex profibrotic microenvironment in vitro. Thus, this model can be applicable in studying the mechanism of fibrosis development, as well as for the development of antifibrotic therapy.
Collapse
Affiliation(s)
- Olga Grigorieva
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia.
| | - Nataliya Basalova
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia
| | - Uliana Dyachkova
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia
| | - Ekaterina Novoseletskaya
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia
| | - Maksim Vigovskii
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia
| | - Mikhail Arbatskiy
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia
| | - Maria Kulebyakina
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia
| | - Anastasia Efimenko
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia
| |
Collapse
|
3
|
Toba H, Takai S. Exploring the roles of SPARC as a proinflammatory factor and its potential as a novel therapeutic target against cardiovascular disease. Am J Physiol Heart Circ Physiol 2024; 327:H1174-H1186. [PMID: 39269452 DOI: 10.1152/ajpheart.00565.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Cardiovascular disease (CVD) is a leading cause of death worldwide, and the number of patients with CVD continues to increase despite extensive research and developments in this field. Chronic inflammation is a pivotal pathological component of CVD, and unveiling new proinflammatory factors will help devise novel preventive and therapeutic strategies. The extracellular matrix (ECM) not only provides structural support between cells but also contributes to cellular functions. Secreted protein acidic and rich in cysteine (SPARC) is a collagen-binding matricellular protein that is particularly induced during development and tissue remodeling. A proinflammatory role for SPARC has been demonstrated in various animal models, such as in the lipopolysaccharide-induced footpad model and dextran sodium sulfate-induced colitis model. Recent clinical studies reported a positive correlation between elevated plasma SPARC levels and hypertension, obesity, and the inflammatory marker high-sensitive C-reactive protein. In addition, SPARC gene deletion attenuates the cardiac injury induced by aging, myocardial infarction, and pressure load, suggesting that SPARC has deleterious effects on CVD. This review summarizes the regulatory and proinflammatory mechanisms of SPARC on CVD, chronic kidney disease (CKD), and cerebrovascular disease and discusses the rationale behind measuring SPARC as a biomarker of CVD and the effects of inhibition of SPARC in the prevention and treatment of CVD.
Collapse
Affiliation(s)
- Hiroe Toba
- Division of Pathological Sciences, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
- Department of Pharmacology, Educational Foundation of Osaka Medical and Pharmacological University, Takatsuki, Japan
| | - Shinji Takai
- Department of Pharmacology, Educational Foundation of Osaka Medical and Pharmacological University, Takatsuki, Japan
| |
Collapse
|
4
|
Snelders M, Yildirim M, Danser AHJ, van der Pluijm I, Essers J. The Extracellular Matrix and Cardiac Pressure Overload: Focus on Novel Treatment Targets. Cells 2024; 13:1685. [PMID: 39451203 PMCID: PMC11505996 DOI: 10.3390/cells13201685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Heart failure is a significant health issue in developed countries, often stemming from conditions like hypertension, which imposes a pressure overload on the heart. Despite various treatment strategies for heart failure, many lack long-term effectiveness. A critical aspect of cardiac disease is the remodeling of the heart, where compensatory changes in the extracellular matrix exacerbate disease progression. This review explores the processes and changes occurring in the pressure-overloaded heart with respect to the extracellular matrix. It further summarizes current treatment strategies, and then focuses on novel treatment targets for maladaptive cardiac remodeling, derived from transverse aortic constriction-induced pressure overload animal models.
Collapse
Affiliation(s)
- Matthijs Snelders
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Meltem Yildirim
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - A. H. Jan Danser
- Division of Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Vascular Surgery, Cardiovascular Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Vascular Surgery, Cardiovascular Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
5
|
Graff RC, Haimowitz A, Aguilan JT, Levine A, Zhang J, Yuan W, Roose-Girma M, Seshagiri S, Porcelli SA, Gamble MJ, Sidoli S, Bresnick AR, Backer JM. Platelet PI3Kβ regulates breast cancer metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612261. [PMID: 39314490 PMCID: PMC11419023 DOI: 10.1101/2024.09.10.612261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Platelets promote tumor metastasis by several mechanisms. Platelet-tumor cell interactions induce the release of platelet cytokines, chemokines, and other factors that promote tumor cell epithelial-mesenchymal transition and invasion, granulocyte recruitment to circulating tumor cells (CTCs), and adhesion of CTCs to the endothelium, assisting in their extravasation at metastatic sites. Previous studies have shown that platelet activation in the context of thrombus formation requires the Class IA PI 3-kinase PI3Kβ. We now define a role for platelet PI3Kβ in breast cancer metastasis. Platelet PI3Kβ is essential for platelet-stimulated tumor cell invasion through Matrigel. Consistent with this finding, in vitro platelet-tumor cell binding and tumor cell-stimulated platelet activation are reduced in platelets isolated from PI3Kβ mutant mice. RNAseq and proteomic analysis of human breast epithelial cells co-cultured with platelets revealed that platelet PI3Kβ regulates the expression of EMT and metastasis-associated genes in these cells. The EMT and metastasis-associated proteins PAI-1 and IL-8 were specifically downregulated in co-cultures with PI3Kβ mutant platelets. PI3Kβ mutant platelets are impaired in their ability to stimulate YAP and Smad2 signaling in tumor cells, two pathways regulating PAI-1 expression. Finally, we show that mice expressing mutant PI3Kβ show reduced spontaneous metastasis, and platelets isolated from these mice are less able to stimulate experimental metastasis in WT mice. Taken together, these data support a role for platelet PI3Kβ in promoting breast cancer metastasis and highlight platelet PI3Kβ as a potential therapeutic target. Significance We demonstrate that platelet PI3Kβ regulates metastasis, broadening the potential use of PI3Kβ-selective inhibitors as novel agents to treat metastasis.
Collapse
|
6
|
Zhao Y, Sun B, Fu X, Zuo Z, Qin H, Yao K. YAP in development and disease: Navigating the regulatory landscape from retina to brain. Biomed Pharmacother 2024; 175:116703. [PMID: 38713948 DOI: 10.1016/j.biopha.2024.116703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
The distinctive role of Yes-associated protein (YAP) in the nervous system has attracted widespread attention. This comprehensive review strategically uses the retina as a vantage point, embarking on an extensive exploration of YAP's multifaceted impact from the retina to the brain in development and pathology. Initially, we explore the crucial roles of YAP in embryonic and cerebral development. Our focus then shifts to retinal development, examining in detail YAP's regulatory influence on the development of retinal pigment epithelium (RPE) and retinal progenitor cells (RPCs), and its significant effects on the hierarchical structure and functionality of the retina. We also investigate the essential contributions of YAP in maintaining retinal homeostasis, highlighting its precise regulation of retinal cell proliferation and survival. In terms of retinal-related diseases, we explore the epigenetic connections and pathophysiological regulation of YAP in diabetic retinopathy (DR), glaucoma, and proliferative vitreoretinopathy (PVR). Lastly, we broaden our exploration from the retina to the brain, emphasizing the research paradigm of "retina: a window to the brain." Special focus is given to the emerging studies on YAP in brain disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), underlining its potential therapeutic value in neurodegenerative disorders and neuroinflammation.
Collapse
Affiliation(s)
- Yaqin Zhao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bin Sun
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhuan Zuo
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
7
|
Du Y. The Hippo signalling pathway and its impact on eye diseases. J Cell Mol Med 2024; 28:e18300. [PMID: 38613348 PMCID: PMC11015399 DOI: 10.1111/jcmm.18300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/26/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The Hippo signalling pathway, an evolutionarily conserved kinase cascade, has been shown to be crucial for cell fate determination, homeostasis and tissue regeneration. Recent experimental and clinical studies have demonstrated that the Hippo signalling pathway is involved in the pathophysiology of ocular diseases. This article provides the first systematic review of studies on the regulatory and functional roles of mammalian Hippo signalling systems in eye diseases. More comprehensive studies on this pathway are required for a better understanding of the pathophysiology of eye diseases and the development of effective therapies.
Collapse
Affiliation(s)
- Yuxiang Du
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision MedicineJining Medical UniversityJiningShandongPeople's Republic of China
| |
Collapse
|
8
|
Fioretto BS, Rosa I, Andreucci E, Mencucci R, Marini M, Romano E, Manetti M. Pharmacological Stimulation of Soluble Guanylate Cyclase Counteracts the Profibrotic Activation of Human Conjunctival Fibroblasts. Cells 2024; 13:360. [PMID: 38391973 PMCID: PMC10887040 DOI: 10.3390/cells13040360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
Conjunctival fibrosis is a serious clinical concern implicated in a wide spectrum of eye diseases, including outcomes of surgery for pterygium and glaucoma. It is mainly driven by chronic inflammation that stimulates conjunctival fibroblasts to differentiate into myofibroblasts over time, leading to abnormal wound healing and scar formation. Soluble guanylate cyclase (sGC) stimulation was found to suppress transforming growth factor β (TGFβ)-induced myofibroblastic differentiation in various stromal cells such as skin and pulmonary fibroblasts, as well as corneal keratocytes. Here, we evaluated the in vitro effects of stimulation of the sGC enzyme with the cell-permeable pyrazolopyridinylpyrimidine compound BAY 41-2272 in modulating the TGFβ1-mediated profibrotic activation of human conjunctival fibroblasts. Cells were pretreated with the sGC stimulator before challenging with recombinant human TGFβ1, and subsequently assayed for viability, proliferation, migration, invasiveness, myofibroblast marker expression, and contractile properties. Stimulation of sGC significantly counteracted TGFβ1-induced cell proliferation, migration, invasiveness, and acquisition of a myofibroblast-like phenotype, as shown by a significant downregulation of FAP, ACTA2, COL1A1, COL1A2, FN1, MMP2, TIMP1, and TIMP2 mRNA levels, as well as by a significant reduction in α-smooth muscle actin, N-cadherin, COL1A1, and FN-EDA protein expression. In addition, pretreatment with the sGC stimulator was capable of significantly dampening TGFβ1-induced acquisition of a contractile phenotype by conjunctival fibroblasts, as well as phosphorylation of Smad3 and release of the proinflammatory cytokines IL-1β and IL-6. Taken together, our findings are the first to demonstrate the effectiveness of pharmacological sGC stimulation in counteracting conjunctival fibroblast-to-myofibroblast transition, thus providing a promising scientific background to further explore the feasibility of sGC stimulators as potential new adjuvant therapeutic compounds to treat conjunctival fibrotic conditions.
Collapse
Affiliation(s)
- Bianca Saveria Fioretto
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (M.M.)
| | - Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (M.M.)
| | - Elena Andreucci
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Rita Mencucci
- Eye Clinic, Careggi Hospital, Department of Neurosciences, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Mirca Marini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (M.M.)
| | - Eloisa Romano
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (M.M.)
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|