1
|
Busse PK, Neugebauer L, Kaschubowski G, Anheyer D, Ostermann T. Oxytocin as a physiological correlate of dyadic music therapy relationships - a randomized crossover pilot study. Front Behav Neurosci 2025; 18:1504229. [PMID: 39949817 PMCID: PMC11821654 DOI: 10.3389/fnbeh.2024.1504229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/23/2024] [Indexed: 02/16/2025] Open
Abstract
Rationale Music therapy has been in practice for years. However, the mechanism of action of music or music therapy is not well understood. It is only recently that the neuroendocrinological basis of therapeutic relationships has become the subject of growing research interest. The aim of this pilot study (Clinical Trial No: DRKS00035174) is to investigate whether oxytocin is usable and feasible as a biomarker of attachment to demonstrate the development of therapeutic alliance between therapist and patient in a dyadic music therapy setting. Methods In a single-measure crossover design, children aged 6-12 years from a special school for social and emotional disorders, were randomly with either music therapy followed by a waiting list control group that performed silent work, or vice versa. The respective interventions were conducted on the school premises on different days over a period of 1 month. The primary outcome was salivary oxytocin, with tests performed immediately before and after each 30-min intervention. Results Thirty-two children were included in the study, resulting in n = 16 children per allocation sequence. During the implementation of the study, difficulties were encountered with protocol adherence both in terms of the duration of the music therapy and the implementation of the silent work in the control group. There were no dropouts, however, only 28 children were included in the final data analysis as two participants in each group were excluded due to large fluctuations in oxytocin levels. Between-group comparison and within-group comparisons showed no significant changes in oxytocin levels. However, the music therapist showed a significant increase in oxytocin levels in the before after measurement. No side effects or adverse events were reported during the trial. Conclusion The findings indicated a responsiveness of oxytocin to musical stimulation. Although feasibility of oxytocin measurement was clearly demonstrated, evaluation of the results is difficult against the background of many remaining questions regarding individual and contextual factors influencing the oxytocinergic system. Moreover, the clinical significance of changes in oxytocin levels remains a topic for further research to better understand the role of oxytocin in the attachment formation between therapist and patient in music therapy.
Collapse
Affiliation(s)
- Paula Kristin Busse
- Department of Psychology and Psychotherapy, Witten/ Herdecke University, Alfred-Herrhausen-Straße, Witten, Germany
| | | | | | - Dennis Anheyer
- Department of Psychology and Psychotherapy, Witten/ Herdecke University, Alfred-Herrhausen-Straße, Witten, Germany
- Institute for General Practice and Interprofessional Care, University Hospital Tübingen, Tübingen, Germany
- Robert Bosch Centre for Integrative Medicine and Health, Auerbachstraße, Stuttgart, Germany
| | - Thomas Ostermann
- Department of Psychology and Psychotherapy, Witten/ Herdecke University, Alfred-Herrhausen-Straße, Witten, Germany
| |
Collapse
|
2
|
Asla Q, Garrido M, Urgell E, Terzan S, Santos A, Fernández M, Varghese N, Atila C, Calabrese A, Biagetti B, Plessow F, Gich I, Christ-Crain M, Eckert A, Webb SM, Lawson EA, Aulinas A. Oxytocin levels in response to CRH administration in hypopituitarism and hypothalamic damage: a randomized, crossover, placebo-controlled trial. Sci Rep 2025; 15:2360. [PMID: 39824923 PMCID: PMC11742408 DOI: 10.1038/s41598-025-86566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025] Open
Abstract
Increasing evidence supports the presence of oxytocin deficiency (OXT-D) in patients with hypopituitarism and hypothalamic damage (HHD), that might be associated with neuropsychological deficits and sexual dysfunction, leading to worse quality of life (QoL). Therefore, identifying a provocative test to diagnose an OXT-D will be important. Corticotropin-releasing hormone (CRH) is a candidate for such a test as it increases oxytocin secretion in animal models. This study aimed to examine the effects of CRH on oxytocin release in HHD compared to healthy controls (HC) and to describe the psychopathology, sexual function and QoL and their associations with oxytocin. This is a single-blind, randomized, placebo-controlled, proof-of-concept study (NCT04902235) with crossover assignment (CRH vs. placebo). Nineteen HHD patients (10 females) and 20 HC (11 females) completed two visits, receiving CRH or placebo in random order and completed validated questionnaires to assess psychopathology, sexual function and QoL. Samples were collected over 120 min to assess oxytocin. Linear mixed-effects regression model evaluated the change in oxytocin after CRH/placebo in HHD vs. HC. CRH administration did not impact oxytocin concentrations across groups over time (p = 0.97). HHD had greater psychopathology (most ps < 0.05), sexual dysfunction (p < 0.03) and worse QoL (p < 0.001) compared to HC, nevertheless, baseline oxytocin concentrations and area under the curve of oxytocin were not significantly associated with psychopathology, sexual function or QoL, neither in HHD or HC. In conclusion, CRH administration does not appear to be a suitable provocative test for diagnosing OXT-D in HHD. Identifying a reliable diagnostic test for OXT-D remains crucial. Alternative provocative tests or biomarkers should be explored.
Collapse
Affiliation(s)
- Queralt Asla
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, IR-SANT PAU, CIBERER-U747 ISCIII, ENDO-ERN, Barcelona, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic/Manresa, Catalonia, Spain
| | - Maite Garrido
- Centre d'Investigació del Medicament (CIM), IR-SANT PAU, Barcelona, Spain
| | - Eulàlia Urgell
- Department of Biochemistry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Sílvia Terzan
- Department of Biochemistry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Alicia Santos
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, IR-SANT PAU, CIBERER-U747 ISCIII, ENDO-ERN, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mercè Fernández
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau - Hospital Dos de Maig, Barcelona, Spain
| | - Nimmy Varghese
- Research Cluster Molecular and Cognitive Neurosciences, Universität Basel, Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, Basel, Switzerland
| | - Cihan Atila
- Endocrinology, Diabetology and Metabolism, Universitätsspital Basel, Basel, Switzerland
- Department of Clinical Research, Universität Basel, Basel, Switzerland
| | - Anna Calabrese
- Department of Clinical and Biological Sciences, Internal Medicine, University of Turin, S. Luigi Hospital, Torino, Italy
| | - Betina Biagetti
- Department of Endocrinology and Nutrition, Hospital Universitari Vall d'Hebron, ENDO-ERN, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER, Unit 747), Instituto de Salud Carlos III, Majadahonda, Spain
| | - Franziska Plessow
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, USA
- Department of Medicine, Harvard Medical School, Boston, USA
| | - Ignasi Gich
- Department of Clinical Epidemiology and Public Health, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBER-ESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Mirjam Christ-Crain
- Endocrinology, Diabetology and Metabolism, Universitätsspital Basel, Basel, Switzerland
- Department of Clinical Research, Universität Basel, Basel, Switzerland
| | - Anne Eckert
- Research Cluster Molecular and Cognitive Neurosciences, Universität Basel, Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, Basel, Switzerland
| | - Susan M Webb
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER, Unit 747), Instituto de Salud Carlos III, Majadahonda, Spain
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, USA
- Department of Medicine, Harvard Medical School, Boston, USA
| | - Anna Aulinas
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, IR-SANT PAU, CIBERER-U747 ISCIII, ENDO-ERN, Barcelona, Spain.
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic/Manresa, Catalonia, Spain.
| |
Collapse
|
3
|
Edwards MM, Nguyen HK, Dodson AD, Herbertson AJ, Honeycutt MK, Slattery JD, Rambousek JR, Tsui E, Wolden-Hanson T, Wietecha TA, Graham JL, Tapia GP, Sikkema CL, O'Brien KD, Mundinger TO, Peskind ER, Ryu V, Havel PJ, Khan AM, Taborsky GJ, Blevins JE. Sympathetic innervation of interscapular brown adipose tissue is not a predominant mediator of Oxytocin (OT)-elicited reductions of body weight gain and adiposity in male diet-induced obese rats. FRONTIERS IN DRUG DELIVERY 2024; 4:1497746. [PMID: 39866535 PMCID: PMC11759500 DOI: 10.3389/fddev.2024.1497746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Recent studies indicate that central administration of oxytocin (OT) reduces body weight (BW) in high fat diet-induced obese (DIO) rodents by reducing energy intake and increasing energy expenditure (EE). Previous studies in our lab have shown that administration of OT into the fourth ventricle (4V; hindbrain) elicits weight loss and stimulates interscapular brown adipose tissue temperature (TIBAT) in DIO rats. We hypothesized that OT-elicited stimulation of sympathetic nervous system (SNS) activation of IBAT contributes to its ability to activate BAT and reduce BW in DIO rats. To test this, we determined the effect of disrupting SNS activation of IBAT on OT-elicited stimulation of TIBAT and reduction of BW in DIO rats. We first confirmed that bilateral surgical SNS denervation to IBAT was successful based on having achieved ≥ 60% reduction in IBAT norepinephrine (NE) content from DIO rats. NE content was selectively reduced in IBAT by 94.7 ± 2.7, 96.8 ± 1.8 and 85.9 ± 6.1% (P<0.05) at 1, 6 and 7-weeks post-denervation, respectively, and was unchanged in liver or inguinal white adipose tissue. We then measured the impact of bilateral surgical SNS denervation to IBAT on the ability of acute 4V OT (1, 5 μg) to stimulate TIBAT in DIO rats. We found that the high dose of 4V OT (5 μg) stimulated TIBAT similarly between sham and denervated rats (P=NS) and that the effects of 4V OT to stimulate TIBAT did not require beta-3 adrenergic receptor signaling. We subsequently measured the effect of bilateral surgical denervation of IBAT on the effect of chronic 4V OT (16 nmol/day) or vehicle infusion to reduce BW, adiposity, and energy intake in DIO rats. Chronic 4V OT reduced BW gain by -7.2 ± 9.6 g and -14.1 ± 8.8 g in sham and denervated rats (P<0.05 vs vehicle treatment), respectively, and this effect was similar between groups (P=NS). These effects were associated with reductions in adiposity and energy intake (P<0.05). Collectively, these findings support the hypothesis that sympathetic innervation of IBAT is not required for central OT to increase BAT thermogenesis and reduce BW gain and adiposity in male DIO rats.
Collapse
Affiliation(s)
- Melise M Edwards
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Ha K Nguyen
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Andrew D Dodson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Adam J Herbertson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Mackenzie K Honeycutt
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Jared D Slattery
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - June R Rambousek
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Edison Tsui
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Tami Wolden-Hanson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Tomasz A Wietecha
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109
| | - James L Graham
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Geronimo P Tapia
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Carl L Sikkema
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Kevin D O'Brien
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109
| | - Thomas O Mundinger
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Elaine R Peskind
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Vitaly Ryu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter J Havel
- Department of Nutrition, University of California, Davis, CA 95616, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Arshad M Khan
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Gerald J Taborsky
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Hohl CH, Zilcha-Mano S, Delgadillo J. Is the "social hormone" oxytocin relevant to psychotherapy treatment outcomes? A systematic review of observational and experimental studies. Neurosci Biobehav Rev 2024; 167:105935. [PMID: 39481670 DOI: 10.1016/j.neubiorev.2024.105935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Oxytocin, popularly known as the "social hormone", has wide implications for the regulation of socially relevant cognitions, emotions and behaviors. Individual differences in oxytocin may be relevant to mental health treatment outcomes, given the centrality of the therapeutic relationship in psychotherapy. METHODS This systematic review aimed to synthesize findings from psychotherapy studies that examined oxytocin measurement and augmentation methods and their association with treatment outcomes. The methodology was preregistered in the Open Science Framework (https://osf.io/xtyvc/?view_only=2bc37dc0b2cd41f8939e2964bd8b884f). Five databases were searched on 30th of March 2023 (PubMed, SCOPUS, Web of Science, Medline, PsycINFO). Eligible studies were assessed for risk of bias and findings were summarized using narrative synthesis and vote counting methods. RESULTS Overall, 24 studies (n=881 participants) including experimental and observational designs and covering various diagnostic groups were reviewed. Findings from 9 studies (n=406) indicate that oxytocin measures were associated with psychotherapy treatment outcomes for depression, and oxytocin-augmentation improved depression outcomes. Results regarding other mental disorders were mixed and inconclusive. DISCUSSION Current evidence indicates that oxytocin-augmented psychotherapy for depression warrants further research. Currently there is not sufficient evidence to draw firm conclusions regarding the clinical relevance of oxytocin in the context of other disorders. Key limitations are the lack of meta-analytic synthesis and small sample sizes for primary studies.
Collapse
Affiliation(s)
- Caio Hummel Hohl
- Department of Psychology, University of Sheffield, United Kingdom
| | | | - Jaime Delgadillo
- Department of Psychology, University of Sheffield, United Kingdom.
| |
Collapse
|
5
|
Edwards MM, Nguyen HK, Dodson AD, Herbertson AJ, Honeycutt MK, Slattery JD, Rambousek JR, Tsui E, Wolden-Hanson T, Wietecha TA, Graham JL, Tapia GP, Sikkema CL, O'Brien KD, Mundinger TO, Peskind ER, Ryu V, Havel PJ, Khan AM, Taborsky GJ, Blevins JE. Sympathetic innervation of interscapular brown adipose tissue is not a predominant mediator of OT-elicited reductions of body weight gain and adiposity in male diet-induced obese rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612710. [PMID: 39345420 PMCID: PMC11430106 DOI: 10.1101/2024.09.12.612710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Recent studies indicate that central administration of oxytocin (OT) reduces body weight (BW) in high fat diet-induced obese (DIO) rodents by reducing energy intake and increasing energy expenditure (EE). Previous studies in our lab have shown that administration of OT into the fourth ventricle (4V; hindbrain) elicits weight loss and stimulates interscapular brown adipose tissue temperature (TIBAT) in DIO rats. We hypothesized that OT-elicited stimulation of sympathetic nervous system (SNS) activation of IBAT contributes to its ability to activate BAT and reduce BW in DIO rats. To test this, we determined the effect of disrupting SNS activation of IBAT on OT-elicited stimulation of TIBAT and reduction of BW in DIO rats. We first confirmed that bilateral surgical SNS denervation to IBAT was successful based on having achieved ≥ 60% reduction in IBAT norepinephrine (NE) content from DIO rats. NE content was selectively reduced in IBAT by 94.7 ± 2.7, 96.8 ± 1.8 and 85.9 ± 6.1% (P<0.05) at 1, 6 and 7-weeks post-denervation, respectively, and was unchanged in liver or inguinal white adipose tissue. We then measured the impact of bilateral surgical SNS denervation to IBAT on the ability of acute 4V OT (1, 5 μg) to stimulate TIBAT in DIO rats. We found that the high dose of 4V OT (5 μg) stimulated TIBAT similarly between sham and denervated rats (P=NS) and that the effects of 4V OT to stimulate TIBAT did not require beta-3 adrenergic receptor signaling. We subsequently measured the effect of bilateral surgical denervation of IBAT on the effect of chronic 4V OT (16 nmol/day) or vehicle infusion to reduce BW, adiposity, and energy intake in DIO rats. Chronic 4V OT reduced BW gain by -7.2 ± 9.6 g and -14.1 ± 8.8 g in sham and denervated rats (P<0.05 vs vehicle treatment), respectively, and this effect was similar between groups (P=NS). These effects were associated with reductions in adiposity and energy intake (P<0.05). Collectively, these findings support the hypothesis that sympathetic innervation of IBAT is not required for central OT to increase BAT thermogenesis and reduce BW gain and adiposity in male DIO rats.
Collapse
Affiliation(s)
- Melise M Edwards
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Ha K Nguyen
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Andrew D Dodson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Adam J Herbertson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Mackenzie K Honeycutt
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Jared D Slattery
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - June R Rambousek
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Edison Tsui
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Tami Wolden-Hanson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Tomasz A Wietecha
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109
| | - James L Graham
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Geronimo P Tapia
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Carl L Sikkema
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Kevin D O'Brien
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109
| | - Thomas O Mundinger
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Elaine R Peskind
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Vitaly Ryu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter J Havel
- Department of Nutrition, University of California, Davis, CA 95616, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Arshad M Khan
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Gerald J Taborsky
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Dodson AD, Herbertson AJ, Honeycutt MK, Vered R, Slattery JD, Goldberg M, Tsui E, Wolden-Hanson T, Graham JL, Wietecha TA, O’Brien KD, Havel PJ, Sikkema CL, Peskind ER, Mundinger TO, Taborsky GJ, Blevins JE. Sympathetic Innervation of Interscapular Brown Adipose Tissue Is Not a Predominant Mediator of Oxytocin-Induced Brown Adipose Tissue Thermogenesis in Female High Fat Diet-Fed Rats. Curr Issues Mol Biol 2024; 46:11394-11424. [PMID: 39451559 PMCID: PMC11506511 DOI: 10.3390/cimb46100679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Recent studies have indicated that hindbrain [fourth ventricle (4V)] administration of the neurohypophyseal hormone, oxytocin (OT), reduces body weight, energy intake and stimulates interscapular brown adipose tissue temperature (TIBAT) in male diet-induced obese (DIO) rats. What remains unclear is whether chronic hindbrain (4V) OT can impact body weight in female high fat diet-fed (HFD) rodents and whether this involves activation of brown adipose tissue (BAT). We hypothesized that OT-elicited stimulation of sympathetic nervous system (SNS) activation of interscapular brown adipose tissue (IBAT) contributes to its ability to activate BAT and reduce body weight in female high HFD-fed rats. To test this hypothesis, we determined the effect of disrupting SNS activation of IBAT on OT-elicited stimulation of TIBAT and reduction of body weight in DIO rats. We first measured the impact of bilateral surgical SNS denervation to IBAT on the ability of acute 4V OT (0.5, 1, and 5 µg ≈ 0.5, 0.99, and 4.96 nmol) to stimulate TIBAT in female HFD-fed rats. We found that the high dose of 4V OT (5 µg ≈ 4.96 nmol) stimulated TIBAT similarly between sham rats and denervated rats (p = NS). We subsequently measured the effect of bilateral surgical denervation of IBAT on the effect of chronic 4V OT (16 nmol/day ≈ 16.1 μg/day) or vehicle infusion to reduce body weight, adiposity and energy intake in female HFD-fed rats (N = 7-8/group). Chronic 4V OT reduced body weight gain (sham: -18.0 ± 4.9 g; denervation: -15.9 ± 3.7 g) and adiposity (sham: -13.9 ± 3.7 g; denervation: -13.6 ± 2.4 g) relative to vehicle treatment (p < 0.05) and these effects were similar between groups (p = NS). These effects were attributed, in part, to reduced energy intake evident during weeks 2 (p < 0.05) and 3 (p < 0.05). To test whether these results translate to other female rodent species, we also examined the effect of chronic 4V infusion of OT on body weight and adiposity in two strains of female HFD-fed mice. Similar to what we found in the HFD-fed rat model, we also found that chronic 4V OT (16 nmol/day) infusion resulted in reduced body weight gain, adiposity and energy intake in female DIO C57BL/6J and DBA/2J mice (p < 0.05 vs. vehicle). Together, these findings suggest that (1) sympathetic innervation of IBAT is not necessary for OT-elicited increases in BAT thermogenesis and weight loss in female HFD-fed rats and (2) the effects of OT to reduce weight gain and adiposity translate to other female mouse models of diet-induced obesity (DIO).
Collapse
Affiliation(s)
- Andrew D. Dodson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
| | - Adam J. Herbertson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
| | - Mackenzie K. Honeycutt
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
| | - Ron Vered
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
| | - Jared D. Slattery
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
| | - Matvey Goldberg
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
| | - Edison Tsui
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
| | - Tami Wolden-Hanson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
| | - James L. Graham
- Department of Nutrition, University of California, Davis, CA 95616, USA; (J.L.G.); (P.J.H.)
| | - Tomasz A. Wietecha
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; (T.A.W.); (T.O.M.)
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109, USA;
| | - Kevin D. O’Brien
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109, USA;
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Peter J. Havel
- Department of Nutrition, University of California, Davis, CA 95616, USA; (J.L.G.); (P.J.H.)
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Carl L. Sikkema
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Elaine R. Peskind
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Thomas O. Mundinger
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; (T.A.W.); (T.O.M.)
| | - Gerald J. Taborsky
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; (T.A.W.); (T.O.M.)
| | - James E. Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; (A.D.D.); (A.J.H.); (M.K.H.); (R.V.); (J.D.S.); (M.G.); (E.T.); (T.W.-H.); (C.L.S.); (E.R.P.)
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; (T.A.W.); (T.O.M.)
| |
Collapse
|
7
|
Li Z, Xu M. Oxytocin enhances group-based guilt in high moral disengagement individuals through increased moral responsibility. Psychoneuroendocrinology 2024; 168:107131. [PMID: 39059227 DOI: 10.1016/j.psyneuen.2024.107131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Group-based guilt (collective guilt) refers to the negative emotions experienced when group members violate moral standards and can motivate prosocial behavior. Individuals exhibiting high levels of moral disengagement are prone to engaging in unethical conduct without experience of guilt, thereby prolonging or exacerbating conflicts and hindering conflict resolution. Oxytocin is believed to play key role in shaping social cognition and behaviors associated with morality and prosociality. So, this study (N = 79) explores oxytocin's potential to enhance group-based guilt and compensation for victims among individuals with high moral disengagement. Employing a randomized placebo-controlled design, participants received either oxytocin or placebo before undertaking a task designed to induce group-based guilt, during which they made decisions regarding the allocation of money to victims. Results revealed that participants with high moral disengagement who received oxytocin perceived higher levels of moral responsibility, experienced increased group-based guilt, and allocated significantly more money to victims compared to those who received the placebo. These findings suggested that oxytocin holds promise as an intervention to mitigate moral disengagement and foster moral behavior in individuals predisposed to avoiding responsibility and guilt feelings.
Collapse
Affiliation(s)
- Zhiai Li
- Department of Applied Psychology, College of Public Administration, Guangdong University of Foreign Studies, Guangzhou, China.
| | - Mengsi Xu
- School of Psychology, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
8
|
Fecteau KM, Shnitko TA, Grant KA, Erikson DW. Sensitive detection of oxytocin in nonhuman primate plasma using a novel liquid chromatography-tandem mass spectrometry assay. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9839. [PMID: 38887805 PMCID: PMC11608090 DOI: 10.1002/rcm.9839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024]
Affiliation(s)
- Kristopher M. Fecteau
- Endocrine Technologies Core, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Tatiana A. Shnitko
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006 USA
- Department of Neurology and Center for Animal Magnetic Resonance Imaging, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Kathleen A. Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006 USA
| | - David W. Erikson
- Endocrine Technologies Core, Oregon National Primate Research Center, Beaverton, OR 97006
| |
Collapse
|
9
|
Edwards MM, Nguyen HK, Dodson AD, Herbertson AJ, Wolden-Hanson T, Wietecha TA, Honeycutt MK, Slattery JD, O’Brien KD, Graham JL, Havel PJ, Mundinger TO, Sikkema CL, Peskind ER, Ryu V, Taborsky GJ, Blevins JE. Sympathetic innervation of interscapular brown adipose tissue is not a predominant mediator of oxytocin-elicited reductions of body weight and adiposity in male diet-induced obese mice. Front Endocrinol (Lausanne) 2024; 15:1440070. [PMID: 39145314 PMCID: PMC11321955 DOI: 10.3389/fendo.2024.1440070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 08/16/2024] Open
Abstract
Previous studies indicate that CNS administration of oxytocin (OT) reduces body weight in high fat diet-induced obese (DIO) rodents by reducing food intake and increasing energy expenditure (EE). We recently demonstrated that hindbrain (fourth ventricular [4V]) administration of OT elicits weight loss and elevates interscapular brown adipose tissue temperature (TIBAT, a surrogate measure of increased EE) in DIO mice. What remains unclear is whether OT-elicited weight loss requires increased sympathetic nervous system (SNS) outflow to IBAT. We hypothesized that OT-induced stimulation of SNS outflow to IBAT contributes to its ability to activate BAT and elicit weight loss in DIO mice. To test this hypothesis, we determined the effect of disrupting SNS activation of IBAT on the ability of 4V OT administration to increase TIBAT and elicit weight loss in DIO mice. We first determined whether bilateral surgical SNS denervation to IBAT was successful as noted by ≥ 60% reduction in IBAT norepinephrine (NE) content in DIO mice. NE content was selectively reduced in IBAT at 1-, 6- and 7-weeks post-denervation by 95.9 ± 2.0, 77.4 ± 12.7 and 93.6 ± 4.6% (P<0.05), respectively and was unchanged in inguinal white adipose tissue, pancreas or liver. We subsequently measured the effects of acute 4V OT (1, 5 µg ≈ 0.99, 4.96 nmol) on TIBAT in DIO mice following sham or bilateral surgical SNS denervation to IBAT. We found that the high dose of 4V OT (5 µg ≈ 4.96 nmol) elevated TIBAT similarly in sham mice as in denervated mice. We subsequently measured the effects of chronic 4V OT (16 nmol/day over 29 days) or vehicle infusions on body weight, adiposity and food intake in DIO mice following sham or bilateral surgical denervation of IBAT. Chronic 4V OT reduced body weight by 5.7 ± 2.23% and 6.6 ± 1.4% in sham and denervated mice (P<0.05), respectively, and this effect was similar between groups (P=NS). OT produced corresponding reductions in whole body fat mass (P<0.05). Together, these findings support the hypothesis that sympathetic innervation of IBAT is not necessary for OT-elicited increases in BAT thermogenesis and reductions of body weight and adiposity in male DIO mice.
Collapse
Affiliation(s)
- Melise M. Edwards
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Ha K. Nguyen
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Andrew D. Dodson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Adam J. Herbertson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Tami Wolden-Hanson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Tomasz A. Wietecha
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
| | - Mackenzie K. Honeycutt
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Jared D. Slattery
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Kevin D. O’Brien
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
| | - James L. Graham
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Peter J. Havel
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Thomas O. Mundinger
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Carl L. Sikkema
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - Elaine R. Peskind
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - Vitaly Ryu
- Department of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gerald J. Taborsky
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - James E. Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
10
|
Kaye AD, Allen KE, Smith Iii VS, Tong VT, Mire VE, Nguyen H, Lee Z, Kouri M, Jean Baptiste C, Mosieri CN, Kaye AM, Varrassi G, Shekoohi S. Emerging Treatments and Therapies for Autism Spectrum Disorder: A Narrative Review. Cureus 2024; 16:e63671. [PMID: 39092332 PMCID: PMC11293483 DOI: 10.7759/cureus.63671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
The prevalence of autism spectrum disorder (ASD) has increased over the last decade. In this regard, many emerging therapies have been described as ASD therapies. Although ASD does not have a cure, there are several management options available that can help reduce symptom severity. ASD is highly variable and, therefore, standard treatment protocols and studies are challenging to perform. Many of these therapies also address comorbidities for which patients with ASD have an increased risk. These concurrent diagnoses can include psychiatric and neurological disorders, including attention deficit and hyperactivity disorder, anxiety disorders, and epilepsy, as well as gastrointestinal symptoms such as chronic constipation and diarrhea. Both the extensive list of ASD-associated disorders and adverse effects from commonly prescribed medications for patients with ASD can impact presenting symptomatology. It is important to keep these potential interactions in mind when considering additional drug treatments or complementary therapies. This review addresses current literature involving novel pharmacological treatments such as oxytocin, bumetanide, acetylcholinesterase inhibitors, and memantine. It also discusses additional therapies such as diet intervention, acupuncture, music therapy, melatonin, and the use of technology to aid education. Notably, several of these therapies require more long-term research to determine efficacy in specific ASD groups within this patient population.
Collapse
Affiliation(s)
- Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Kaitlyn E Allen
- School of Medicine, Louisiana State University Health New Orleans School of Medicine, New Orleans, USA
| | - Van S Smith Iii
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Victoria T Tong
- School of Medicine, Louisiana State University Health New Orleans School of Medicine, New Orleans, USA
| | - Vivian E Mire
- School of Medicine, Louisiana State University Health New Orleans School of Medicine, New Orleans, USA
| | - Huy Nguyen
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Zachary Lee
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Maria Kouri
- Anesthesia, National and Kapodistrian University of Athens, Athens, GRC
| | - Carlo Jean Baptiste
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Chizoba N Mosieri
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Adam M Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, USA
| | | | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| |
Collapse
|
11
|
Koyama E, Kant T, Takata A, Kennedy JL, Zai CC. Genetics of child aggression, a systematic review. Transl Psychiatry 2024; 14:252. [PMID: 38862490 PMCID: PMC11167064 DOI: 10.1038/s41398-024-02870-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 06/13/2024] Open
Abstract
Excessive and persistent aggressiveness is the most common behavioral problem that leads to psychiatric referrals among children. While half of the variance in childhood aggression is attributed to genetic factors, the biological mechanism and the interplay between genes and environment that results in aggression remains elusive. The purpose of this systematic review is to provide an overview of studies examining the genetics of childhood aggression irrespective of psychiatric diagnosis. PubMed, PsycINFO, and MEDLINE databases were searched using predefined search terms for aggression, genes and the specific age group. From the 652 initially yielded studies, eighty-seven studies were systematically extracted for full-text review and for further quality assessment analyses. Findings show that (i) investigation of candidate genes, especially of MAOA (17 studies), DRD4 (13 studies), and COMT (12 studies) continue to dominate the field, although studies using other research designs and methods including genome-wide association and epigenetic studies are increasing, (ii) the published articles tend to be moderate in sizes, with variable methods of assessing aggressive behavior and inconsistent categorizations of tandem repeat variants, resulting in inconclusive findings of genetic main effects, gene-gene, and gene-environment interactions, (iii) the majority of studies are conducted on European, male-only or male-female mixed, participants. To our knowledge, this is the first study to systematically review the effects of genes on youth aggression. To understand the genetic underpinnings of childhood aggression, more research is required with larger, more diverse sample sets, consistent and reliable assessments and standardized definition of the aggression phenotypes. The search for the biological mechanisms underlying child aggression will also benefit from more varied research methods, including epigenetic studies, transcriptomic studies, gene system and genome-wide studies, longitudinal studies that track changes in risk/ameliorating factors and aggression-related outcomes, and studies examining causal mechanisms.
Collapse
Affiliation(s)
- Emiko Koyama
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Wako, Japan
| | - Tuana Kant
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Atsushi Takata
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Wako, Japan
| | - James L Kennedy
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Clement C Zai
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
12
|
Edwards MM, Nguyen HK, Dodson AD, Herbertson AJ, Wolden-Hanson T, Wietecha T, Honeycutt MK, Slattery JD, O'Brien KD, Graham JL, Havel PJ, Mundinger TO, Sikkema C, Peskind ER, Ryu V, Taborsky GJ, Blevins JE. Sympathetic innervation of interscapular brown adipose tissue is not a predominant mediator of oxytocin-elicited reductions of body weight and adiposity in male diet-induced obese mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596425. [PMID: 38854021 PMCID: PMC11160755 DOI: 10.1101/2024.05.29.596425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Previous studies indicate that CNS administration of oxytocin (OT) reduces body weight in high fat diet-induced obese (DIO) rodents by reducing food intake and increasing energy expenditure (EE). We recently demonstrated that hindbrain (fourth ventricular [4V]) administration of OT elicits weight loss and elevates interscapular brown adipose tissue temperature (T IBAT , a surrogate measure of increased EE) in DIO mice. What remains unclear is whether OT-elicited weight loss requires increased sympathetic nervous system (SNS) outflow to IBAT. We hypothesized that OT-induced stimulation of SNS outflow to IBAT contributes to its ability to activate BAT and elicit weight loss in DIO mice. To test this hypothesis, we determined the effect of disrupting SNS activation of IBAT on the ability of 4V OT administration to increase T IBAT and elicit weight loss in DIO mice. We first determined whether bilateral surgical SNS denervation to IBAT was successful as noted by ≥ 60% reduction in IBAT norepinephrine (NE) content in DIO mice. NE content was selectively reduced in IBAT at 1-, 6- and 7-weeks post-denervation by 95.9±2.0, 77.4±12.7 and 93.6±4.6% ( P <0.05), respectively and was unchanged in inguinal white adipose tissue, pancreas or liver. We subsequently measured the effects of acute 4V OT (1, 5 µg ≈ 0.99, 4.96 nmol) on T IBAT in DIO mice following sham or bilateral surgical SNS denervation to IBAT. We found that the high dose of 4V OT (5 µg ≈ 4.96 nmol) elevated T IBAT similarly in sham mice as in denervated mice. We subsequently measured the effects of chronic 4V OT (16 nmol/day over 29 days) or vehicle infusions on body weight, adiposity and food intake in DIO mice following sham or bilateral surgical denervation of IBAT. Chronic 4V OT reduced body weight by 5.7±2.23% and 6.6±1.4% in sham and denervated mice ( P <0.05), respectively, and this effect was similar between groups ( P =NS). OT produced corresponding reductions in whole body fat mass ( P <0.05). Together, these findings support the hypothesis that sympathetic innervation of IBAT is not necessary for OT-elicited increases in BAT thermogenesis and reductions of body weight and adiposity in male DIO mice.
Collapse
|
13
|
Sherman ER, Li J, Cahill EN. No impairment of contextual fear memory consolidation by oxytocin receptor antagonism in male rats. Physiol Behav 2024; 279:114545. [PMID: 38580203 DOI: 10.1016/j.physbeh.2024.114545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/11/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Oxytocin is a peptide released into brain regions associated with the processing of aversive memory and threat responses. Given the expression of oxytocin receptors across this vigilance surveillance system of the brain, we investigated whether pharmacological antagonism of the receptor would impact contextual aversive conditioning and memory. Adult male rats were conditioned to form an aversive contextual memory. The effects of peripheral administration of either the competitive antagonist Atosiban or noncompetitive antagonist L-368,899 were compared to saline controls. Oxytocin receptor antagonism treatment did not significantly impact the consolidation of aversive contextual memory in any of the groups. We conclude that peripheral antagonism of oxytocin signalling did not impact the formation of aversive memory.
Collapse
Affiliation(s)
- Emily R Sherman
- Department of Physiology, Development, and Neuroscience, University of Cambridge, CB2 3EB, UK
| | - Jialu Li
- Bristol Medical School, University of Bristol, BS8 1TH, UK
| | - Emma N Cahill
- Department of Physiology, Development, and Neuroscience, University of Cambridge, CB2 3EB, UK; School of Physiology, Pharmacology and Neuroscience, University of Bristol, BS8 1TD, UK.
| |
Collapse
|
14
|
Aishworiya R, Valica T, Hagerman R, Restrepo B. An Update on Psychopharmacological Treatment of Autism Spectrum Disorder. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2024; 22:198-211. [PMID: 38680976 PMCID: PMC11046717 DOI: 10.1176/appi.focus.24022006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
While behavioral interventions remain the mainstay of treatment of autism spectrum disorder (ASD), several potential targeted treatments addressing the underlying neurophysiology of ASD have emerged in the last few years. These are promising for the potential to, in future, become part of the mainstay treatment in addressing the core symptoms of ASD. Although it is likely that the development of future targeted treatments will be influenced by the underlying heterogeneity in etiology, associated genetic mechanisms influencing ASD are likely to be the first targets of treatments and even gene therapy in the future for ASD. In this article, we provide a review of current psychopharmacological treatment in ASD including those used to address common comorbidities of the condition and upcoming new targeted approaches in autism management. Medications including metformin, arbaclofen, cannabidiol, oxytocin, bumetanide, lovastatin, trofinetide, and dietary supplements including sulforophane and N-acetylcysteine are discussed. Commonly used medications to address the comorbidities associated with ASD including atypical antipsychotics, serotoninergic agents, alpha-2 agonists, and stimulant medications are also reviewed. Targeted treatments in Fragile X syndrome (FXS), the most common genetic disorder leading to ASD, provide a model for new treatments that may be helpful for other forms of ASD. Appeared originally in Neurotherapeutics 2022; 19:248-262.
Collapse
Affiliation(s)
- Ramkumar Aishworiya
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA (Aishworiya, Valica, Hagerman, Restrepo); Khoo Teck Puat-National University Children's Medical Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore (Aishworiya); Association for Children With Autism, Chisinau, Moldova (Valica); Department of Pediatrics, University of California Davis School of Medicine, 4610 X St, Sacramento, CA 95817, USA (Hagerman, Restrepo)
| | - Tatiana Valica
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA (Aishworiya, Valica, Hagerman, Restrepo); Khoo Teck Puat-National University Children's Medical Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore (Aishworiya); Association for Children With Autism, Chisinau, Moldova (Valica); Department of Pediatrics, University of California Davis School of Medicine, 4610 X St, Sacramento, CA 95817, USA (Hagerman, Restrepo)
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA (Aishworiya, Valica, Hagerman, Restrepo); Khoo Teck Puat-National University Children's Medical Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore (Aishworiya); Association for Children With Autism, Chisinau, Moldova (Valica); Department of Pediatrics, University of California Davis School of Medicine, 4610 X St, Sacramento, CA 95817, USA (Hagerman, Restrepo)
| | - Bibiana Restrepo
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA (Aishworiya, Valica, Hagerman, Restrepo); Khoo Teck Puat-National University Children's Medical Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore (Aishworiya); Association for Children With Autism, Chisinau, Moldova (Valica); Department of Pediatrics, University of California Davis School of Medicine, 4610 X St, Sacramento, CA 95817, USA (Hagerman, Restrepo)
| |
Collapse
|
15
|
Hung LY, Margolis KG. Autism spectrum disorders and the gastrointestinal tract: insights into mechanisms and clinical relevance. Nat Rev Gastroenterol Hepatol 2024; 21:142-163. [PMID: 38114585 DOI: 10.1038/s41575-023-00857-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 12/21/2023]
Abstract
Autism spectrum disorders (ASDs) are recognized as central neurodevelopmental disorders diagnosed by impairments in social interactions, communication and repetitive behaviours. The recognition of ASD as a central nervous system (CNS)-mediated neurobehavioural disorder has led most of the research in ASD to be focused on the CNS. However, gastrointestinal function is also likely to be affected owing to the neural mechanistic nature of ASD and the nervous system in the gastrointestinal tract (enteric nervous system). Thus, it is unsurprising that gastrointestinal disorders, particularly constipation, diarrhoea and abdominal pain, are highly comorbid in individuals with ASD. Gastrointestinal problems have also been repeatedly associated with increased severity of the core symptoms diagnostic of ASD and other centrally mediated comorbid conditions, including psychiatric issues, irritability, rigid-compulsive behaviours and aggression. Despite the high prevalence of gastrointestinal dysfunction in ASD and its associated behavioural comorbidities, the specific links between these two conditions have not been clearly delineated, and current data linking ASD to gastrointestinal dysfunction have not been extensively reviewed. This Review outlines the established and emerging clinical and preclinical evidence that emphasizes the gut as a novel mechanistic and potential therapeutic target for individuals with ASD.
Collapse
Affiliation(s)
- Lin Y Hung
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
| | - Kara Gross Margolis
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA.
- Department of Cell Biology, NYU Grossman School of Medicine and Langone Medical Center, New York, NY, USA.
- Department of Pediatrics, NYU Grossman School of Medicine and Langone Medical Center, New York, NY, USA.
| |
Collapse
|
16
|
Zagoory-Sharon O, Yirmiya K, Peleg I, Shimon-Raz O, Sanderlin R, Feldman R. Breast milk oxytocin and s-IgA modulate infant biomarkers and social engagement; The role of maternal anxiety. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2024; 17:100219. [PMID: 38187086 PMCID: PMC10765300 DOI: 10.1016/j.cpnec.2023.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Breastfeeding has long been known to improve infants' health and mental development and to enhance the mother-infant bond, but much less research focused on the biological composition of breast milk and its associations with the infant's biomarkers and social development. In this exploratory study, we measured oxytocin (OT) and secretory immunoglobulin-A (s-IgA), the most abundant antibody in breast milk, and evaluated their associations with the same biomarkers in infant saliva and, consequently, with infant social engagement behavior. Fifty-five mother-infant dyads were home-visit and OT and s-IgA were assessed from breast milk and from infant saliva before and after a free-play interaction. Infant social behavior was coded offline using the Coding Interactive Behavior (CIB) and maternal anxiety self-reported. A path model revealed that mother's breast milk s-IgA impacted child social engagement via its links with child OT. In parallel, maternal breast milk OT was linked with infant social behavior through its association with the infant's immunity. This path was moderated by maternal anxiety; only in cases of high anxiety breast milk OT was positively connected to infant s-IgA. Our study, the first to measure OT and s-IgA in both breast milk and infant saliva in relation to observed social behavior, underscores the need for much further research on the dynamic interplay between breast milk composition, infant biomarkers, maternal mental health, and infant social outcomes. Results may suggest that biological systems in breast milk integrate to prepare infants to function in their social ecology through bio-behavioral feedback loops that signal the degree of stress in the environment.
Collapse
Affiliation(s)
| | | | - Itai Peleg
- Center for Developmental Social Neuroscience, Reichman University, Israel
| | - Ortal Shimon-Raz
- Center for Developmental Social Neuroscience, Reichman University, Israel
| | - Rachel Sanderlin
- Center for Developmental Social Neuroscience, Reichman University, Israel
| | - Ruth Feldman
- Center for Developmental Social Neuroscience, Reichman University, Israel
| |
Collapse
|
17
|
Biosca-Brull J, Ona G, Alarcón-Franco L, Colomina MT. A transcriptomic analysis in mice following a single dose of ibogaine identifies new potential therapeutic targets. Transl Psychiatry 2024; 14:41. [PMID: 38242896 PMCID: PMC10798990 DOI: 10.1038/s41398-024-02773-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024] Open
Abstract
Ibogaine (IBO) is an atypical psychedelic with a complex mechanism of action. To date, the mechanisms that may underlie its anti-addictive effects are still not defined. This study aims to identify changes in gene expression induced by a single oral dose of IBO in the cortex of mice by means of a transcriptomic analysis for the first time. Our results showed significant alterations in gene expression in mouse frontal cortex samples 4 h after a single oral dose of IBO. Specifically, genes involved in hormonal pathways and synaptogenesis exhibited upregulation, while genes associated with apoptotic processes and endosomal transports showed downregulation. The findings were further corroborated through quantitative polymerase chain reaction (qPCR) analysis. However, the validation of gene expression related to hormonal pathways did not entirely align with the transcriptomic analysis results, possibly due to the brain region from which tissue was collected. Sex differences were observed, with female mice displaying more pronounced alterations in gene expression after IBO treatment. High variability was observed across individual animals. However, this study represents a significant advancement in comprehending IBO's molecular actions. The findings highlight the influence of IBO on gene expression, particularly on hormonal pathways, synaptogenesis, apoptotic processes, and endosomal transports. The identification of sex differences underscores the importance of considering sex as a potential factor influencing IBO's effects. Further research to assess different time points after IBO exposure is warranted.
Collapse
Affiliation(s)
- Judit Biosca-Brull
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain
- Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain
- Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain
| | - Genis Ona
- ICEERS-International Center for Ethnobotanical Education, Research, and Services, Barcelona, Spain
- Universitat Rovira i Virgili, Department of Anthropology, Philosophy and Social Work, Tarragona, Spain
| | - Lineth Alarcón-Franco
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain
- Grupo de Investigación Infetarre, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Maria Teresa Colomina
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain.
- Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain.
- Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain.
| |
Collapse
|
18
|
McArdle CJ, Arnone AA, Heaney CF, Raab-Graham KF. A paradoxical switch: the implications of excitatory GABAergic signaling in neurological disorders. Front Psychiatry 2024; 14:1296527. [PMID: 38268565 PMCID: PMC10805837 DOI: 10.3389/fpsyt.2023.1296527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024] Open
Abstract
Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system. In the mature brain, inhibitory GABAergic signaling is critical in maintaining neuronal homeostasis and vital human behaviors such as cognition, emotion, and motivation. While classically known to inhibit neuronal function under physiological conditions, previous research indicates a paradoxical switch from inhibitory to excitatory GABAergic signaling that is implicated in several neurological disorders. Various mechanisms have been proposed to contribute to the excitatory switch such as chloride ion dyshomeostasis, alterations in inhibitory receptor expression, and modifications in GABAergic synaptic plasticity. Of note, the hypothesized mechanisms underlying excitatory GABAergic signaling are highlighted in a number of neurodevelopmental, substance use, stress, and neurodegenerative disorders. Herein, we present an updated review discussing the presence of excitatory GABAergic signaling in various neurological disorders, and their potential contributions towards disease pathology.
Collapse
Affiliation(s)
- Colin J. McArdle
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Alana A. Arnone
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Chelcie F. Heaney
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Kimberly F. Raab-Graham
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
19
|
Ley L, Holze F, Arikci D, Becker AM, Straumann I, Klaiber A, Coviello F, Dierbach S, Thomann J, Duthaler U, Luethi D, Varghese N, Eckert A, Liechti ME. Comparative acute effects of mescaline, lysergic acid diethylamide, and psilocybin in a randomized, double-blind, placebo-controlled cross-over study in healthy participants. Neuropsychopharmacology 2023; 48:1659-1667. [PMID: 37231080 PMCID: PMC10517157 DOI: 10.1038/s41386-023-01607-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Mescaline, lysergic acid diethylamide (LSD), and psilocybin are classic serotonergic psychedelics. A valid, direct comparison of the effects of these substances is lacking. The main goal of the present study was to investigate potential pharmacological, physiological and phenomenological differences at psychoactive-equivalent doses of mescaline, LSD, and psilocybin. The present study used a randomized, double-blind, placebo-controlled, cross-over design to compare the acute subjective effects, autonomic effects, and pharmacokinetics of typically used, moderate to high doses of mescaline (300 and 500 mg), LSD (100 µg), and psilocybin (20 mg) in 32 healthy participants. A mescaline dose of 300 mg was used in the first 16 participants and 500 mg was used in the subsequent 16 participants. Acute subjective effects of 500 mg mescaline, LSD, and psilocybin were comparable across various psychometric scales. Autonomic effects of 500 mg mescaline, LSD, and psilocybin were moderate, with psilocybin causing a higher increase in diastolic blood pressure compared with LSD, and LSD showing a trend toward an increase in heart rate compared with psilocybin. The tolerability of mescaline, LSD, and psilocybin was comparable, with mescaline at both doses inducing slightly more subacute adverse effects (12-24 h) than LSD and psilocybin. Clear distinctions were seen in the duration of action between the three substances. Mescaline had the longest effect duration (mean: 11.1 h), followed by LSD (mean: 8.2 h), and psilocybin (mean: 4.9 h). Plasma elimination half-lives of mescaline and LSD were similar (approximately 3.5 h). The longer effect duration of mescaline compared with LSD was due to the longer time to reach maximal plasma concentrations and related peak effects. Mescaline and LSD, but not psilocybin, enhanced circulating oxytocin. None of the substances altered plasma brain-derived neurotrophic factor concentrations. In conclusion, the present study found no evidence of qualitative differences in altered states of consciousness that were induced by equally strong doses of mescaline, LSD, and psilocybin. The results indicate that any differences in the pharmacological profiles of mescaline, LSD, and psilocybin do not translate into relevant differences in the subjective experience. ClinicalTrials.gov identifier: NCT04227756.
Collapse
Affiliation(s)
- Laura Ley
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Friederike Holze
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Denis Arikci
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Anna M Becker
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Isabelle Straumann
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Aaron Klaiber
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Fabio Coviello
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Sophie Dierbach
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jan Thomann
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Urs Duthaler
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Dino Luethi
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Nimmy Varghese
- Psychiatric University Hospital, University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Anne Eckert
- Psychiatric University Hospital, University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Matthias E Liechti
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland.
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
20
|
Li Y, Zhi W, Qi B, Wang L, Hu X. Update on neurobiological mechanisms of fear: illuminating the direction of mechanism exploration and treatment development of trauma and fear-related disorders. Front Behav Neurosci 2023; 17:1216524. [PMID: 37600761 PMCID: PMC10433239 DOI: 10.3389/fnbeh.2023.1216524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Fear refers to an adaptive response in the face of danger, and the formed fear memory acts as a warning when the individual faces a dangerous situation again, which is of great significance to the survival of humans and animals. Excessive fear response caused by abnormal fear memory can lead to neuropsychiatric disorders. Fear memory has been studied for a long time, which is of a certain guiding effect on the treatment of fear-related disorders. With continuous technological innovations, the study of fear has gradually shifted from the level of brain regions to deeper neural (micro) circuits between brain regions and even within single brain regions, as well as molecular mechanisms. This article briefly outlines the basic knowledge of fear memory and reviews the neurobiological mechanisms of fear extinction and relapse, which aims to provide new insights for future basic research on fear emotions and new ideas for treating trauma and fear-related disorders.
Collapse
Affiliation(s)
- Ying Li
- College of Education, Hebei University, Baoding, China
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Weijia Zhi
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bing Qi
- College of Education, Hebei University, Baoding, China
| | - Lifeng Wang
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiangjun Hu
- College of Education, Hebei University, Baoding, China
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
21
|
Lin C, Zhuo S, Zheng Q, Li X, Peng W. The relationship between oxytocin and empathy for others' pain: Testing the mediating effect of first-hand pain sensitivity. Physiol Behav 2023:114266. [PMID: 37301493 DOI: 10.1016/j.physbeh.2023.114266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023]
Abstract
Although previous studies have shown that oxytocin attenuates first-hand pain sensitivity, studies of its effects on empathic reactions to the observation of others' pain have yielded inconsistent and controversial results. Given the link between first-hand pain and empathy for others' pain, we hypothesized that oxytocin affects empathy for others' pain by modulating first-hand pain sensitivity. Using a double-blind, placebo-controlled, between-participant experimental design, healthy participants (n = 112) were randomly assigned to either an intranasal oxytocin or placebo group. Pain sensitivity was evaluated by pressure pain threshold, and empathic responses were assessed by ratings in response to viewing video clips depicting others in physically painful scenarios. Results showed that pressure pain thresholds decreased over time in both groups, indicating increased sensitivity to first-hand pain after repeated measurements. However, this decrease was smaller for participants who received intranasal oxytocin, indicative of oxytocin-induced attenuation of first-hand pain sensitivity. In addition, although empathic ratings were comparable between oxytocin and placebo groups, first-hand pain sensitivity fully mediated the impact of oxytocin on pain empathetic ratings. Thus, intranasal oxytocin can indirectly affect pain empathic ratings by reducing first-hand pain sensitivity. These findings expand our understanding of the relationship among oxytocin, pain, and empathy.
Collapse
Affiliation(s)
- Chennan Lin
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Shiwei Zhuo
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Qianqian Zheng
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Xiaoyun Li
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, China.
| |
Collapse
|
22
|
Level of oxytocin prior to rugby and handball matches: An exploratory study among groups of Polish players. ANTHROPOLOGICAL REVIEW 2023. [DOI: 10.18778/1898-6773.85.4.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The aim of the present exploratory study was to assess the changes in urinary oxytocin (OT) concentration during the period between five days before, and on the day of match, among rugby and handball players. Nine male rugby players with a mean age of 27.62 years (SD = 4.21) and 18 male handball players with a mean age of 17.03 years (SD = 0.57) participated. Urinary oxytocin level was measured by ELISA immunoassay as a ratio to the concentration of creatinine [mg/ml] measured through colorimetric detection. The relative level of OT to creatinine (OT/CRE) significantly differed between the type of player (rugby or handball) but not between times of measurements. Significant differences were only between OT/CRE level in a day of match in rugby players and in 5 days before match in handball players (p<0.05). There was no change in oxytocin levels during the time periods between five days before and on the day of a match, in either of the two kinds of players. The change in oxytocin might be traceable during the match but not before a match and this perhaps depends on a more subtle context of competition, but not on the assumption of competition. Further studies are needed based on more homogenous group with higher number of matches.
Collapse
|
23
|
Wang N, Lv L, Huang X, Shi M, Dai Y, Wei Y, Xu B, Fu C, Huang H, Shi H, Liu Y, Hu X, Qin D. Gene editing in monogenic autism spectrum disorder: animal models and gene therapies. Front Mol Neurosci 2022; 15:1043018. [PMID: 36590912 PMCID: PMC9794862 DOI: 10.3389/fnmol.2022.1043018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is a lifelong neurodevelopmental disease, and its diagnosis is dependent on behavioral manifestation, such as impaired reciprocal social interactions, stereotyped repetitive behaviors, as well as restricted interests. However, ASD etiology has eluded researchers to date. In the past decades, based on strong genetic evidence including mutations in a single gene, gene editing technology has become an essential tool for exploring the pathogenetic mechanisms of ASD via constructing genetically modified animal models which validates the casual relationship between genetic risk factors and the development of ASD, thus contributing to developing ideal candidates for gene therapies. The present review discusses the progress in gene editing techniques and genetic research, animal models established by gene editing, as well as gene therapies in ASD. Future research should focus on improving the validity of animal models, and reliable DNA diagnostics and accurate prediction of the functional effects of the mutation will likely be equally crucial for the safe application of gene therapies.
Collapse
Affiliation(s)
- Na Wang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Longbao Lv
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaoyi Huang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Mingqin Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Youwu Dai
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Bonan Xu
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chenyang Fu
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Haoyu Huang
- Department of Pediatric Rehabilitation Medicine, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Hongling Shi
- Department of Rehabilitation Medicine, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yun Liu
- Department of Pediatric Rehabilitation Medicine, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Xintian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
24
|
Doppler CEJ, Meyer L, Seger A, Karges W, Weiss PH, Fink GR. Intranasal oxytocin attenuates the effects of monetary feedback on procedural learning. Psychoneuroendocrinology 2022; 143:105823. [PMID: 35689985 DOI: 10.1016/j.psyneuen.2022.105823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/06/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022]
Abstract
Procedural learning is a vital brain function that allows us to acquire motor skills during development or re-learn them after lesions affecting the motor system. Procedural learning can be improved by feedback of different valence, e.g., monetary or social, mediated by dopaminergic circuits. While processing motivationally relevant stimuli, dopamine interacts closely with oxytocin, whose effects on procedural learning, particularly feedback-based approaches, remain poorly understood. In a randomized, double-blind, placebo-controlled trial, we investigated whether oxytocin modulates the differential effects of monetary and social feedback on procedural learning. Sixty-one healthy male participants were randomized to receive a placebo or oxytocin intranasally. The participants then performed a modified serial reaction time task. Oxytocin plasma concentrations were measured before and after applying the placebo or verum. Groups did not differ regarding general reaction times or measures of procedural learning. For the placebo group, monetary feedback improved procedural learning compared to a neutral control condition. In contrast, the oxytocin group did not show a differential effect of monetary or social feedback despite a significant increase in oxytocin plasma levels after intranasal application. The data suggest that oxytocin does not influence procedural learning per se. Instead, oxytocin seems to attenuate the effects of monetary feedback on procedural learning specifically.
Collapse
Affiliation(s)
- Christopher E J Doppler
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Germany.
| | - Linda Meyer
- Department of Psychiatry, Alexius/Josef Hospital, Neuss, Germany
| | - Aline Seger
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Germany
| | - Wolfram Karges
- Division of Endocrinology and Diabetes, University Hospital RWTH Aachen, Aachen, Germany
| | - Peter H Weiss
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Germany
| | - Gereon R Fink
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Germany
| |
Collapse
|
25
|
Olszewski PK, Noble EE, Paiva L, Ueta Y, Blevins JE. Oxytocin as a potential pharmacological tool to combat obesity. J Neuroendocrinol 2022; 34:e13106. [PMID: 35192207 PMCID: PMC9372234 DOI: 10.1111/jne.13106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
Abstract
The neuropeptide oxytocin (OT) has emerged as an important anorexigen in the regulation of food intake and energy balance. It has been shown that the release of OT and activation of hypothalamic OT neurons coincide with food ingestion. Its effects on feeding have largely been attributed to limiting meal size through interactions in key regulatory brain regions governing the homeostatic control of food intake such as the hypothalamus and hindbrain in addition to key feeding reward areas such as the nucleus accumbens and ventral tegmental area. Furthermore, the magnitude of an anorexigenic response to OT and feeding-related activation of the brain OT circuit are modified by the composition and flavor of a diet, as well as by a social context in which a meal is consumed. OT is particularly effective in reducing consumption of carbohydrates and sweet tastants. Pharmacologic, genetic, and pair-feeding studies indicate that OT-elicited weight loss cannot be fully explained by reductions of food intake and that the overall impact of OT on energy balance is also partly a result of OT-elicited changes in lipolysis, energy expenditure, and glucose regulation. Peripheral administration of OT mimics many of its effects when it is given into the central nervous system, raising the questions of whether and to what extent circulating OT acts through peripheral OT receptors to regulate energy balance. Although OT has been found to elicit weight loss in female mice, recent studies have indicated that sex and estrous cycle may impact oxytocinergic modulation of food intake. Despite the overall promising basic research data, attempts to use OT in the clinical setting to combat obesity and overeating have generated somewhat mixed results. The focus of this mini-review is to briefly summarize the role of OT in feeding and metabolism, address gaps and inconsistencies in our knowledge, and discuss some of the limitations to the potential use of chronic OT that should help guide future research on OT as a tailor-made anti-obesity therapeutic.
Collapse
Affiliation(s)
- Pawel K Olszewski
- Faculty of Science and Engineering, University of Waikato, Waikato, New Zealand
- Department of Food Science and Nutrition, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St Paul, Minnesota, USA
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Emily E Noble
- Department of Nutritional Sciences, University of Georgia, Athens, Georgia, USA
| | - Luis Paiva
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - James E Blevins
- Department of Veterans Affairs Medical Center, VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Seattle, Washington, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
26
|
Park J, Woolley J, Mendes WB. The effects of intranasal oxytocin on black participants’ responses to outgroup acceptance and rejection. Front Psychol 2022; 13:916305. [PMID: 36059785 PMCID: PMC9434127 DOI: 10.3389/fpsyg.2022.916305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Social acceptance (vs. rejection) is assumed to have widespread positive effects on the recipient; however, ethnic/racial minorities often react negatively to social acceptance by White individuals. One possibility for such reactions might be their lack of trust in the genuineness of White individuals’ positive evaluations. Here, we examined the role that oxytocin—a neuropeptide putatively linked to social processes—plays in modulating reactions to acceptance or rejection during interracial interactions. Black participants (N = 103) received intranasal oxytocin or placebo and interacted with a White, same-sex stranger who provided positive or negative social feedback. After positive feedback, participants given oxytocin (vs. placebo) tended to display approach-oriented cardiovascular responses of challenge (vs. threat), exhibited more cooperative behavior, and perceived the partner to have more favorable attitudes toward them after the interaction. Following negative feedback, oxytocin reduced anger suppression. Oxytocin did not modulate testosterone reactivity directly, but our exploratory analysis showed that the less participants suppressed anger during the interaction with their partner, the greater testosterone reactivity they displayed after the interaction. These results survived the correction for multiple testing with a false discovery rate (FDR) of 20%, but not with a rate of 10 or 5%. Discussion centers on the interplay between oxytocin and social context in shaping interracial interactions.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Psychology, University of Texas at Dallas, Richardson, TX, United States
- *Correspondence: Jiyoung Park,
| | - Joshua Woolley
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Wendy Berry Mendes
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
- Wendy Berry Mendes,
| |
Collapse
|
27
|
Uzun N, Akça ÖF, Kılınç İ, Balcı T. Oxytocin and Vasopressin Levels and Related Factors in Adolescents with Social Phobia and Other Anxiety Disorders. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2022; 20:330-342. [PMID: 35466104 PMCID: PMC9048017 DOI: 10.9758/cpn.2022.20.2.330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/01/2022]
Abstract
Objective This study aimed to determine whether a difference exists in plasma oxytocin and vasopressin levels among social anxiety disorder, other anxiety disorders, and healthy control groups in adolescents. The relationship between several psychiatric variables (i.e., state and trait anxiety, social anxiety, childhood trauma, and behavioral inhibition) and oxytocin or vasopressin levels were also investigated in adolescents with anxiety disorders. Methods The study included three groups of adolescents: social anxiety disorder (n = 29), those with other anxiety disorders (n = 27), and the control group (n = 28). The participants filled out self-report scales to determine various psychological variables. Oxytocin and vasopressin levels were determined from the blood samples of the participants. Results The oxytocin levels did not show a significant difference between the social anxiety disorder group and the other anxiety disorders group. However, the oxytocin levels were significantly higher in the social anxiety disorder and other anxiety disorders groups than in the control group. The vasopressin levels did not show a significant difference among the groups. According to the hierarchical regression analysis, the state and trait anxiety levels predicted oxytocin in opposite directions. Oxytocin showed positive and negative relationship with trait and state anxiety respectively. No predictive factors were found for the vasopressin levels. Conclusion We found that the oxytocin levels of adolescents with social anxiety disorder were not different from those of adolescents with other anxiety disorders. Further studies can improve our knowledge of the relationship among anxiety disorders and oxytocin or vasopressin.
Collapse
Affiliation(s)
- Necati Uzun
- Department of Child and Adolescent Psychiatry, Necmettin Erbakan University, Meram School of Medicine, Konya, Turkey
| | - Ömer Faruk Akça
- Department of Child and Adolescent Psychiatry, Necmettin Erbakan University, Meram School of Medicine, Konya, Turkey
| | - İbrahim Kılınç
- Department of Biochemistry, Necmettin Erbakan University, Meram School of Medicine, Konya, Turkey
| | - Tevfik Balcı
- Department of Biochemistry, Niğde Ömer Halisdemir University Training and Research Hospital, Niğde, Turkey
| |
Collapse
|
28
|
Gao Z, Ma X, Zhou X, Xin F, Gao S, Kou J, Becker B, Kendrick KM. Oxytocin Reduces the Attractiveness of Silver-Tongued Men for Women During Mid-Cycle. Front Neurosci 2022; 16:760695. [PMID: 35573309 PMCID: PMC9097854 DOI: 10.3389/fnins.2022.760695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
In humans, the neuropeptide oxytocin promotes both attraction toward and bonds with romantic partners, although no studies have investigated whether this extends to the perceived attractiveness of flirtatious language. In a within-subject, randomized double-blind placebo-controlled behavior and functional magnetic resonance imaging (fMRI) paradigm (https://clinicaltrials.gov/show/NCT03144115), 75 women rated the attractiveness of either a male face alone or paired with a verbal compliment which varied in terms of topic (women or landscapes) and figurativeness (novel or conventional metaphors or literal expressions). Subjects were tested in fertile and luteal phases of their cycle and on both occasions received either 24 IU intranasal oxytocin or placebo. Results showed that, whereas under placebo women in the fertile phase rated the facial attractiveness of men producing novel metaphorical compliments higher than in their luteal phase, following oxytocin treatment they did not. Correspondingly, under oxytocin the faces of individuals producing novel metaphorical compliments evoked greater responses in brain regions involved in processing language (middle frontal gyrus) and cognitive and emotional conflict (posterior middle cingulate and dorsal anterior cingulate) but reduced functional connectivity between the dorsal anterior cingulate and right orbitofrontal and medial frontal gyri. Thus, sex hormones and oxytocin may have opposite effects in regulating mate selection in women during their fertile phase. Novel metaphorical compliments convey a greater sexual than bonding intention and thus while sex hormones at mid-cycle may promote attraction to individuals communicating sexual rather than bonding intent, oxytocin may bias attraction away from such individuals through increasing cognitive and emotional conflict responses toward them.
Collapse
Affiliation(s)
- Zhao Gao
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory for Neuroinformation, Ministry of Education, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
- School of Foreign Languages, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaole Ma
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory for Neuroinformation, Ministry of Education, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
- School of Educational Science, Shanxi University, Taiyuan, China
| | - Xinqi Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory for Neuroinformation, Ministry of Education, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Fei Xin
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory for Neuroinformation, Ministry of Education, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shan Gao
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory for Neuroinformation, Ministry of Education, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
- School of Foreign Languages, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Kou
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory for Neuroinformation, Ministry of Education, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory for Neuroinformation, Ministry of Education, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M. Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory for Neuroinformation, Ministry of Education, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
29
|
Flanagan J, Chatzittofis A, Boström ADE, Hallberg J, Öberg KG, Arver S, Jokinen J. High Plasma Oxytocin Levels in Men With Hypersexual Disorder. J Clin Endocrinol Metab 2022; 107:e1816-e1822. [PMID: 35108393 PMCID: PMC9016473 DOI: 10.1210/clinem/dgac015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Indexed: 01/23/2023]
Abstract
CONTEXT Hypersexual disorder (HD) involves excessive, persistent sexual behaviors related to various mood states and the diagnosis compulsive sexual behavior disorder is included as an impulse control disorder in the 11th revision of the International Classification of Diseases. Although the neurobiology behind the disorder is not clear, some studies suggest dysregulated hypothalamic-pituitary-adrenal axis. Oxytocin acts as counterregulatory neuroendocrine hormone to cortisol and is also involved in sexual behavior. OBJECTIVE We hypothesized that oxytocin may play a role in the pathophysiology of HD with compensatory actions to cortisol. DESIGN Longitudinal. SETTING ANOVA clinic (Karolinska University Hospital). PATIENTS OR OTHER PARTICIPANTS 64 males with HD and 38 age-matched healthy volunteers. MAIN OUTCOME MEASURES Plasma oxytocin levels, measured with radioimmunoassay; Hypersexual Disorder Screening Inventory; and Hypersexual Disorder: Current Assessment Scale for assessing hypersexual symptoms. INTERVENTIONS A patient subgroup (n = 30) completed the manual-based group-administered cognitive-behavioral therapy (CBT) program for HD, and posttreatment oxytocin levels were measured. RESULTS Hypersexual men (n = 64) exhibited significantly higher oxytocin plasma levels (mean ± SD: 31.0 ± 9.9 pM) compared with healthy volunteers (16.9 ± 3.9 pM; P < 0.001). There were significant positive correlations between oxytocin levels and the rating scales measuring hypersexual behavior. Patients who completed CBT treatment (n = 30) had a significant reduction of oxytocin plasma levels from pretreatment (30.5 ± 10.1 pM) to posttreatment (20.2 ± 8.0 pM; P < 0.001). CONCLUSIONS The results suggest that the hyperactive oxytocinergic system in hypersexual men may be a compensatory mechanism to attenuate hyperactive stress.
Collapse
Affiliation(s)
- John Flanagan
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Andreas Chatzittofis
- Medical School, University of Cyprus, Nicosia, Cyprus
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå,Sweden
- Correspondence: Andreas Chatzittofis, MD, PhD, University of Cyprus, Medical School, Palaios dromos Lefkosias Lemesou No.215/6 2029 Aglantzia, Nicosia, Cyprus.
| | - Adrian Desai E Boström
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå,Sweden
- Neuropaediatric Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Hallberg
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Katarina Görts Öberg
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Stefan Arver
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jussi Jokinen
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå,Sweden
- Department of Clinical Neuroscience/Psychiatry, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
Depressive symptomatology, temperament and oxytocin serum levels in a sample of healthy female university students. BMC Psychol 2022; 10:36. [PMID: 35193693 PMCID: PMC8862362 DOI: 10.1186/s40359-022-00744-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 02/02/2022] [Indexed: 01/30/2023] Open
Abstract
Background Depressive symptomatology is prevalent among female university students with adverse effects on their quality of life and academic performance. Previous research suggested associations between depressive symptomatology and oxytocin levels and between depressive symptomatology and Temperament Traits. Despite this evidence, to the best of our knowledge no research has studied the effects fboth oxytocin serum levels and temperament dimensions on depressivesymptoms in a healthy sample. The present study aimed to analyse the effect of oxytocin levels and temperament traits on depressive symptomatology in healthy female university students.
Methods All participants completed the Beck Depression Inventory and the Adult Temperament Questionnaire. Blood samples were collected between 8 and 8H30 a.m. after 12 h of fasting and between 5 and 8 day of the menstrual cycle and serum oxytocin levels were quantified using a commercial enzyme-linked immunosorbent assay. A hierarchical multiple regression model using a stepwise method was conducted to identify predictors of depression. Results Forty-five women aged between 18 and 25 years old (19.37 ± 1.32 years) volunteered to participate in this study. Depressive symptomatology was negatively associated with oxytocin serum levels and "Negative affect" and positively associated with "Effortful control" and "Activation Control". In the final regression model, only oxytocin level was a predictor (B = − 0.090, p < 0.0001), the model explaining 65.2% of the depression variation. Oxytocin played a mediation role between "Negative affects" and Depressive symptomatology. Conclusions Our results showed that oxytocin level, rather than personality dimensions, was associated with depressive symptomatology. These results highlight the relevance of the discussion on the use of oxytocin as a biological marker of emotional and social symptoms that characterize depression.
Collapse
|
31
|
LaVarco A, Ahmad N, Archer Q, Pardillo M, Nunez Castaneda R, Minervini A, Keenan JP. Self-Conscious Emotions and the Right Fronto-Temporal and Right Temporal Parietal Junction. Brain Sci 2022; 12:brainsci12020138. [PMID: 35203902 PMCID: PMC8869976 DOI: 10.3390/brainsci12020138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
For more than two decades, research focusing on both clinical and non-clinical populations has suggested a key role for specific regions in the regulation of self-conscious emotions. It is speculated that both the expression and the interpretation of self-conscious emotions are critical in humans for action planning and response, communication, learning, parenting, and most social encounters. Empathy, Guilt, Jealousy, Shame, and Pride are all categorized as self-conscious emotions, all of which are crucial components to one’s sense of self. There has been an abundance of evidence pointing to the right Fronto-Temporal involvement in the integration of cognitive processes underlying the expression of these emotions. Numerous regions within the right hemisphere have been identified including the right temporal parietal junction (rTPJ), the orbitofrontal cortex (OFC), and the inferior parietal lobule (IPL). In this review, we aim to investigate patient cases, in addition to clinical and non-clinical studies. We also aim to highlight these specific brain regions pivotal to the right hemispheric dominance observed in the neural correlates of such self-conscious emotions and provide the potential role that self-conscious emotions play in evolution.
Collapse
|
32
|
Aishworiya R, Valica T, Hagerman R, Restrepo B. An Update on Psychopharmacological Treatment of Autism Spectrum Disorder. Neurotherapeutics 2022; 19:248-262. [PMID: 35029811 PMCID: PMC9130393 DOI: 10.1007/s13311-022-01183-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 01/05/2023] Open
Abstract
While behavioral interventions remain the mainstay of treatment of autism spectrum disorder (ASD), several potential targeted treatments addressing the underlying neurophysiology of ASD have emerged in the last few years. These are promising for the potential to, in future, become part of the mainstay treatment in addressing the core symptoms of ASD. Although it is likely that the development of future targeted treatments will be influenced by the underlying heterogeneity in etiology, associated genetic mechanisms influencing ASD are likely to be the first targets of treatments and even gene therapy in the future for ASD. In this article, we provide a review of current psychopharmacological treatment in ASD including those used to address common comorbidities of the condition and upcoming new targeted approaches in autism management. Medications including metformin, arbaclofen, cannabidiol, oxytocin, bumetanide, lovastatin, trofinetide, and dietary supplements including sulforophane and N-acetylcysteine are discussed. Commonly used medications to address the comorbidities associated with ASD including atypical antipsychotics, serotoninergic agents, alpha-2 agonists, and stimulant medications are also reviewed. Targeted treatments in Fragile X syndrome (FXS), the most common genetic disorder leading to ASD, provide a model for new treatments that may be helpful for other forms of ASD.
Collapse
Affiliation(s)
- Ramkumar Aishworiya
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Tatiana Valica
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
- Association for Children With Autism, Chisinau, Moldova
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA.
- Department of Pediatrics, University of California Davis School of Medicine, 4610 X St, Sacramento, CA, 95817, USA.
| | - Bibiana Restrepo
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
- Department of Pediatrics, University of California Davis School of Medicine, 4610 X St, Sacramento, CA, 95817, USA
| |
Collapse
|
33
|
Niu J, Tong J, Blevins JE. Oxytocin as an Anti-obesity Treatment. Front Neurosci 2021; 15:743546. [PMID: 34720864 PMCID: PMC8549820 DOI: 10.3389/fnins.2021.743546] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022] Open
Abstract
Obesity is a growing health concern, as it increases risk for heart disease, hypertension, type 2 diabetes, cancer, COVID-19 related hospitalizations and mortality. However, current weight loss therapies are often associated with psychiatric or cardiovascular side effects or poor tolerability that limit their long-term use. The hypothalamic neuropeptide, oxytocin (OT), mediates a wide range of physiologic actions, which include reproductive behavior, formation of prosocial behaviors and control of body weight. We and others have shown that OT circumvents leptin resistance and elicits weight loss in diet-induced obese rodents and non-human primates by reducing both food intake and increasing energy expenditure (EE). Chronic intranasal OT also elicits promising effects on weight loss in obese humans. This review evaluates the potential use of OT as a therapeutic strategy to treat obesity in rodents, non-human primates, and humans, and identifies potential mechanisms that mediate this effect.
Collapse
Affiliation(s)
- JingJing Niu
- VA Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Jenny Tong
- VA Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - James E. Blevins
- VA Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
34
|
Edwards MM, Nguyen HK, Dodson AD, Herbertson AJ, Wietecha TA, Wolden-Hanson T, Graham JL, Honeycutt MK, Slattery JD, O’Brien KD, Havel PJ, Blevins JE. Effects of Combined Oxytocin and Beta-3 Receptor Agonist (CL 316243) Treatment on Body Weight and Adiposity in Male Diet-Induced Obese Rats. Front Physiol 2021; 12:725912. [PMID: 34566687 PMCID: PMC8457402 DOI: 10.3389/fphys.2021.725912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Previous studies have indicated that oxytocin (OT) reduces body weight in diet-induced obese (DIO) rodents through reductions in energy intake and increases in energy expenditure. We recently demonstrated that hindbrain [fourth ventricular (4V)] administration of OT evokes weight loss and elevates interscapular brown adipose tissue temperature (T IBAT ) in DIO rats. What remains unclear is whether OT can be used as an adjunct with other drugs that directly target beta-3 receptors in IBAT to promote BAT thermogenesis and reduce body weight in DIO rats. We hypothesized that the combined treatment of OT and the beta-3 agonist, CL 316243, would produce an additive effect to decrease body weight and adiposity in DIO rats by reducing energy intake and increasing BAT thermogenesis. We assessed the effects of 4V infusions of OT (16 nmol/day) or vehicle (VEH) in combination with daily intraperitoneal injections of CL 316243 (0.5 mg/kg) or VEH on food intake, T IBAT , body weight and body composition. OT and CL 316243 alone reduced body weight by 7.8 ± 1.3% (P < 0.05) and 9.1 ± 2.1% (P < 0.05), respectively, but the combined treatment produced more pronounced weight loss (15.5 ± 1.2%; P < 0.05) than either treatment alone. These effects were associated with decreased adiposity, adipocyte size, energy intake and increased uncoupling protein 1 (UCP-1) content in epididymal white adipose tissue (EWAT) (P < 0.05). In addition, CL 316243 alone (P < 0.05) and in combination with OT (P < 0.05) elevated T IBAT and IBAT UCP-1 content and IBAT thermogenic gene expression. These findings are consistent with the hypothesis that the combined treatment of OT and the beta-3 agonist, CL 316243, produces an additive effect to decrease body weight. The findings from the current study suggest that the effects of the combined treatment on energy intake, fat mass, adipocyte size and browning of EWAT were not additive and appear to be driven, in part, by transient changes in energy intake in response to OT or CL 316243 alone as well as CL 316243-elicited reduction of fat mass and adipocyte size and induction of browning of EWAT.
Collapse
Affiliation(s)
- Melise M. Edwards
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Ha K. Nguyen
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Andrew D. Dodson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Adam J. Herbertson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Tomasz A. Wietecha
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
| | - Tami Wolden-Hanson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - James L. Graham
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Mackenzie K. Honeycutt
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Jared D. Slattery
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Kevin D. O’Brien
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Peter J. Havel
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - James E. Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
35
|
Espinoza SE, Lee JL, Wang CP, Ganapathy V, MacCarthy D, Pascucci C, Musi N, Volpi E. Intranasal Oxytocin Improves Lean Muscle Mass and Lowers LDL Cholesterol in Older Adults with Sarcopenic Obesity: A Pilot Randomized Controlled Trial. J Am Med Dir Assoc 2021; 22:1877-1882.e2. [PMID: 34029521 PMCID: PMC8567747 DOI: 10.1016/j.jamda.2021.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Obesity is associated with sarcopenia in older adults, and weight loss can lead to further muscle mass loss. Oxytocin decreases with age, and animal studies suggest that oxytocin administration has trophic effects on skeletal muscle cells and reduces adiposity. We conducted a clinical trial to examine the safety and preliminary efficacy of intranasal oxytocin for older adults with sarcopenic obesity. DESIGN A double-blind, placebo-controlled randomized controlled trial of intranasal oxytocin (24 IU 4 times per day) for 8 weeks. SETTING AND PARTICIPANTS Twenty-one older (67.5 ± 5.4 years), obese (30-43 kg/m2), sedentary (<2 strenuous exercise per week) adults with slow gait speed (<1 m/s, proxy measure of sarcopenia) were recruited. MEASURES Generalized estimating equations were used to evaluate the effect of oxytocin on safety/tolerability of oxytocin administration and whole body muscle and fat mass. RESULTS At baseline, body mass index (BMI) was 36.8 ± 3.6 kg/m2, fat mass 46.09 ± 6.99 kg, lean mass 50.98 ± 11.77 kg, fasting plasma glucose (FPG) 92.0 ± 8.9 mg/dL, hemoglobin A1c (HbA1c) 5.7% ± 0.4%, low density lipoprotein (LDL) 111.3 ± 41.5 mg/dL, high-density lipoprotein (HDL) 47.85 ± 10.96 mg/dL, and triglycerides 140.55 ± 83.50 mg/dL. Oxytocin administration was well tolerated without any significant adverse events. Oxytocin led to a significant increase of 2.25 kg in whole body lean mass compared with placebo (P < .01) with a trend toward decreasing fat mass, and a significantly reduced plasma LDL cholesterol by -19.3 mg/dL (P = .023) compared against placebo. There were no significant changes in BMI, appetite scores, glycemia, plasma HDL, triglycerides, or depressive symptoms. CONCLUSIONS AND IMPLICATIONS This proof-of-concept study indicates that oxytocin may be useful for the treatment of sarcopenic obesity in older adults. Oxytocin administration may also provide additional cardiovascular benefits.
Collapse
Affiliation(s)
- Sara E Espinoza
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, TX, USA; Geriatric Research Education and Clinical Center, Audie L. Murphy VA Medical Center, San Antonio, TX, USA.
| | - Jessica L Lee
- Division of Geriatric and Palliative Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chen-Pin Wang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, TX, USA; Geriatric Research Education and Clinical Center, Audie L. Murphy VA Medical Center, San Antonio, TX, USA; Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, TX Center, San Antonio, TX, USA
| | - Vinutha Ganapathy
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, TX, USA; Geriatric Research Education and Clinical Center, Audie L. Murphy VA Medical Center, San Antonio, TX, USA
| | - Daniel MacCarthy
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, TX, USA; Geriatric Research Education and Clinical Center, Audie L. Murphy VA Medical Center, San Antonio, TX, USA; Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, TX Center, San Antonio, TX, USA
| | - Chiara Pascucci
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, USA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, TX, USA; Geriatric Research Education and Clinical Center, Audie L. Murphy VA Medical Center, San Antonio, TX, USA
| | - Elena Volpi
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
36
|
Monks DT, Palanisamy A. Oxytocin: at birth and beyond. A systematic review of the long-term effects of peripartum oxytocin. Anaesthesia 2021; 76:1526-1537. [PMID: 34389972 DOI: 10.1111/anae.15553] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Oxytocin is one of the most commonly used medications during labour and delivery. Recent insights from basic neuroscience research suggest that the uterotonic effects of oxytocin may arguably be trivial when compared with its profound effects on higher-order human behaviour. The purpose of this review is to highlight the potential consequences of manipulating oxytocinergic signalling during the peripartum period and its long-term impact on the maternal-infant dyad. We identified four domains where modulation of oxytocinergic signalling might be consequential: postpartum depression; breastfeeding; neurodevelopment; and chronic pain, and performed a literature search to address the impact of peripartum oxytocin administration. We have shown modest, but inconsistent, evidence linking peripartum oxytocin administration with postpartum depression. Breastfeeding success appeared to be negatively correlated with peripartum oxytocin exposure, perhaps secondary to impaired primitive neonatal reflexes and maternal-infant bonding. The association between perinatal oxytocin exposure and subsequent development of neurodevelopmental disorders such as autism in the offspring was weak, but these studies were limited by the lack of information on the cumulative dose. Finally, we identified substantial evidence for analgesic and anti-hypersensitivity effects of oxytocin which might partly explain the low incidence of chronic pain after caesarean birth. Although most data presented here are observational, our review points to a compelling need for robust clinical studies to better dissect the impact of peripartum oxytocin administration, and as stewards of its use, increase the precision with which we administer oxytocin to prevent overuse of the drug.
Collapse
Affiliation(s)
- D T Monks
- Washington University School of Medicine in St. Louis, St Louis, MO, USA
| | - A Palanisamy
- Washington University School of Medicine in St. Louis, St Louis, MO, USA
| |
Collapse
|
37
|
Johnstone J, Duncan D. Coronavirus: the 7th C affecting the 6Cs. A focus on compassion, care and touch. BRITISH JOURNAL OF NURSING (MARK ALLEN PUBLISHING) 2021; 30:928-933. [PMID: 34379479 DOI: 10.12968/bjon.2021.30.15.928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The C0VID-19 pandemic has challenged everyone in society, from children who are no longer able to attend school and nursery to adults trying to juggle working at home and vulnerable members of society who have needed to self-isolate. NHS staff and key workers also need to juggle their family situations and many will have to adapt their practice and ways of working to address the demands placed on the NHS during this time. The current pandemic has altered the nature of services being provided to patients, and staff are now wearing personal protective equipment, with many being redeployed to ward areas. This article considers the 6Cs of nursing and the challenges faced by staff during the COVID-19 pandemic, with a primary focus on care and compassion. The vital role that touch has in the care of the patient and family is also considered.
Collapse
Affiliation(s)
| | - Debbie Duncan
- Lecturer in Nursing, Queen's University Belfast, Northern Ireland
| |
Collapse
|
38
|
Evaluation of serum oxytocin levels in patients with depression, generalized anxiety disorder, panic disorder, and social anxiety disorder: A case-control study. JOURNAL OF SURGERY AND MEDICINE 2021. [DOI: 10.28982/josam.922612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
How Relevant is the Systemic Oxytocin Concentration for Human Sexual Behavior? A Systematic Review. Sex Med 2021; 9:100370. [PMID: 34118520 PMCID: PMC8360917 DOI: 10.1016/j.esxm.2021.100370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 01/23/2023] Open
Abstract
Introduction Despite its role in social cognition and affiliative behavior, less is known about the role played by oxytocin in human sexual behavior. Aim In the present systematic review, we aimed to find the levels of oxytocin related to human sexual arousal and orgasm. Methods We conducted the study according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. We performed a systematic search in the principal databases for studies that reported collection of salivary or plasmatic samples, with dosage of oxytocin in relation to sexual activity during induction of sexual arousal and orgasm. Results 414 articles were obtained. After duplicates removal and the application of pre exclusion criteria, 16 articles were considered eligible and 13 articles were included with a Cohen's k of 0.827. Most of the studies used sexual self-stimulation and collected plasmatic or salivary samples to measure oxytocin. The sexual arousal and orgasm were assessed based on subjective reports. Main Outcome Measure The primary outcomes were the oxytocin levels collected during the induction of sexual arousal and orgasm. Conclusions Several studies collected only subjective reports about the sexual arousal and the orgasm. Most of the studies found higher levels of oxytocin during the orgasm or ejaculation. Given the sexual arousal evoked by self-stimulation in which sexual fantasies play an important role, it should be possible to postulate for a role of the oxytocin in sexual desire. In particular, we hypothesize a complex role of the oxytocin in the modulation of sexual fantasies and thoughts that are relevant in the sexual desire and help to trigger genital and sexual arousal. Cera N, Vargas-Cáceres S, Oliveira C, et al. How Relevant is the Systemic Oxytocin Concentration for Human Sexual Behavior? A Systematic Review. Sex Med 2021;9:100370.
Collapse
|
40
|
Akita T, Kimura R, Akaguma S, Nagai M, Nakao Y, Tsugane M, Suzuki H, Oka JI, Yamashita C. Usefulness of cell-penetrating peptides and penetration accelerating sequence for nose-to-brain delivery of glucagon-like peptide-2. J Control Release 2021; 335:575-583. [PMID: 34116136 DOI: 10.1016/j.jconrel.2021.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 01/19/2023]
Abstract
Neuropeptides are expected as therapeutic drug candidates for central nervous system (CNS) disorders. Intracerebroventricular (i.c.v.) administration of glucagon-like peptide-2 (GLP-2) has an antidepressant-like effect not only in depression model mice but also in treatment-resistant depression model mice. However, because i.c.v. administration is very invasive, research is progressing on brain delivery using intranasal administration as a non-invasive method. After intranasal administration of the drug, there are two routes to the brain. That of direct delivery from the paracellular route of olfactory epithelium to the brain via the olfactory bulb has been studied, and that of systemic absorption via the paracellular route of respiratory epithelium has been put to practical use. The high degree of vascularization and permeability of the nasal mucosa enables drug delivery via the paracellular route that leads to systemic delivery. Therefore, suppressing systemic absorption may increase drug delivery to brain, so we focused on the transcellular route. We created a GLP-2 derivative by adding cell-penetrating peptides (CPP) and penetration accelerating sequences (PAS), which are reported to provide efficient intracellular uptake, to GLP-2. However, to deliver GLP-2 by the transcellular route, GLP-2 must not only be taken up into cells but also move out of the cells. We investigated in vitro and in vivo function of PAS-CPP-GLP-2 to enable the translocation of GLP-2 directly from the nose to the brain. Derivatization of PAS-CPP-GLP-2 prevented its degradation. In the evaluation of intracellular dynamics, PAS-CPP-GLP-2 enhanced cellular uptake by macropinocytosis with CPP and promoted escape from endosomal vesicles by PAS. This study also showed that PAS-CPP-GLP-2 can move out of cells. Furthermore, only this PAS-CPP-GLP-2 showed an antidepression-like effect within 20 min of intranasal administration. Intranasal administered PAS-CPP-GLP-2 surprisingly showed the effect at the same dose with i.c.v. administration, but intravenous administered PAS-CPP-GLP-2 did not show the effect. These results suggested that PAS-CPP-GLP-2 can be efficiently delivered from the nose to the CNS and show a pharmacological effect, demonstrating the usefulness of PAS and CPP for nose-to-brain delivery of GLP-2.
Collapse
Affiliation(s)
- Tomomi Akita
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ryosuke Kimura
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Saki Akaguma
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Mio Nagai
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yusuke Nakao
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Mamiko Tsugane
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Hiroaki Suzuki
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Jun-Ichiro Oka
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Chikamasa Yamashita
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
41
|
Erikson DW, Blue SW, Kaucher AV, Shnitko TA. LC-MS/MS measurement of endogenous oxytocin in the posterior pituitary and CSF of macaques: A pilot study. Peptides 2021; 140:170544. [PMID: 33811949 PMCID: PMC8462972 DOI: 10.1016/j.peptides.2021.170544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022]
Abstract
Oxytocin (OT) is a nanopeptide released into systemic circulation via the posterior pituitary (peripheral) and into the central nervous system via widespread OTergic pathways (central). Central OT plays a significant role in variety of functions from social and executive cognition to immune regulation. Many ongoing studies explore its therapeutic potential for variety of neuropsychiatric disorders. Measures of peripheral OT levels are most frequently used as an indicator of its concentration in the central nervous system in humans and animal models. In this study, LC-MS/MS was used to measure OT in pituitary samples collected from adult male macaque monkeys in order to explore the correlation between individual levels of OT in the CSF (central) and pituitary (peripheral). We quantified individual differences in the levels of OT in the pituitaries (44-151 ng/mg) and CSF (41-66 pg/mL) of these monkeys. A positive correlation between these two measures was identified. These preliminary results allow for future analyses to determine whether LC-MS/MS measures of peripheral OT can be used as markers of OT levels in the brain of nonhuman primates that serve as valuable models for many human neuropsychiatric disorders.
Collapse
Affiliation(s)
- D W Erikson
- Endocrine Technologies Core, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006-3448, USA
| | - S W Blue
- Endocrine Technologies Core, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006-3448, USA
| | - A V Kaucher
- Endocrine Technologies Core, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006-3448, USA
| | - T A Shnitko
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006-3448, USA.
| |
Collapse
|
42
|
Romero-Martínez Á, Blanco-Gandía MC, Rodriguez-Arias M, Lila M, Moya-Albiol L. Hormonal Differences in Intimate Partner Violence Perpetrators When They Cope with Acute Stress: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115831. [PMID: 34071628 PMCID: PMC8198212 DOI: 10.3390/ijerph18115831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Only a few studies have paid attention to the ability of perpetrators of intimate partner violence (IPVAW) against women to cope with acute stress, including hormonal parameters. In fact, previous studies assessed how salivary testosterone (Tsal) and cortisol (Csal) changed after coping with an acute emotional stressor (directly related to IPVAW), and they concluded that an imbalance between the two hormones might be characteristic of these men. Nevertheless, they neglected to examine the role of other hormones, such as salivary oxytocin (OXsal), which also seemed to play an important role in behavioral regulation, and whether this response could be generalized to other types of stress not directly related to IPVAW. METHODS This study aims to assess whether IPVAW perpetrators (n = 19) present differential hormonal (Tsal, Csal, OXsal and their ratios) and psychological state (anxiety, anger, and general affect) responses when coping with an acute cognitive laboratory stressor (a set of neuropsychological tests performed in front of an expert committee) in comparison with non-violent men (n = 16). This quasi-experimental study also assessed whether the psychological state variables drive this different hormonal response. RESULTS Our results revealed that IPVAW perpetrators had lower Csal and higher Tsal/Csal ratio levels during the post-task period, as well as higher total levels (average) of OXsal than controls. We also found that, only in IPVAW perpetrators, high levels of baseline anxiety and negative affect were related to high rises in Csal during the stress task. CONCLUSIONS These data present a background showing that IPVAW perpetrators and non-violent men cope differently with stress. These findings might help to identify idiosyncratic profiles of IPVAW perpetrators that can then be employed to establish their therapeutic needs. Moreover, we reinforced the importance of combining biological markers with self-reports, thus increasing the reliability of these forensic assessments.
Collapse
Affiliation(s)
- Ángel Romero-Martínez
- Department of Psychobiology, University of Valencia, 46010 València, Spain; (M.R.-A.); (L.M.-A.)
- Correspondence:
| | | | - Marta Rodriguez-Arias
- Department of Psychobiology, University of Valencia, 46010 València, Spain; (M.R.-A.); (L.M.-A.)
| | - Marisol Lila
- Department of Social Psychology, University of Valencia, 46010 València, Spain;
| | - Luis Moya-Albiol
- Department of Psychobiology, University of Valencia, 46010 València, Spain; (M.R.-A.); (L.M.-A.)
| |
Collapse
|
43
|
Aberrant Early in Life Stimulation of the Stress-Response System Affects Emotional Contagion and Oxytocin Regulation in Adult Male Mice. Int J Mol Sci 2021; 22:ijms22095039. [PMID: 34068684 PMCID: PMC8126076 DOI: 10.3390/ijms22095039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Results over the last decades have provided evidence suggesting that HPA axis dysfunction is a major risk factor predisposing to the development of psychopathological behaviour. This susceptibility can be programmed during developmental windows of marked neuroplasticity, allowing early-life adversity to convey vulnerability to mental illness later in life. Besides genetic predisposition, also environmental factors play a pivotal role in this process, through embodiment of the mother's emotions, or via nutrients and hormones transferred through the placenta and the maternal milk. The aim of the current translational study was to mimic a severe stress condition by exposing female CD-1 mouse dams to abnormal levels of corticosterone (80 µg/mL) in the drinking water either during the last week of pregnancy (PreCORT) or the first one of lactation (PostCORT), compared to an Animal Facility Rearing (AFR) control group. When tested as adults, male mice from PostCORT offspring and somewhat less the PreCORT mice exhibited a markedly increased corticosterone response to acute restraint stress, compared to perinatal AFR controls. Aberrant persistence of adolescence-typical increased interest towards novel social stimuli and somewhat deficient emotional contagion also characterised profiles in both perinatal-CORT groups. Intranasal oxytocin (0 or 20.0 µg/kg) generally managed to reduce the stress response and restore a regular behavioural phenotype. Alterations in density of glucocorticoid and mineralocorticoid receptors, oxytocin and µ- and κ-opioid receptors were found. Changes differed as a function of brain areas and the specific age window of perinatal aberrant stimulation of the HPA axis. Present results provided experimental evidence in a translational mouse model that precocious adversity represents a risk factor predisposing to the development of psychopathological behaviour.
Collapse
|
44
|
Singer N, Sommer M, Wüst S, Kudielka BM. Effects of gender and personality on everyday moral decision-making after acute stress exposure. Psychoneuroendocrinology 2021; 124:105084. [PMID: 33387970 DOI: 10.1016/j.psyneuen.2020.105084] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 01/21/2023]
Abstract
Exposure to acute psychosocial stress has been shown to affect moral decision-making, though little is known about potential gender differences or effects of personality. In two within-subjects design studies, 179 healthy men and women (N = 99 in Study 1, N = 80 in Study 2) were exposed to the Trier Social Stress Test (TSST) and a non-stress control condition (resting period) on two testing days in random order. After stress/resting, moral decision-making was assessed by the Everyday Moral Conflict Situations (EMCS) Scale (Singer et al., 2019), which requests altruistic versus egoistic responses to everyday moral conflict scenarios with varying closeness of target persons. We investigated effects of acute stress, social closeness, participants' gender, and the a priori selected personality traits agreeableness, empathy, and social desirability on everyday moral decision-making. Despite high statistical power, we could neither confirm the hypothesized effects of acute stress nor social closeness on EMCS scores in both samples. However, our data revealed a prosocial impact of acute stress on everyday moral decisions rather in females than males as well as effects of agreeableness and social desirability. Salivary alpha-amylase (sAA) levels in Study 1 and cortisol levels in females in Study 2 were significantly correlated with higher EMCS scores after acute stress exposure. Additionally, lower anticipatory subjective stress responses were associated with more altruistic decisions. Moreover, we found positive relationships between hypothetical moral decision-making and real prosocial behavior (opportunity for a charitable donation). In sum, due to methodological differences compared to previous between-subjects design studies, it might not be justified to rule out effects of acute stress on everyday moral decision-making based on the current within-subjects results. Nevertheless, the present data suggest that specific personality traits like agreeableness might have a stronger impact on everyday moral decision-making than short term-exposure to acute stress.
Collapse
Affiliation(s)
- Nina Singer
- Department of Psychology, University of Regensburg, 93053 Regensburg, Germany.
| | - Monika Sommer
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; Department of Psychology, Ludwig-Maximilians-University of Munich, 80802 Munich, Germany.
| | - Stefan Wüst
- Department of Psychology, University of Regensburg, 93053 Regensburg, Germany.
| | - Brigitte M Kudielka
- Department of Psychology, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
45
|
Zhuang Q, Zhu S, Yang X, Zhou X, Xu X, Chen Z, Lan C, Zhao W, Becker B, Yao S, Kendrick KM. Oxytocin-induced facilitation of learning in a probabilistic task is associated with reduced feedback- and error-related negativity potentials. J Psychopharmacol 2021; 35:40-49. [PMID: 33274683 DOI: 10.1177/0269881120972347] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Feedback evaluation of actions and error response detection are critical for optimizing behavioral adaptation. Oxytocin can facilitate learning following social feedback but whether its effects vary as a function of feedback valence remains unclear. AIMS The present study aimed to investigate whether oxytocin would influence responses to positive and negative feedback differentially or equivalently. METHODS The present study employed a randomized, double-blind, placebo controlled within-subject design to investigate whether intranasal oxytocin (24 IU) influenced behavioral and evoked electrophysiological potential responses to positive or negative feedback in a probabilistic learning task. RESULTS Results showed that oxytocin facilitated learning and this effect was maintained in the absence of feedback. Using novel stimulus pairings, we found that oxytocin abolished bias towards learning more from negative feedback under placebo by increasing accuracy for positively reinforced stimuli. Oxytocin also decreased the feedback-related negativity difference (negative minus positive feedback) during learning, further suggesting that it rendered the evaluation of positive and negative feedback more equivalent. Additionally, post-learning oxytocin attenuated error-related negativity amplitudes but increased the late error positivity, suggesting that it may lower conflict detection between actual errors and expected correct responses at an early stage of processing but at a later stage increase error awareness and motivation for avoiding them. CONCLUSIONS Oxytocin facilitates learning and subsequent performance by rendering the impact of positive relative to negative feedback more equivalent and also by reducing conflict detection and increasing error awareness, which may be beneficial for behavioral adaption.
Collapse
Affiliation(s)
- Qian Zhuang
- MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Siyu Zhu
- MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xue Yang
- Institute of Psychological and Cognitive Sciences, Fuzhou University, Fuzhou, China
| | - Xinqi Zhou
- MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaolei Xu
- MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhuo Chen
- MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunmei Lan
- MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Zhao
- MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuxia Yao
- MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M Kendrick
- MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
46
|
Jiang X, Ma X, Geng Y, Zhao Z, Zhou F, Zhao W, Yao S, Yang S, Zhao Z, Becker B, Kendrick KM. Intrinsic, dynamic and effective connectivity among large-scale brain networks modulated by oxytocin. Neuroimage 2020; 227:117668. [PMID: 33359350 DOI: 10.1016/j.neuroimage.2020.117668] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/06/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
The neuropeptide oxytocin is a key modulator of social-emotional behavior and its intranasal administration can influence the functional connectivity of brain networks involved in the control of attention, emotion and reward reported in humans. However, no studies have systematically investigated the effects of oxytocin on dynamic or directional aspects of functional connectivity. The present study employed a novel computational framework to investigate these latter aspects in 15 oxytocin-sensitive regions using data from randomized placebo-controlled between-subject resting state functional MRI studies incorporating 200 healthy subjects. In order to characterize the temporal dynamics, the 'temporal state' was defined as a temporal segment of the whole functional MRI signal which exhibited a similar functional interaction pattern among brain regions of interest. Results showed that while no significant effects of oxytocin were found on brain temporal state related characteristics (including temporal state switching frequency, probability of transitions between neighboring states, and averaged dwell time on each state) oxytocin extensively (n = 54 links) modulated effective connectivity among the 15 regions. The effects of oxytocin were primarily characterized by increased effective connectivity both between and within emotion, reward, salience, attention and social cognition processing networks and their interactions with the default mode network. Top-down control over emotional processing regions such as the amygdala was particularly affected. Oxytocin also increased effective homotopic interhemispheric connectivity in almost all these regions. Additionally, the effects of oxytocin on effective connectivity were sex-dependent, being more extensive in males. Overall, these findings suggest that modulatory effects of oxytocin on both within- and between-network interactions may underlie its functional influence on social-emotional behaviors, although in a sex-dependent manner. These findings may be of particular relevance to potential therapeutic use of oxytocin in psychiatric disorders associated with social dysfunction, such as autism spectrum disorder and schizophrenia, where directionality of treatment effects on causal interactions between networks may be of key importance .
Collapse
Affiliation(s)
- Xi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaole Ma
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Yayuan Geng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhiying Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuxia Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Shimin Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhongbo Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
47
|
Gellner AK, Voelter J, Schmidt U, Beins EC, Stein V, Philipsen A, Hurlemann R. Molecular and neurocircuitry mechanisms of social avoidance. Cell Mol Life Sci 2020; 78:1163-1189. [PMID: 32997200 PMCID: PMC7904739 DOI: 10.1007/s00018-020-03649-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
Humans and animals live in social relationships shaped by actions of approach and avoidance. Both are crucial for normal physical and mental development, survival, and well-being. Active withdrawal from social interaction is often induced by the perception of threat or unpleasant social experience and relies on adaptive mechanisms within neuronal networks associated with social behavior. In case of confrontation with overly strong or persistent stressors and/or dispositions of the affected individual, maladaptive processes in the neuronal circuitries and its associated transmitters and modulators lead to pathological social avoidance. This review focuses on active, fear-driven social avoidance, affected circuits within the mesocorticolimbic system and associated regions and a selection of molecular modulators that promise translational potential. A comprehensive review of human research in this field is followed by a reflection on animal studies that offer a broader and often more detailed range of analytical methodologies. Finally, we take a critical look at challenges that could be addressed in future translational research on fear-driven social avoidance.
Collapse
Affiliation(s)
- Anne-Kathrin Gellner
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jella Voelter
- Department of Psychiatry, School of Medicine and Health Sciences, University of Oldenburg, Hermann-Ehlers-Str. 7, 26160, Bad Zwischenahn, Germany
| | - Ulrike Schmidt
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.,Department of Psychiatry Und Psychotherapy, University of Göttingen, Von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Eva Carolina Beins
- Institute of Human Genetics, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Valentin Stein
- Institute of Physiology II, University Hospital Bonn, 53115, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - René Hurlemann
- Division of Medical Psychology, Department of Psychiatry, University Hospital, Venusberg-Campus 1, 53127, Bonn, Germany. .,Department of Psychiatry, School of Medicine and Health Sciences, University of Oldenburg, Hermann-Ehlers-Str. 7, 26160, Bad Zwischenahn, Germany. .,Research Center Neurosensory Science, University of Oldenburg, 26129, Oldenburg, Germany.
| |
Collapse
|
48
|
Oxytocin modulates the effective connectivity between the precuneus and the dorsolateral prefrontal cortex. Eur Arch Psychiatry Clin Neurosci 2020; 270:567-576. [PMID: 30734090 DOI: 10.1007/s00406-019-00989-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/31/2019] [Indexed: 12/17/2022]
Abstract
Our social activity is heavily influenced by the process of introspection, with emerging research suggesting a role for the Default Mode Network (DMN) in social cognition. We hypothesize that oxytocin, a neuropeptide with an important role in social behaviour, can effectively alter the connectivity of the DMN. We test this hypothesis using a randomized, double-blind, crossover, placebo-controlled trial where 15 healthy male participants received 24 IU oxytocin or placebo prior to a resting-state functional MRI scan. We used Granger Causality Analysis for the first time to probe the role of oxytocin on brain networks and found that oxytocin reverses the pattern of effective connectivity between the bilateral precuneus and the left dorsolateral prefrontal cortex (dlPFC), a key central executive network (CEN) region. Under placebo, the bilateral precuneus exerted a significant negative causal influence on the left dlPFC and the left dlPFC exerted a significant positive causal influence on the bilateral precuneus. However, under oxytocin, these patterns were reversed, i.e. positive causal influence from the bilateral precuneus to the left dlPFC and negative causal influence from the left dlPFC to the bilateral precuneus (with statistically significant effects for the right precuneus). We propose that these oxytocin-induced effects could be a mechanistic process by which it modulates social cognition. These results provide a measurable target for the physiological effects of oxytocin in the brain and offer oxytocin as a potential agent to enhance the cooperative role of the predominantly 'task-inactive' 'default mode' brain regions in both healthy and patient populations.
Collapse
|
49
|
Nichols P, Carter B, Han J, Thaker V. Oxytocin for treating Prader-Willi Syndrome. Hippokratia 2020. [DOI: 10.1002/14651858.cd013685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Presley Nichols
- Department of Pediatrics; New York Presbyterian Hospital - Columbia; New York USA
| | - Ben Carter
- Biostatistics and Health Informatics; King's College London; Institute of Psychiatry, Psychology & Neuroscience; London UK
| | - Joan Han
- Department of Pediatrics; The University of Tennessee Health Science Center; Memphis TN USA
| | - Vidhu Thaker
- Division of Molecular Genetics and Department of Pediatrics; Columbia University Medical Center; New York NY USA
- Division of Pediatric Endocrinology; Columbia University Irving Medical Center; New York USA
| |
Collapse
|
50
|
Chen SF, Yang YC, Hsu CY, Shen YC. Risk of bipolar disorder in patients with endometriosis: A nationwide population-based cohort study. J Affect Disord 2020; 270:36-41. [PMID: 32275218 DOI: 10.1016/j.jad.2020.03.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/16/2019] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Women with endometriosis (EM) have increased vulnerability to certain psychiatric disorders, including depression and anxiety, as well as bipolar disorder (BD). This study investigates the risk of BD development in EM patients. Also, the impact of EM treatment on the risk of developing BD is examined. METHODS A total of 17,832 EM patients and 17,832 non-EM controls matched by age, index year, and Charlson Comorbidity Index (CCI) score were included between 2000-2012 and followed to the end of 2013. Participants newly diagnosed as BD by board-certified psychiatrist were defined as incidents. Cox regression analysis was used to calculate the hazard ratio (HR) with 95% confidence interval (CI) of the BD incidence rate between two studied groups. RESULTS EM patients were associated with an increased risk of BD development compared with non-EM controls after adjusting for age, CCI score, and different treatment options (1.04 versus 0.56 per 1,000 person-years, HR: 2.34, 95% CI: 1.75-3.12). Also, there was no significant difference in the risk estimate between different hormonal or surgical treatment groups, suggesting a limited impact of EM treatment on the risk of BD development. LIMITATIONS This study deals with the duration of hormonal treatment, whether operated or not, which reduces the chances of showing the effect of individual EM treatment on the risk of BD development. CONCLUSION This study shows that EM patients are associated with an increased risk of BD development. Further studies would be needed to elucidate the mechanism linking the EM and BD.
Collapse
Affiliation(s)
- Shih-Fen Chen
- Reproductive health center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yu-Cih Yang
- Management Office for Health Data, China Medical University Hospital, and College of Medicine, China Medical University, Taichung, Taiwan
| | - Chung-Y Hsu
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Yu-Chih Shen
- Department of Psychiatry, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|