1
|
Jokelainen O, Rintala T, Remes S, Pasonen-Seppänen S, Nykopp TK, Sironen R. Hyaluronan accumulation is associated with reduced hyaluronidase expression in renal cell carcinoma, with CD44, HAS1, and HYAL2 emerging as prognostic markers. J Pathol Clin Res 2025; 11:e70035. [PMID: 40528762 DOI: 10.1002/2056-4538.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2025] [Revised: 05/21/2025] [Accepted: 05/26/2025] [Indexed: 06/20/2025]
Abstract
Hyaluronan (HA), a large extracellular matrix glycosaminoglycan, is associated with malignant features in several human cancers. The accumulation of HA in renal cell carcinomas (RCC) correlates with unfavorable outcomes, higher tumor grade, and more advanced disease stages. However, the mechanisms responsible for HA buildup in these neoplasms remain unclear, and studies on the expression of hyaluronan-metabolizing and -degrading enzymes are either lacking or conflicting. This study aims to address this knowledge gap. Formalin-fixed paraffin-embedded (FFPE) RCC samples of various histological subtypes from 315 patients were immunohistochemically stained for CD44 (the main receptor of HA), hyaluronan-synthesizing enzymes HAS1-3, and degrading enzymes HYAL1-2. Protein expression levels were correlated with clinicopathological variables and their prognostic significance was evaluated. Additionally, the mRNA expression levels of these proteins were examined using RNA extracted from the same samples and publicly available data from the cancer genome atlas (TCGA). CD44 protein expression was associated with increased tumoral HA content, poor prognosis, higher tumor grade, advanced stage, and sarcomatoid/rhabdoid changes. HYAL1 and HYAL2 protein levels were reduced in HA-positive tumors, and low HYAL2 expression predicted worse prognosis. Elevated HAS2 protein expression was associated with poor differentiation, while low HAS1 protein levels were associated with reduced survival. mRNA levels of CD44 and HYAL2 correlated with their respective protein expression levels, and CD44 mRNA expression was also associated with HA content. In RCC, HA accumulation appears to be primarily driven by decreased degradation. HAS1 and HYAL2 were identified as novel prognostic biomarkers. These findings provide new insights into HA metabolism in RCC and open potential avenues for better understanding and management of these tumors.
Collapse
Affiliation(s)
- Otto Jokelainen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Teemu Rintala
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Satu Remes
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | | | - Timo K Nykopp
- Department of Surgery, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Surgery, University of Eastern Finland, Kuopio, Finland
| | - Reijo Sironen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
2
|
Wu Q, Siddharth S, Verma D, Parida S, Sharma D. TRIM29 upregulation contributes to chemoresistance in triple negative breast cancer via modulating S100P-β-catenin axis. Cell Commun Signal 2025; 23:244. [PMID: 40420099 DOI: 10.1186/s12964-025-02233-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 05/07/2025] [Indexed: 05/28/2025] Open
Abstract
Triple negative breast cancer, an inherently aggressive disease, is further impaired by the limited therapeutic options and chemotherapy-resistance; hence, elucidating the signaling nodes underlying chemotherapy resistance is of major interest. Focusing on the differentially expressed genes in recurrent TNBC, we identified TRIM29, a ubiquitin ligase belonging to TRIM family, as a uniquely enriched protein in chemoresistant TNBC. Here, we demonstrate that chemoresistant TNBC cells are inherently aggressive, exhibiting elevated growth and migration potential compared to chemosensitive cells, and in particular, they possess higher TRIM29 expression whose expression level modulation results in altered chemosensitivity. TRIM29 overexpression reduces chemotherapy response whereas TRIM29 knockout not only increases chemosensitivity but also reduces TNBC tumor growth. Tumor-dissociated cells maintain TRIM29 knockout status as well as exhibit similar functional alterations as chemoresistant TNBC cells. Mechanistically, RNA-sequencing of parental-chemosensitive, chemoresistant-inherently overexpressing TRIM29 and chemoresistant-TRIM29 knockout TNBC cells reveals a unique set of genes (S100P, SERPINB3, SERPINB4, CEACAM5, CEACAM6 and CDH6) showing significant upregulation with the acquisition of chemoresistance and downregulation with the TRIM29 knockout. Furthermore, an enrichment of β-catenin pathway in chemoresistant TNBC cells is observed. We uncovered a functional network where S100P, a metastasis inducing secretory factor, bidirectionally interacts with TRIM29, and modulates the expression of SERPINB3, SERPINB4, CEACAM5, CEACAM6 as well as β-catenin pathway genes. Showing the functional importance, S100P inhibitor reduces the growth and mammosphere formation in chemoresistant TNBC. Moreover, combining β-catenin inhibitor with chemotherapy shows synergistic inhibition of chemoresistant TNBC cells. Indeed, higher expression of TRIM29, S100P and β-catenin associates with reduced recurrence free survival. This work proposes TRIM29 as an important node that modulates a unique gene network in chemoresistant TNBC and whose biological impact is mediated by modulation of S100P and β-catenin.
Collapse
Affiliation(s)
- Qitong Wu
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB 1, Rm 145, Baltimore, MD, 21231, USA
| | - Sumit Siddharth
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB 1, Rm 145, Baltimore, MD, 21231, USA.
| | - Deepak Verma
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB 1, Rm 145, Baltimore, MD, 21231, USA
| | - Sheetal Parida
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB 1, Rm 145, Baltimore, MD, 21231, USA
| | - Dipali Sharma
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB 1, Rm 145, Baltimore, MD, 21231, USA.
| |
Collapse
|
3
|
Fujisawa S, Takagi K, Yamaguchi-Tanaka M, Sato A, Miki Y, Miyashita M, Tada H, Ishida T, Suzuki T. Clinicopathological significance of hyaluronan and hyaluronidase 2 (HYAL2) in breast cancer. Pathol Res Pract 2024; 260:155434. [PMID: 38991455 DOI: 10.1016/j.prp.2024.155434] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024]
Abstract
Hyaluronan (HA), as a component of extracellular matrix, has pivotal roles in both physiological and pathological condition. In breast cancer, while high molecular weight HA is produced by hyaluronan synthase, it is degraded by hyaluronidases (hyaluronidase-1 (HYAL1) and hyaluronidase-2 (HYAL2)) into low molecular weight HA (LMW HA), which is considered to have pro-tumorigenic effects in human malignancies. However, HA and HYAL2, the rate-limiting enzyme of HA degradation, have not been comprehensively examined in breast cancer and clinicopathological significance of LMW HA remains to be elucidated in breast cancer. We therefore histochemically localized HA as well as HYAL2 in 116 breast cancer tissues. In addition, we examined size-dependent function of HA on breast cancer cell proliferation and migration using MCF-7 and MDA-MB-231 breast cancer cell lines. HA was localized in both the stroma and breast carcinoma cells, while HYAL2 was predominantly localized in breast carcinoma cells. HA was significantly correlated with cell proliferation and invasion ability as well as increased risk of recurrence especially in HYAL2 positive group. On the other hand, HYAL2 was correlated with breast cancer cell proliferation and increased risk of recurrence. In addition, in vitro analyses revealed that lower molecular weight HA increased sphere forming ability and migration in MCF-7 and MDA-MB-231, whereas higher molecular weight HA inhibited them. It was concluded that HA needs to be degraded by HYAL2 to exert pro-tumorigenic effects and comprehensive HA/HYAL2 status serves as a potent prognostic factor in breast cancer.
Collapse
Affiliation(s)
- Shiori Fujisawa
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| | - Mio Yamaguchi-Tanaka
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Personalized Medicine Center and Tohoku University Hospital, Sendai, Miyagi 980-8575, Japan
| | - Ai Sato
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Hiroshi Tada
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Pathology, Tohoku University Hospital, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
4
|
Eustace AJ, Lee MJ, Colley G, Roban J, Downing T, Buchanan PJ. Aberrant calcium signalling downstream of mutations in TP53 and the PI3K/AKT pathway genes promotes disease progression and therapy resistance in triple negative breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:560-576. [PMID: 36176752 PMCID: PMC9511797 DOI: 10.20517/cdr.2022.41] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 06/16/2023]
Abstract
Triple-negative breast cancer (TNBC) is characterized as an aggressive form of breast cancer (BC) associated with poor patient outcomes. For the majority of patients, there is a lack of approved targeted therapies. Therefore, chemotherapy remains a key treatment option for these patients, but significant issues around acquired resistance limit its efficacy. Thus, TNBC has an unmet need for new targeted personalized medicine approaches. Calcium (Ca2+) is a ubiquitous second messenger that is known to control a range of key cellular processes by mediating signalling transduction and gene transcription. Changes in Ca2+ through altered calcium channel expression or activity are known to promote tumorigenesis and treatment resistance in a range of cancers including BC. Emerging evidence shows that this is mediated by Ca2+ modulation, supporting the function of tumour suppressor genes (TSGs) and oncogenes. This review provides insight into the underlying alterations in calcium signalling and how it plays a key role in promoting disease progression and therapy resistance in TNBC which harbours mutations in tumour protein p53 (TP53) and the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Alex J. Eustace
- DCU Cancer Research, Dublin City University, Dublin D9, Ireland
- National Institute Cellular Biotechnology, Dublin City University, Dublin D9, Ireland
- School of Biotechnology, Dublin City University, Dublin D9, Ireland
| | - Min Jie Lee
- School of Biotechnology, Dublin City University, Dublin D9, Ireland
| | - Grace Colley
- National Institute Cellular Biotechnology, Dublin City University, Dublin D9, Ireland
- School of Biotechnology, Dublin City University, Dublin D9, Ireland
| | - Jack Roban
- School of Biotechnology, Dublin City University, Dublin D9, Ireland
| | - Tim Downing
- DCU Cancer Research, Dublin City University, Dublin D9, Ireland
- School of Biotechnology, Dublin City University, Dublin D9, Ireland
| | - Paul J. Buchanan
- DCU Cancer Research, Dublin City University, Dublin D9, Ireland
- National Institute Cellular Biotechnology, Dublin City University, Dublin D9, Ireland
- School of Nursing, Psychotherapy, and Community Health, Dublin City University, Dublin D9, Ireland
| |
Collapse
|
5
|
[Detection of DNA methylation of HYAL2 gene for differentiating malignant from benign thyroid tumors]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:123-129. [PMID: 35249879 PMCID: PMC8901399 DOI: 10.12122/j.issn.1673-4254.2022.01.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To assess the value of DNA methylation level of HYAL2 gene as a molecular marker for differential diagnosis of malignant and benign thyroid tumors. METHODS DNA methylation of HYAL2 gene in tissue specimens of 190 patients with papillary thyroid cancer (PTC) and 190 age- and gender-matched patients with benign thyroid tumors was examined by mass spectrometry, and the protein expression of HYAL2 was detected immunohistochemically for another 55 pairs of patients. Logistic regression analysis was performed to calculate the odds ratio (OR) and evaluate the correlation of per 10% reduction in DNA methylation with PTC. Receiver operating characteristic (ROC) curve analysis was performed and the area under curve (AUC) was calculated to assess the predictive value of alterations in HYAL2 methylation. RESULTS Hypomethylation of HYAL2_CpG_3 was significantly correlated with early-stage PTC (OR=1.51, P=0.001), even in stage I cancer (OR=1.42, P=0.007). Age-stratified analysis revealed a significantly stronger correlation between increased HYAL2_CpG_ 3 methylation and early-stage PTC in patients below 50 years than in those older than 50 years (OR: 1.89 vs 1.37, P < 0.05); ROC analysis also showed a larger AUC of 0.787 in younger patients. The results of immunohistochemistry showed that patients with PTC had significantly higher protein expressions of HYAL2 than patients with benign tumors. CONCLUSION The alterations of DNA methylation level of HYAL2 gene is significantly correlated with early-stage PTC, suggesting the value of DNA methylation level as a potential biomarker for differentiation of malignant from benign thyroid tumors.
Collapse
|
6
|
Martinez-Morales P, Morán Cruz I, Roa-de la Cruz L, Maycotte P, Reyes Salinas JS, Vazquez Zamora VJ, Gutierrez Quiroz CT, Montiel-Jarquin AJ, Vallejo-Ruiz V. Hallmarks of glycogene expression and glycosylation pathways in squamous and adenocarcinoma cervical cancer. PeerJ 2021; 9:e12081. [PMID: 34540372 PMCID: PMC8415283 DOI: 10.7717/peerj.12081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Background Dysregulation of glycogene expression in cancer can lead to aberrant glycan expression, which can promote tumorigenesis. Cervical cancer (CC) displays an increased expression of glycogenes involved in sialylation and sialylated glycans. Here, we show a comprehensive analysis of glycogene expression in CC to identify glycogene expression signatures and the possible glycosylation pathways altered. Methods First, we performed a microarray expression assay to compare glycogene expression changes between normal and cervical cancer tissues. Second, we used 401 glycogenes to analyze glycogene expression in adenocarcinoma and squamous carcinoma from RNA-seq data at the cBioPortal for Cancer Genomics. Results The analysis of the microarray expression assay indicated that CC displayed an increase in glycogenes related to GPI-anchored biosynthesis and a decrease in genes associated with chondroitin and dermatan sulfate with respect to normal tissue. Also, the glycogene analysis of CC samples by the RNA-seq showed that the glycogenes involved in the chondroitin and dermatan sulfate pathway were downregulated. Interestingly the adenocarcinoma tumors displayed a unique glycogene expression signature compared to squamous cancer that shows heterogeneous glycogene expression divided into six types. Squamous carcinoma type 5 (SCC-5) showed increased expression of genes implicated in keratan and heparan sulfate synthesis, glycosaminoglycan degradation, ganglio, and globo glycosphingolipid synthesis was related to poorly differentiated tumors and poor survival. Squamous carcinoma type 6 (SCC-6) displayed an increased expression of genes involved in chondroitin/dermatan sulfate synthesis and lacto and neolacto glycosphingolipid synthesis and was associated with nonkeratinizing squamous cancer and good survival. In summary, our study showed that CC tumors are not a uniform entity, and their glycome signatures could be related to different clinicopathological characteristics.
Collapse
Affiliation(s)
- Patricia Martinez-Morales
- CONACYT-Centro de Investigación Biomédica de Oriente, Mexican Institute of Social Security, Metepec, Puebla, México
| | - Irene Morán Cruz
- Centro de Investigación Biomédica de Oriente, Laboratory of Molecular Biology, Instituto Mexicano del Seguro Social, Metepec, Puebla, México
| | - Lorena Roa-de la Cruz
- Department of Biological Chemical Sciences, Universidad de las Américas-Puebla, San Andrés Cholula, Puebla, Mexico
| | - Paola Maycotte
- Centro de Investigación Biomédica de Oriente, Laboratory of Cell Biology, Instituto Mexicano del Seguro Social, Metepec, Puebla, México
| | - Juan Salvador Reyes Salinas
- Hospital de especialidades, General Manuel Ávila Camacho, Instituto Mexicano del Seguro Social, Puebla, Puebla, México
| | - Victor Javier Vazquez Zamora
- Hospital de especialidades, General Manuel Ávila Camacho, Instituto Mexicano del Seguro Social, Puebla, Puebla, México
| | | | - Alvaro Jose Montiel-Jarquin
- Hospital de especialidades, General Manuel Ávila Camacho, Instituto Mexicano del Seguro Social, Puebla, Puebla, México
| | - Verónica Vallejo-Ruiz
- Centro de Investigación Biomédica de Oriente, Laboratory of Molecular Biology, Instituto Mexicano del Seguro Social, Metepec, Puebla, México
| |
Collapse
|
7
|
Xiao Y, Cui G, Ren X, Hao J, Zhang Y, Yang X, Wang Z, Zhu X, Wang H, Hao C, Duan H. A Novel Four-Gene Signature Associated With Immune Checkpoint for Predicting Prognosis in Lower-Grade Glioma. Front Oncol 2020; 10:605737. [PMID: 33381460 PMCID: PMC7769121 DOI: 10.3389/fonc.2020.605737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/08/2020] [Indexed: 01/28/2023] Open
Abstract
The overall survival of patients with lower grade glioma (LGG) varies greatly, but the current histopathological classification has limitations in predicting patients’ prognosis. Therefore, this study aims to find potential therapeutic target genes and establish a gene signature for predicting the prognosis of LGG. CD44 is a marker of tumor stem cells and has prognostic value in various tumors, but its role in LGG is unclear. By analyzing three glioma datasets from Gene Expression Omnibus (GEO) database, CD44 was upregulated in LGG. We screened 10 CD44-related genes via protein–protein interaction (PPI) network; function enrichment analysis demonstrated that these genes were associated with biological processes and signaling pathways of the tumor; survival analysis showed that four genes (CD44, HYAL2, SPP1, MMP2) were associated with the overall survival (OS) and disease-free survival (DFS)of LGG; a novel four-gene signature was constructed. The prediction model showed good predictive value over 2-, 5-, 8-, and 10-year survival probability in both the development and validation sets. The risk score effectively divided patients into high- and low- risk groups with a distinct outcome. Multivariate analysis confirmed that the risk score and status of IDH were independent prognostic predictors of LGG. Among three LGG subgroups based on the presence of molecular parameters, IDH-mutant gliomas have a favorable OS, especially if combined with 1p/19q codeletion, which further confirmed the distinct biological pattern between three LGG subgroups, and the gene signature is able to divide LGG patients with the same IDH status into high- and low- risk groups. The high-risk group possessed a higher expression of immune checkpoints and was related to the activation of immunosuppressive pathways. Finally, this study provided a convenient tool for predicting patient survival. In summary, the four prognostic genes may be therapeutic targets and prognostic predictors for LGG; this four-gene signature has good prognostic prediction ability and can effectively distinguish high- and low-risk patients. High-risk patients are associated with higher immune checkpoint expression and activation of the immunosuppressive pathway, providing help for screening immunotherapy-sensitive patients.
Collapse
Affiliation(s)
- Youchao Xiao
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Gang Cui
- Department of Neurosurgery, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, China
| | - Xingguang Ren
- Department of Neurosurgery, General Hospital of TISCO, Taiyuan, China
| | - Jiaqi Hao
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yu Zhang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xin Yang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhuangzhuang Wang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaolin Zhu
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Huan Wang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunyan Hao
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hubin Duan
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Neurosurgery, Lvliang People's Hospital, Lvliang, China
| |
Collapse
|
8
|
Cong Y, Cui Y, Wang S, Jiang L, Cao J, Zhu S, Birkin E, Lane J, Ruge F, Jiang WG, Qiao G. Calcium-Binding Protein S100P Promotes Tumor Progression but Enhances Chemosensitivity in Breast Cancer. Front Oncol 2020; 10:566302. [PMID: 33042844 PMCID: PMC7522638 DOI: 10.3389/fonc.2020.566302] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/24/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Chemoresistance remains one of the obstacles to overcome in the treatment of breast cancer. S100 calcium-binding protein P (S100P) has been observed to be overexpressed in several cancers and has been associated with drug resistance, metastasis, and prognosis. However, the role of S100P in chemoresistance in breast cancer has not been thoroughly determined. METHODS Immunohistochemistry was used to evaluate the expression level of S100P protein in 22 pairs (pre-chemo and post-chemo) of breast cancer tissue from patients who underwent neoadjuvant chemotherapy. The influence of S100P on the biological behavior and chemosensitivity of breast cancer cells was then investigated. RESULTS The protein level of S100P in breast cancer tissue was significantly higher than in benign fibroadenoma (p < 0.001). The S100P expression level was shown to be decreased by 46.55% after neoadjuvant chemotherapy (p = 0.015). Subgroup analysis revealed that S100P reduction (57.58%) was mainly observed in the HER2+ tumors (p = 0.027). Our in vitro experiments showed that the knockdown of S100P suppressed the proliferation, adhesion, migrative and invasive abilities of T47D and SK-BR-3 breast cancer cells. We further demonstrated that this knockdown increased the chemoresistance to paclitaxel and cisplatin in SK-BR-3 cells. We found S100P exerted its function by upregulating NF-κB, CCND1 and Vimentin, but downregulating E-cadherin. CONCLUSION S100P promotes the aggressive properties of breast cancer cells and may be considered as a promising therapeutic target. Moreover, S100P can be used to predict the therapeutic effect of chemotherapy in HER2+ breast cancer patients.
Collapse
Affiliation(s)
- Yizi Cong
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yuxin Cui
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Suxia Wang
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Lei Jiang
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jianqiao Cao
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Shiguang Zhu
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Emily Birkin
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jane Lane
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Fiona Ruge
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Wen G. Jiang
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Guangdong Qiao
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
9
|
Zhao B, Xu Y, Zhao Y, Shen S, Sun Q. Identification of Potential Key Genes Associated With the Pathogenesis, Metastasis, and Prognosis of Triple-Negative Breast Cancer on the Basis of Integrated Bioinformatics Analysis. Front Oncol 2020; 10:856. [PMID: 32596149 PMCID: PMC7304260 DOI: 10.3389/fonc.2020.00856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
Objective: Breast cancer is the most common solid tumor affecting women and the second leading cause of cancer-related death worldwide, and triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer. We aimed to identify potential TNBC-specific therapeutic targets by performing an integrative analysis on previously published TNBC transcriptome microarray data. Methods: Differentially expressed genes (DEGs) between TNBC and normal breast tissues were screened using six Gene Expression Omnibus (GEO) datasets, and DEGs between metastatic TNBC and non-metastatic TNBC were screened using one GEO dataset. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses were performed on the overlapping DEGs. The Cancer Genome Atlas (TCGA) TNBC data were used to identify candidate genes that were strongly associated with survival. Expression of the candidate genes in TNBC cell lines was blocked or augmented using a lentivirus system, and transwell assays were used to determine their effect on TNBC migration. Results: Eight upregulated genes and nine downregulated genes were found to be differentially expressed both between TNBC and normal breast tissues and between metastatic TNBC and non-metastatic TNBC. Among them, S100P and SDC1 were identified as poor prognostic genes. Furthermore, compared with control cells, SDC1-overexpressing TNBC cells showed enhanced migration ability, whereas SDC1 knockdown markedly reduced the migration of TNBC cells. Conclusion: Our study determined that S100P and SDC1 may be potential treatment targets as well as prognostic biomarkers of TNBC.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yali Xu
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yang Zhao
- Department of Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Songjie Shen
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
10
|
Ooki T, Hatakeyama M. Hyaluronan Degradation Promotes Cancer via Hippo-YAP Signaling: An Intervention Point for Cancer Therapy. Bioessays 2020; 42:e2000005. [PMID: 32449813 DOI: 10.1002/bies.202000005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/16/2020] [Indexed: 12/14/2022]
Abstract
High-molecular-weight hyaluronan acts as a ligand of the tumor-suppressive Hippo signal, whereas degradation of hyaluronan from a high-molecular-weight form to a low-molecular-weight forms by hyaluronidase 2 inhibits Hippo signal activation and thereby activates the pro-oncogenic transcriptional coactivator yes-associated protein (YAP), which creates a cancer-predisposing microenvironment and drives neoplastic transformation of cells through both cell-autonomous and non-cell-autonomous mechanisms. In fact, accumulation of low-molecular-weight hyaluronan in tissue stroma is observed in many types of cancers. Since inhibition of YAP activity suppresses tumor growth in vivo, pharmacological intervention of the Hippo-YAP signal is an attractive approach for future drug development. In this review, pharmacological intervention of excessive hyaluronan degradation as a novel approach for inhibition of the Hippo-YAP signal is also discussed. Development of hyaluronidase inhibitors may provide novel therapeutic strategies for human malignant tumors.
Collapse
Affiliation(s)
- Takuya Ooki
- Division of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo, 113-0033, Japan
| | - Masanori Hatakeyama
- Division of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
11
|
Jin Z, Zhang G, Liu Y, He Y, Yang C, Du Y, Gao F. The suppressive role of HYAL1 and HYAL2 in the metastasis of colorectal cancer. J Gastroenterol Hepatol 2019; 34:1766-1776. [PMID: 30972813 DOI: 10.1111/jgh.14660] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 02/14/2019] [Accepted: 03/10/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Hyaluronidases (HAases), enzymes that degrade hyaluronan, have been widely investigated in cancer biology. However, whether HAases serve as tumor promoters or suppressors has been controversial in different cancers, and the exact role of HAases in colorectal cancer (CRC) has not been elucidated. METHODS The expression levels of HYAL1, HYAL2, and HYAL3 in cancer and corresponding normal tissues from CRC patients were examined via immunohistochemistry. Then the correlation between HAases levels and pathological characteristics of CRC patients was analyzed. To verify the clinical data, HYAL1 and HYAL2 were downregulated or overexpressed in colon cancer cells LOVO and HCT116 to observe their influences on cell invasion and migration. For the mechanism study, we investigated the effects of HYAL1 and HYAL2 on the expression of matrix metalloproteases (MMPs)/tissue inhibitor of metalloproteases (TIMPs) and distribution of F-actin. RESULTS All the three HAases were abnormally elevated in cancer tissues. Interestingly, HYAL1 and HYAL2, but not HYAL3, were negatively correlated with lymphatic metastasis and TNM stage. When HYAL1 and HYAL2 were knocked down, the invasion and migration abilities of colon cancer cells were accelerated, whereas overexpression of HYAL1 and HYAL2 had the opposite effects. In addition, colon cancer cells with HYAL1 and HYAL2 downregulation showed increased levels of MMP2 and MMP9, decreased levels of TIMP1 and TIMP2, and more intense F-actin stress fibers. CONCLUSIONS Our study suggests that HYAL1 and HYAL2 suppress CRC metastasis through regulating MMPs/TIMPs balance and rearranging F-actin distribution, further inhibiting invasion and migration of cancer cells.
Collapse
Affiliation(s)
- Zhiming Jin
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guoliang Zhang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yan Du
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Gao
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
12
|
High-Molecular-Weight Hyaluronan Is a Hippo Pathway Ligand Directing Cell Density-Dependent Growth Inhibition via PAR1b. Dev Cell 2019; 49:590-604.e9. [DOI: 10.1016/j.devcel.2019.04.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 01/11/2019] [Accepted: 04/13/2019] [Indexed: 02/06/2023]
|
13
|
Kikuchi K, McNamara KM, Miki Y, Iwabuchi E, Kanai A, Miyashita M, Ishida T, Sasano H. S100P and Ezrin promote trans-endothelial migration of triple negative breast cancer cells. Cell Oncol (Dordr) 2018; 42:67-80. [PMID: 30244410 DOI: 10.1007/s13402-018-0408-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2018] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Triple negative breast cancer (TNBC) patients generally have an adverse clinical outcome because their tumors often recur and metastasize to distant sites in the first 3 years after surgery. Therefore, it has become pivotal to identify potential factors associated with metastasis. Here, we focused on the effects of S100P and Ezrin on the trans-endothelial migration (TEM) of TNBC cells, as they have both been suggested to play a role in this process in other malignancies. METHODS The expression of S100P and Ezrin was examined by immunohistochemistry in 58 primary TNBC samples. The mRNA and protein levels of S100P and Ezrin were assessed in breast cancer-derived cell lines using qRT-PCR and Western blotting, respectively. Proliferation and migration assays were performed using TNBC-derived MFM-223 and SUM-185-PE cells transfected with S100P and Ezrin siRNAs. Two different timeframes were employed for TEM assays using TNBC-derived cells and human umbilical vein endothelial-derived cells, respectively. Correlations between the status of EzrinThr-567 expression and various clinicopathological features were analyzed by immunohistochemistry. RESULTS We found that S100P and Ezrin double negative TNBC cases were significantly associated with a better disease-free survival. We also found that single and double siRNA-mediated knockdown of S100P and Ezrin in TNBC-derived cells significantly inhibited their TEM and destabilized the intercellular junctions of endothelial cells. In addition, we found that EzrinThr-567 immunoreactivity significantly correlated with vascular invasion in TNBC patients. CONCLUSIONS From our data we conclude that S100P, Ezrin and EzrinThr-567 are involved in the trans-endothelial migration of TNBC cells and that they may serve as potential targets in TNBC patients.
Collapse
Affiliation(s)
- Kyoko Kikuchi
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku Sendai-shi, Miyagi, 980-8575, Japan
| | - Keely May McNamara
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku Sendai-shi, Miyagi, 980-8575, Japan
| | - Yasuhiro Miki
- Department of Disaster Obstetrics and Gynecology, International Research Institute of Disaster Science (IRIDeS), Tohoku University, 2-1, Seiryo-machi, Aoba-ku Sendai-shi, Miyagi, 980-8575, Japan
| | - Erina Iwabuchi
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku Sendai-shi, Miyagi, 980-8575, Japan
| | - Ayako Kanai
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku Sendai-shi, Miyagi, 980-8575, Japan.,Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku Sendai-shi, Miyagi, 980-8575, Japan
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku Sendai-shi, Miyagi, 980-8575, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku Sendai-shi, Miyagi, 980-8575, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku Sendai-shi, Miyagi, 980-8575, Japan.
| |
Collapse
|
14
|
Schott S, Yang R, Stöcker S, Canzian F, Giese N, Bugert P, Bergmann F, Strobel O, Hackert T, Sohn C, Burwinkel B. HYAL2 methylation in peripheral blood as a potential marker for the detection of pancreatic cancer: a case control study. Oncotarget 2017; 8:67614-67625. [PMID: 28978057 PMCID: PMC5620197 DOI: 10.18632/oncotarget.18757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/23/2017] [Indexed: 12/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy which is mostly diagnosed in advanced and inoperable stages though surgery remains the only curable therapeutic approach. Early detection markers are urgently needed to improve diagnosis. Altered hyaluronoglucosaminidase 2 gene (HYAL2) DNA methylation in peripheral blood is known to be associated with malignancy at early stage but has not been evaluated in PDAC patients. This study evaluates the association between blood-based HYAL2 methylation and PDAC by a case-control study with 191 controls and 82 PDAC patients. Decreased methylation of all four investigated HYAL2 methylation sites showed highly significant association with PDAC (odds ratio (ORs) per −10% methylation ranging from 2.03 to 12.74, depending on the specific CpG site, p < 0.0001 for all). HYAL2 methylation sites were also distinguishable between stage I&II PDAC (61 subjects) and controls (ORs per-10% methylation from 3.17 - 23.04, p < 0.0001 for all). Thus, HYAL2 methylation level enabled a very good discrimination of PDAC cases from healthy controls (area under curve (AUC) = 0.92, 95% Confidence interval (C.I.): 0.88 - 0.96), and was also powerful for the detection of PDAC at stage I&II (AUC = 0.93, 95% C.I.: 0.89 - 0.98). Moreover, the blood-based HYAL2 methylation pattern was similar among PDAC patients with differential clinical characteristics, and showed no correlation with the overall survival of PDAC patients. Our study reveals a strong association between decreased HYAL2 methylation in peripheral blood and PDAC, and provides a promising blood-based marker for the detection of PDAC.
Collapse
Affiliation(s)
- Sarah Schott
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, 69120 Heidelberg, Germany.,Department of Gynecology and Obstetrics, University Women's Clinic, 69120 Heidelberg, Germany.,German Cancer Consortium (DKTK), NCT Heidelberg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Rongxi Yang
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, 69120 Heidelberg, Germany.,Department of Gynecology and Obstetrics, University Women's Clinic, 69120 Heidelberg, Germany.,Molecular Epidemiology (C080), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sarah Stöcker
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, 69120 Heidelberg, Germany.,Molecular Epidemiology (C080), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Federico Canzian
- Genomic Epidemiology Group (C055), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Nathalia Giese
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, German Red Cross Blood Service Baden-Württemberg - Hessen, 68167 Mannheim, Germany
| | - Frank Bergmann
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Christof Sohn
- Department of Gynecology and Obstetrics, University Women's Clinic, 69120 Heidelberg, Germany
| | - Barbara Burwinkel
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, 69120 Heidelberg, Germany.,Molecular Epidemiology (C080), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Zhang S, Wang Z, Liu W, Lei R, Shan J, Li L, Wang X. Distinct prognostic values of S100 mRNA expression in breast cancer. Sci Rep 2017; 7:39786. [PMID: 28051137 PMCID: PMC5209742 DOI: 10.1038/srep39786] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/28/2016] [Indexed: 12/22/2022] Open
Abstract
S100 family genes encode low molecular weight, acidic-Ca2+ binding proteins implicating in a wide spectrum of biological processes. S100 family contains at least 20 members, most of which are frequently dysregulated in human malignancies including breast cancer. However, the prognostic roles of each individual S100, especially the mRNA level, in breast cancer patients remain elusive. In the current study, we used "The Kaplan-Meier plotter" (KM plotter) database to investigate the prognostic values of S100 mRNA expression in breast cancer. Our results indicated that high mRNA expression of S100A8, S100A9, S100A11 and S100P were found to be significantly correlated to worse outcome, while S100A1 and S100A6 were associated with better prognosis in all breast cancer patients. We further assessed the prognostic value of S100 in different intrinsic subtypes and clinicopathological features of breast cancer. The associated results will elucidate the role of S100 in breast cancer and may further lead the research to explore the S100-targeting reagents for treating breast cancer patients.
Collapse
Affiliation(s)
- Shizhen Zhang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention &Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Zhen Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention &Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Weiwei Liu
- Department of Laboratory Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Rui Lei
- Department of Plastic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, No. 79, Qingchun Road, Hangzhou, Zhejiang 310009, China
| | - Jinlan Shan
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention &Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Ling Li
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Xiaochen Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention &Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
16
|
Gene expression profiling of breast cancer in Lebanese women. Sci Rep 2016; 6:36639. [PMID: 27857161 PMCID: PMC5114572 DOI: 10.1038/srep36639] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/13/2016] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is commonest cancer in women worldwide. Elucidation of underlying biology and molecular pathways is necessary for improving therapeutic options and clinical outcomes. Molecular alterations in breast cancer are complex and involve cross-talk between multiple signaling pathways. The aim of this study is to extract a unique mRNA fingerprint of breast cancer in Lebanese women using microarray technologies. Gene-expression profiles of 94 fresh breast tissue samples (84 cancerous/10 non-tumor adjacent samples) were analyzed using GeneChip Human Genome U133 Plus 2.0 arrays. Quantitative real-time PCR was employed to validate candidate genes. Differentially expressed genes between breast cancer and non-tumor tissues were screened. Significant differences in gene expression were established for COL11A1/COL10A1/MMP1/COL6A6/DLK1/S100P/CXCL11/SOX11/LEP/ADIPOQ/OXTR/FOSL1/ACSBG1 and C21orf37. Pathways/diseases representing these genes were retrieved and linked using PANTHER®/Pathway Studio®. Many of the deregulated genes are associated with extracellular matrix, inflammation, angiogenesis, metastasis, differentiation, cell proliferation and tumorigenesis. Characteristics of breast cancers in Lebanese were compared to those of women from Western populations to explain why breast cancer is more aggressive and presents a decade earlier in Lebanese victims. Delineating molecular mechanisms of breast cancer in Lebanese women led to key genes which could serve as potential biomarkers and/or novel drug targets for breast cancer.
Collapse
|
17
|
Pfütze K, Benner A, Hoffmeister M, Jansen L, Yang R, Bläker H, Herpel E, Ulrich A, Ulrich CM, Chang-Claude J, Brenner H, Burwinkel B. Methylation status at HYAL2 predicts overall and progression-free survival of colon cancer patients under 5-FU chemotherapy. Genomics 2015; 106:348-54. [PMID: 26453961 DOI: 10.1016/j.ygeno.2015.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 12/31/2022]
Abstract
DNA methylation variations in gene promoter regions are well documented tumor-specific alterations in human malignancies including colon cancer, which may influence tumor behavior and clinical outcome. As a subset of colon cancer patients does not benefit from adjuvant chemotherapy, predictive biomarkers are desirable. Here, we describe that DNA methylation levels at CpG loci of hyaluronoglucosaminidase 2 (HYLA2) could be used to identify stage II and III colon cancer patients who are most likely to benefit from 5-flourouracil (5-FU) chemotherapy with respect to overall survival and progression-free survival.
Collapse
Affiliation(s)
- Katrin Pfütze
- Helmholtz-University Group Molecular Epidemiology, German Cancer Research Center (DKFZ), Germany; Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Germany.
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Germany
| | - Lina Jansen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Germany
| | - Rongxi Yang
- Helmholtz-University Group Molecular Epidemiology, German Cancer Research Center (DKFZ), Germany; Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Germany
| | - Hendrik Bläker
- Department of General Pathology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Esther Herpel
- Department of General Pathology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany; NCT Tissue Bank, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Division of Molecular oncology, National Center for Tumor Diseases (NCT), Germany
| | - Cornelia M Ulrich
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT)/German Cancer Research Center (DKFZ), Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, Unit of Genetic Epidemiology, German Cancer Research Center (DKFZ), Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Germany; German Cancer Research Center (DKTk)Germany
| | - Barbara Burwinkel
- Helmholtz-University Group Molecular Epidemiology, German Cancer Research Center (DKFZ), Germany; Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Germany
| |
Collapse
|