1
|
Barkhudaryan A, Doehner W, Jauert N. Autonomic dysfunction after stroke: an overview of recent clinical evidence and perspectives on therapeutic management. Clin Auton Res 2025:10.1007/s10286-025-01120-0. [PMID: 40131648 DOI: 10.1007/s10286-025-01120-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/18/2025] [Indexed: 03/27/2025]
Abstract
PURPOSE Central autonomic dysfunction is common in acute stroke and is associated with cardiovascular complications and increased mortality. The aim of this review is to present novel diagnostic and therapeutic approaches to the management of this disorder and the latest data on its impact on the clinical outcome after stroke. METHODS We performed a narrative review of recent literature, with a particular focus on articles related to underlying pathophysiological mechanisms of cardiac autonomic dysregulation, the role of cardiac autonomic dysregulation in the activation of neuroinflammatory response and the development of cardiovascular, respiratory and metabolic complications in patients with ischemic and hemorrhagic stroke. RESULTS The assessment of central autonomic dysfunction by non-invasive diagnostic techniques, including heart rate variability and baroreflex sensitivity, has gained wide practical application in recent years, and they may have a predictive role for evaluating disease prognosis. The emerging evidence derived from recent trials demonstrates that the presence of autonomic imbalance may lead to increased mortality and have an adverse effect on post-stroke rehabilitation. CONCLUSION The early detection and treatment of central autonomic system dysfunction may lead to improved survival of patients with stroke. Among the available therapeutic approaches, neuromodulatory techniques and pharmacological interventions are promising strategies which may be implemented as part of standard acute stroke care to improve patient recovery. Future studies are warranted to address the long-term effects of potential therapeutic agents on the modulation of cardiovascular autonomic function in stroke survivors.
Collapse
Affiliation(s)
- Anush Barkhudaryan
- Department of Cardiology, Clinic of General and Invasive Cardiology, University Hospital No. 1, Yerevan State Medical University, Yerevan, Armenia.
- Yerevan Scientific Medical Center, Yerevan, Armenia.
| | - Wolfram Doehner
- Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin Berlin, Berlin, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.
- Berlin Institute of Health-Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Deutsches Herzzentrum der Charité, Department of Cardiology, Campus Virchow, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Nadja Jauert
- Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health-Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Herzzentrum der Charité, Department of Cardiology, Campus Virchow, Charité Universitätsmedizin Berlin, Berlin, Germany
- Division of Physiology, Department of Human Medicine, Medical School Berlin (MSB), Berlin, Germany
| |
Collapse
|
2
|
Liang F, Shan X, Chen X, Yang B. The association between triglyceride-glucose index and its combination with post-stroke depression: NHANES 2005-2018. BMC Psychiatry 2025; 25:243. [PMID: 40087591 PMCID: PMC11909874 DOI: 10.1186/s12888-025-06676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Growing evidence indicates a link between insulin resistance and post-stroke depression (PSD). This study employed the triglyceride glucose (TyG) index as a measure of insulin resistance to investigate its relationship with PSD. METHODS This cross-sectional study utilized data from the National Health and Nutrition Examination Survey (2005-2018). PSD was assessed using data from patient health questionnaires, while the TyG index was calculated based on fasting venous blood glucose and fasting triglyceride levels. The formula used for the TyG index is ln[triglycerides (mg/dL) × fasting blood glucose (mg/dL)/2]. Participants were categorized into four groups according to the TyG index quartiles. A weighted multivariable logistic regression model was applied to examine the relationship between the TyG index and PSD. RESULTS A total of 1217 patients were included in the study, of which 232 were diagnosed with PSD. The TyG index was divided into quartiles (Q1-Q4) for analysis. After adjusting for potential confounders, we found a significant positive association between the highest quartile of the TyG index (Q4: ≥9.33) and PSD (OR = 2.51, 95% CI: 1.04-6.07, p = 0.041). This suggests that in the U.S. adult stroke population, individuals with higher TyG indices are more likely to experience depressive symptoms. Subgroup analysis further confirmed a stable and independent positive association between the TyG index and PSD (all trend p > 0.05). CONCLUSION In this large cross-sectional study, our results suggest that among US adults who have experienced a stroke, those with higher TyG index levels are more likely to exhibit depressive symptoms. This provides a novel approach for the clinical prevention of PSD. Patients with higher TyG indices in the stroke population may require closer psychological health monitoring and timely intervention. Additionally, since the TyG index is calculated using only fasting blood glucose and triglyceride levels, it can help identify high-risk PSD patients, particularly in regions with limited healthcare resources.
Collapse
Affiliation(s)
- Fengjiao Liang
- School of Rehabilitation Medicine, Ministry of Education Engineering Research Center for Intelligent Rehabilitation of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Pudong New Area, Shanghai, 200120, China
| | - Xiaoqian Shan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin University of Chinese Medicine, Tianjin, 301617, China
| | - Xiang Chen
- School of Rehabilitation Medicine, Ministry of Education Engineering Research Center for Intelligent Rehabilitation of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Pudong New Area, Shanghai, 200120, China
| | - Banghua Yang
- School of Rehabilitation Medicine, Ministry of Education Engineering Research Center for Intelligent Rehabilitation of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Pudong New Area, Shanghai, 200120, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
3
|
Shi M, Li Z, Tang Z, Zhou H, Huang X, Wei Y, Li X, Li X, Shi H, Qin D. Exploring the pathogenesis and treatment of PSD from the perspective of gut microbiota. Brain Res Bull 2024; 215:111022. [PMID: 38936669 DOI: 10.1016/j.brainresbull.2024.111022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/30/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Post-stroke depression (PSD) is a psychological disease that can occur following a stroke and is associated with serious consequences. Research on the pathogenesis and treatment of PSD is still in the infancy stage. Patients with PSD often exhibit gastrointestinal symptoms; therefore the role of gut microbiota in the pathophysiology and potential treatment effects of PSD has become a hot topic of research. In this review, describe the research on the pathogenesis and therapy of PSD. We also describe how the gut microbiota influences neurotransmitters, the endocrine system, energy metabolism, and the immune system. It was proposed that the gut microbiota is involved in the pathogenesis and treatment of PSD through the regulation of neurotransmitter levels, vagal signaling, hypothalamic-pituitary-adrenal axis activation and inhibition, hormone secretion and release, in addition to immunity and inflammation.
Collapse
Affiliation(s)
- Mingqin Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Zhenmin Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Zhengxiu Tang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Haimei Zhou
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Xiaoyi Huang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Yuanyuan Wei
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Xinyao Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Xiahuang Li
- The People's Hospital of Mengzi, The Affiliated Hospital of Yunnan University of Chinese Medicine, Mengzi Honghe, China.
| | - Hongling Shi
- Department of Rehabilitation Medicine, The Third People's Hospital of Yunnan Province, Kunming Yunnan, China.
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| |
Collapse
|
4
|
Liu H, Zhang Y, Hou X, Zhu C, Yang Q, Li K, Fan L, Zhang X, Jiang X, Jin X, Lei H, Chen T, Zhang F, Zhang Z, Song J. CRHR1 antagonist alleviated depression-like behavior by downregulating p62 in a rat model of post-stroke depression. Exp Neurol 2024; 378:114822. [PMID: 38823676 DOI: 10.1016/j.expneurol.2024.114822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/08/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024]
Abstract
Post-stroke depression (PSD) is a complication of cerebrovascular disease, which can increase mortality after stroke. CRH is one of the main signaling peptides released after activation of the hypothalamic-pituitary-adrenal (HPA) axis in response to stress. It affects synaptic plasticity by regulating inflammation, oxidative stress and autophagy in the central nervous system. And the loss of spines exacerbates depression-like behavior. Therefore, synaptic deficits induced by CRH may be related to post-stroke depression. However, the underlying mechanism remains unclear. The Keap1-Nrf2 complex is one of the core components of the antioxidant response. As an autophagy associated protein, p62 participates in the Keap1-NrF2 pathway through its Keap1 interaction domain. Oxidative stress is involved in the feedback regulation between Keap1-Nrf2 pathway and p62.However, whether the relationship between CRH and the Keap1-Nrf2-p62 pathway is involved in PSD remains unknown. This study found that serum levels of CRH in 22 patients with PSD were higher than those in healthy subjects. We used MCAO combined with CUMS single-cage SD rats to establish an animal model of PSD. Animal experiments showed that CRHR1 antagonist prevented synaptic loss in the hippocampus of PSD rats and alleviated depression-like behavior. CRH induced p62 accumulation in the prefrontal cortex of PSD rats through CRHR1. CRHR1 antagonist inhibited Keap1-Nrf2-p62 pathway by attenuating oxidative stress. In addition, we found that abnormal accumulation of p62 induces PSD. It alleviates depression-like behavior by inhibiting the expression of p62 and promoting the clearance of p62 in PSD rats. These findings can help explore the pathogenesis of PSD and design targeted treatments for PSD.
Collapse
Affiliation(s)
- Huanhuan Liu
- Henan Key Laboratory of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University
| | - Yunfei Zhang
- Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University; The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaoli Hou
- General Hospital of Pingmei Shenma Group, Pingdingshan, Henan, China
| | - Chuanzhou Zhu
- Henan Key Laboratory of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University
| | - Qianling Yang
- Henan Key Laboratory of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University
| | - Kun Li
- Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University; The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Lifei Fan
- Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University; The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xinyue Zhang
- Henan Key Laboratory of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University
| | - Xinhui Jiang
- The Third People's Hospital of Luoyang, Luoyang, Henan, China
| | - Xuejiao Jin
- Henan Key Laboratory of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University
| | - Hao Lei
- Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University; The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Tengfei Chen
- Henan Key Laboratory of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University
| | - Fuping Zhang
- Henan Key Laboratory of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University.
| | - Zhaohui Zhang
- Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University; The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.
| | - Jinggui Song
- Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University.
| |
Collapse
|
5
|
Fanaei H, Shoorijeh BT, Hafezinouri H, Mirzaei I, Parsi-Moud A. Impact of social isolation on corticosterone release and recovery after stroke in aged rats: A behavioral and biochemical analysis. Exp Gerontol 2024; 192:112453. [PMID: 38723916 DOI: 10.1016/j.exger.2024.112453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
Social isolation (SI) after stroke reduces recovery. The aim of this study was to evaluate the effects of SI on corticosterone release and recovery after stroke in aged rats. A total of 64 male Wistar rats (aged 24 months) were used in the present study. All rats were housed in pairs for two weeks. After two weeks, rats were randomly assigned to one of four groups: (1) rats underwent sham surgery and kept socially isolated (control/social isolated (CO/SI) group); (2) rats underwent sham surgery and kept pair housed (control/pair housed (CO/PH) group); (3) rats underwent middle cerebral artery occlusion (MCAO) surgery and kept socially isolated (stroke/isolated (ST/SI) group); (4) rats underwent MCAO surgery and kept pair housed (stroke/pair housed (ST/PH)) group. Behaviors were assessed using the adhesive removal test, rotarod test and social interaction test at 1st, 7th, 14th and 21st days after stroke. Serum biochemical analysis was also performed on the behavioral testing days. Results showed THAT serum corticosterone and MDA levels in CO/PH group were significantly lower than CO/SI group. Serum BDNF levels in CO/PH group was significantly higher than CO/SI group. Serum corticosterone and MDA levels in ST/PH group were lower than ST/SI group. In ST/PH group, serum Total antioxidant capacity (TAC) and BDNF levels were significantly higher than ST/SI group. Biochemical analysis of certain regions of the brain (hippocampus, striatum and cerebral cortex) was performed on 21st day after stroke. In the hippocampus of CO/PH group, BDNF and TAC levels were significantly higher than CO/SI group. The hippocampal MDA level of CO/PH group were significantly lower than CO/SI group. BDNF and TAC levels in the hippocampus, striatum and cerebral cortex of ST/PH group were significantly higher and MDA level was significantly lower as compared with ST/SI group. Both ischemic groups showed sensorimotor recovery over a 21-day period, but recovery of ST/PH group was significantly greater than ST/SI group. Total social interaction time in ST/PH group was significantly longer than ST/SI group. Based on the results of this study, social interaction after stroke enhances histologic and sensorimotor recovery through reduction of HPA activity and corticosterone release, leading to increased TAC and BDNF levels.
Collapse
Affiliation(s)
- Hamed Fanaei
- Pregnancy Health Research Center, Department of Physiology, Zahedan University of Medical Sciences, Zahedan, Iran.
| | | | - Hamid Hafezinouri
- Laboratory Animal Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ilia Mirzaei
- Student Research Committee, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Abolfazl Parsi-Moud
- Student Research Committee, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
6
|
Wu F, Liu Z, Zhou L, Ye D, Zhu Y, Huang K, Weng Y, Xiong X, Zhan R, Shen J. Systemic immune responses after ischemic stroke: From the center to the periphery. Front Immunol 2022; 13:911661. [PMID: 36211352 PMCID: PMC9533176 DOI: 10.3389/fimmu.2022.911661] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022] Open
Abstract
Ischemic stroke is a leading cause of disability and death. It imposes a heavy economic burden on individuals, families and society. The mortality rate of ischemic stroke has decreased with the help of thrombolytic drug therapy and intravascular intervention. However, the nerve damage caused by ischemia-reperfusion is long-lasting and followed by multiple organ dysfunction. In this process, the immune responses manifested by systemic inflammatory responses play an important role. It begins with neuroinflammation following ischemic stroke. The large number of inflammatory cells released after activation of immune cells in the lesion area, along with the deactivated neuroendocrine and autonomic nervous systems, link the center with the periphery. With the activation of systemic immunity and the emergence of immunosuppression, peripheral organs become the second “battlefield” of the immune response after ischemic stroke and gradually become dysfunctional and lead to an adverse prognosis. The purpose of this review was to describe the systemic immune responses after ischemic stroke. We hope to provide new ideas for future research and clinical treatments to improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Fan Wu
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zongchi Liu
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lihui Zhou
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Di Ye
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Zhu
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kaiyuan Huang
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuxiang Weng
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxing Xiong
- Department of Clinical Laboratory, Renmin Hospital, Faculty of Medical Sciences, Wuhan University, Wuhan, China
| | - Renya Zhan
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Jian Shen, ; Renya Zhan,
| | - Jian Shen
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Jian Shen, ; Renya Zhan,
| |
Collapse
|
7
|
Li M, Wang Y, Li K, Xu X, Zhuang L. The efficacy and safety of Jin's three-needle therapy vs. placebo acupuncture on anxiety symptoms in patients with post-stroke anxiety: A study protocol for a randomized controlled trial. Front Psychiatry 2022; 13:941566. [PMID: 36159932 PMCID: PMC9490304 DOI: 10.3389/fpsyt.2022.941566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background A large number of clinical RCTs have verified that Jin's three-needle therapy (JTNT) has a great contribution to promoting the function of paralyzed limbs and relieving anxiety disorders for patients with post-stroke anxiety (PSA). However, there is still a lack of sham needle control, and its placebo effect cannot be ruled out. This study firstly verifies the real effectiveness of JTNT. Besides, the changes in serum indexes on the hypothalamic-pituitary-adrenal axis (HPA axis) are observed dynamically by the Enzyme-Linked ImmunoSorbent Assay (ELISA). The activation of different brain regions by JTNT is recorded using resting functional magnetic resonance imaging (rs-fMRI). Therefore, we can provide more practical and powerful evidence-based medical evidence for clinical decisions. Method This is a 16 week parallel, single-blind, random, controlled trial, including baseline, 4 weeks of treatment, and 12 weeks of follow-up. A total of 114 participants will be randomly divided into three groups in the proportion of 1:1:1. Participants will receive Jin's three-needle therapy in the active acupuncture group and accept sham needle treatment in the sham acupuncture group. In the waitlist control group, patients will not receive any acupuncture treatment. Outcomes cover three types of indicators, including scale indicators, serum indicators, and imaging indicators. The primary outcome is the change in the performance of anxiety symptoms, which is estimated by the 14-item Hamilton Anxiety Rating Scale (HAMA-14) and the 7-item Generalized Anxiety Disorder scale (GAD-7). Secondary outcomes are physical recovery and daily quality of life, which are evaluated by the National Institute of Health stroke scale (NIHSS) and the Modified Barthel Index Score (MBI Scale). Therefore, the assessment of the scale is carried out at baseline, 2nd, 4th, 8, 12, and 16 weeks. Adrenocorticotropin and cortisol will be quantitatively detected by ELISA at baseline and 4 weeks after treatment. In addition, regional homogeneity analysis (ReHo) will be used to record the activity of brain regions at baseline and 4 weeks after intervention. Discussion The study aims to provide high-quality clinical evidence on the effectiveness and safety of JTNT for patients with PSA. In addition, this trial explores a possible mechanism of JTNT for patients with PSA. Clinical trial registration Chinese Clinical Trial Registry, identifier [ChiCTR2200058992].
Collapse
Affiliation(s)
- Meichen Li
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuting Wang
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Keyi Li
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Xu
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lixing Zhuang
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Xia W, Xu Y, Gong Y, Cheng X, Yu T, Yu G. Microglia Involves in the Immune Inflammatory Response of Poststroke Depression: A Review of Evidence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2049371. [PMID: 35958023 PMCID: PMC9363171 DOI: 10.1155/2022/2049371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 11/17/2022]
Abstract
Poststroke depression (PSD) does not exist before and occurs after the stroke. PSD can appear shortly after the onset of stroke or be observed in the weeks and months after the acute or subacute phase of stroke. The pathogenesis of PSD is unclear, resulting in poor treatment effects. With research advancement, immunoactive cells in the central nervous system, particularly microglia, play a role in the occurrence and development of PSD. Microglia affects the homeostasis of the central nervous system through various factors, leading to the occurrence of depression. The research progress of microglia in PSD has been summarized to review the evidence regarding the pathogenesis and treatment target of PSD in the future.
Collapse
Affiliation(s)
- Weili Xia
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
| | - Yong Xu
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
| | - Yuandong Gong
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
| | - Xiaojing Cheng
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
| | - Tiangui Yu
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
| | - Gongchang Yu
- Shandong Mental Health Center, Shandong University, Jinan, Shandong 250014, China
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| |
Collapse
|
9
|
Zhou L, Wang T, Yu Y, Li M, Sun X, Song W, Wang Y, Zhang C, Fu F. The etiology of poststroke-depression: a hypothesis involving HPA axis. Biomed Pharmacother 2022; 151:113146. [PMID: 35643064 DOI: 10.1016/j.biopha.2022.113146] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/06/2022] [Accepted: 05/15/2022] [Indexed: 11/30/2022] Open
Abstract
Approximately, one in three ischemic stroke survivors suffered from depression, namely, post-stroke depression (PSD). PSD affects functional rehabilitation and may lead to poor quality of life of patients. There are numerous explanations about the etiologies of PSD. Here, we speculated that PSD are likely to be the result of specific changes in brain pathology. We hypothesized that the stroke-induced hyperactivity of hypothalamic-pituitary-adrenal (HPA) axis plays an important role in PSD. Stroke initiates a complex sequence of events in neuroendocrine system including HPA axis. The HPA axis is involved in the pathophysiology of depression, especially, the overactivity of the HPA axis occurs in major depressive disorder. This review summarizes the possible etiologies of PSD, focusing on the stroke-induced activation of HPA axis, mainly including the stress followed by severe brain damage and the proinflammatory cytokines release. The role of hyperactive of HPA axis in PSD was discussed in detail, which includes the role of high level corticotropin-releasing hormone in PSD, the effects of glucocorticoids on the alterations in specific brain structures, the expression of enzymes, excitotoxicity, the change in intestinal permeability, and the activation of microglia. The relationship between neuroendocrine regulation and inflammation was also described. Finally, the therapy of PSD by regulating HPA axis, neuroendocrine, and immunity was discussed briefly. Nevertheless, the change of HPA axis and the occurring of PSD maybe interact and promote on each other, and future investigations should explore this hypothesis in more depth.
Collapse
Affiliation(s)
- Lin Zhou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Yawen Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Mingan Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Xiaohui Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Wenhao Song
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Yunjie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Ce Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China.
| |
Collapse
|
10
|
Formation of False Context Fear Memory Is Regulated by Hypothalamic Corticotropin-Releasing Factor in Mice. Int J Mol Sci 2022; 23:ijms23116286. [PMID: 35682965 PMCID: PMC9181353 DOI: 10.3390/ijms23116286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 12/10/2022] Open
Abstract
Traumatic events frequently produce false fear memories. We investigated the effect of hypothalamic corticotropin-releasing factor (CRF) knockdown (Hy-Crf-KD) or overexpression (Hy-CRF-OE) on contextual fear memory, as fear stress-released CRF and hypothalamic-pituitary-adrenal axis activation affects the memory system. Mice were placed in a chamber with an electric footshock as a conditioning stimulus (CS) in Context A, then exposed to a novel chamber without CS, as Context B, at 3 h (B-3h) or 24 h (B-24h). The freezing response in B-3h was intensified in the experimental mice, compared to control mice not exposed to CS, indicating that a false fear memory was formed at 3 h. The within-group freezing level at B-24h was higher than that at B-3h, indicating that false context fear memory was enhanced at B-24h. The difference in freezing levels between B-3h and B-24h in Hy-Crf-KD mice was larger than that of controls. In Hy-CRF-OE mice, the freezing level at B-3h was higher than that of control and Hy-Crf-KD mice, while the freezing level in B-24h was similar to that in B-3h. Locomotor activity before CS and freezing level during CS were similar among the groups. Therefore, we hypothesized that Hy-Crf-KD potentiates the induction of false context fear memory, while Hy-CRF-OE enhances the onset of false fear memory formation.
Collapse
|
11
|
Lichlyter DA, Krumm ZA, Golde TA, Doré S. Role of CRF and the hypothalamic-pituitary-adrenal axis in stroke: revisiting temporal considerations and targeting a new generation of therapeutics. FEBS J 2022; 290:1986-2010. [PMID: 35108458 DOI: 10.1111/febs.16380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
Ischaemic neurovascular stroke represents a leading cause of death in the developed world. Preclinical and human epidemiological evidence implicates the corticotropin-releasing factor (CRF) family of neuropeptides as mediators of acute neurovascular injury pathology. Preclinical investigations of the role of CRF, CRF receptors and CRF-dependent activation of the hypothalamic-pituitary-adrenal (HPA) axis have pointed toward a tissue-specific and temporal relationship between activation of these pathways and physiological outcomes. Based on the literature, the major phases of ischaemic stroke aetiology may be separated into an acute phase in which CRF and anti-inflammatory stress signalling are beneficial and a chronic phase in which these contribute to neural degeneration, toxicity and apoptotic signalling. Significant gaps in knowledge remain regarding the pathway, temporality and systemic impact of CRF signalling and stress biology in neurovascular injury progression. Heterogeneity among experimental designs poses a challenge to defining the apparent reciprocal relationship between neurological injury and stress metabolism. Despite these challenges, it is our opinion that the elucidated temporality may be best matched with an antibody against CRF with a half-life of days to weeks as opposed to minutes to hours as with small-molecule CRF receptor antagonists. This state-of-the-art review will take a multipronged approach to explore the expected potential benefit of a CRF antibody by modulating CRF and corticotropin-releasing factor receptor 1 signalling, glucocorticoids and autonomic nervous system activity. Additionally, this review compares the modulation of CRF and HPA axis activity in neuropsychiatric diseases and their counterpart outcomes post-stroke and assess lessons learned from antibody therapies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniel A Lichlyter
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Zachary A Krumm
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Todd A Golde
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Departments of Neurology, Psychiatry, Pharmaceutics, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
12
|
Morin A, Poitras M, Plamondon H. Global Cerebral Ischemia in Male Long Evans Rats Impairs Dopaminergic/ΔFosB Signalling in the Mesocorticolimbic Pathway Without Altering Delay Discounting Rates. Front Behav Neurosci 2022; 15:770374. [PMID: 35058756 PMCID: PMC8763703 DOI: 10.3389/fnbeh.2021.770374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022] Open
Abstract
Global cerebral ischemia (GCI) in rats has been shown to promote exploration of anxiogenic zones of the Elevated-Plus Maze (EPM) and Open Field Test (OFT). This study investigated changes in impulsive choice and/or defensive responses as possible contributors of heightened anxiogenic exploration observed after ischemia. Impulsivity was assessed using delay discounting (DD) paradigms, while the Predator Odour Test (PO) served to assess changes in defensive responses towards a naturally aversive stimulus. Male Long Evans rats underwent 9 days of autoshaping training and 24 days of DD training prior to GCI or sham surgery (n = 9/group). Post-surgery, rats completed the OFT, EPM, and PO, followed by 6 days of DD sessions. Blood droplets served to evaluate corticosterone secretion associated with PO exposure. With impulsivity being regulated through mesocorticolimbic monoaminergic pathways, we also characterised post-ischemic changes in the expression of dopamine D2 receptors (DRD2), dopamine transporters (DAT), and 1FosB in the basolateral amygdala (BLA), nucleus accumbens core (NAcC) and shell (NAcS), and ventromedial prefrontal cortex (vmPFC) using immunohistofluorescence. Our findings revealed no impact of GCI on delay discounting rates, while PO approach behaviours were minimally affected. Nonetheless, GCI significantly reduced DRD2 and ΔFosB-ir in the NAcS and NAcC, respectively, while DAT-ir was diminished in both NAc subregions. Collectively, our findings refine the understanding of cognitive-behavioural and biochemical responses following stroke or cardiac arrest. They support significant alterations to the dopaminergic mesocorticolimbic pathway after ischemia, which are not associated with altered impulsive choice in a DD task but may influence locomotor exploration of the OFT and EPM.
Collapse
|
13
|
Cissom C, J Paris J, Shariat-Madar Z. Dynorphins in Development and Disease: Implications for Cardiovascular Disease. Curr Mol Med 2021; 20:259-274. [PMID: 31746302 DOI: 10.2174/1566524019666191028122559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022]
Abstract
It is well-established that cardiovascular disease continues to represent a growing health problem and significant effort has been made to elucidate the underlying mechanisms. In this review, we report on past and recent high impact publications in the field of intracrine network signaling, focusing specifically on opioids and their interrelation with key modulators of the cardiovascular system and the onset of related disease. We present an overview of studies outlining the scope of cardiovascular and cerebrovascular processes that are affected by opioids, including heart function, ischemia, reperfusion, and blood flow. Specific emphasis is placed on the importance of dynorphin molecules in cerebrovascular and cardiovascular regulation. Evidence suggests that excessive or insufficient dynorphin could make an important contribution to cardiovascular physiology, yet numerous paradoxical observations frequently impede a clear understanding of the role of dynorphin. Thus, we argue that dynorphin-mediated signaling events for which an immediate regulatory effect is disputed should not be dismissed as unimportant, as they may play a role in cross-talk with other signaling networks. Finally, we consider the most recent evidence on the role of dynorphin during cardiovascular-related inflammation and on the potential value of endogenous and exogenous inhibitors of kappa-opioid receptor, a major dynorphin A receptor, to limit or prevent cardiovascular disease and its related sequelae.
Collapse
Affiliation(s)
- Cody Cissom
- William Carey College of Osteopathic Mississippi University, Medical School, Hattiesburg, Mississippi, United States
| | - Jason J Paris
- Department of Biomolecular Sciences, Division of Pharmacology, University of Mississippi, United States.,The National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, United States
| | - Zia Shariat-Madar
- Department of Biomolecular Sciences, Division of Pharmacology, University of Mississippi, United States.,The National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, United States.,Light Microscopy Core, University of Mississippi, University, Mississippi, United States
| |
Collapse
|
14
|
Morin A, Poitras M, Plamondon H. Global cerebral ischemia in adolescent male Long Evans rats: Effects of vanillic acid supplementation on stress response, emotionality, and visuospatial memory. Behav Brain Res 2021; 412:113403. [PMID: 34090940 DOI: 10.1016/j.bbr.2021.113403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/12/2021] [Accepted: 06/01/2021] [Indexed: 01/06/2023]
Abstract
The developmental period is critical in delineating plastic response to internal and external events. However, neurobehavioural effects of global cerebral ischemia (GCI) in the maturing brain remain largely unknown. This study characterised the effects of GCI experienced at puberty on adulthood (1) hippocampus CA1 neuronal damage, (2) cognitive and emotional impairments, and (3) glucocorticoid receptor (GR) expression. Effects of adolescent exposure to the phenol vanillic acid (VA) on post-ischemic outcomes were also determined. Male Long Evans rats (n = 35) were supplemented for 21 consecutive days (postnatal days 33-53) with VA (91 mg/kg) or nut paste vehicle (control) prior to a 10-min GCI or sham surgery. As adults, rats were tested in the Open Field Test (OFT), Elevated-Plus Maze (EPM), and Barnes Maze (BM). GR expression was determined in the basolateral amygdala (BLA), CA1, and paraventricular nucleus (PVN), and brain injury assessed via CA1 neuronal density. Adolescent GCI exposure induced extensive hippocampal CA1 injury, which was not prevented by VA supplementation. Behaviourally, GCI increased EPM exploration while having no impact on spatial memory. VA intake increased OFT peripheral exploration. Notably, while no delayed changes in CA1 and PVN GR immunoreactivity were noted, both treatments separately increased BLA GR expression when compared with sham-nut paste rats. Age at GCI occurrence plays a critical role on post-ischemic impairments. The observation of minimal functional impairments despite important CA1 neuronal damage supports use of compensatory mechanisms. Our findings also show daily VA supplementation during adolescence to have no protective effects on post-ischemic outcomes, contrasting adult intake.
Collapse
Affiliation(s)
- Alexandre Morin
- Behavioural Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, Ontario, K1N 6N5, Canada.
| | - Marilou Poitras
- Behavioural Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, Ontario, K1N 6N5, Canada.
| | - Hélène Plamondon
- Behavioural Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
15
|
Liu C, Yang J, Guan L, Zhu Y, Geng X. Filtered air intervention reduces inflammation and hypothalamus-pituitary-adrenal axis activation in adult male and female rats after PM 2.5 exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:35341-35348. [PMID: 32592061 DOI: 10.1007/s11356-020-09564-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/01/2020] [Indexed: 05/20/2023]
Abstract
Previous studies have indicated that particulate matter 2.5 (PM2.5) exposure stimulates systemic inflammation and activates the hypothalamus-pituitary-adrenal (HPA) axis, both of which are associated with stroke incidence and mortality. However, whether filtered air (FA) intervention modulates inflammation and HPA axis activation is still largely unknown. For FA group and PM2.5 group, adult Sprague-Dawley male and female rats were exposed to FA or PM2.5 for 6 months, respectively. For PM2.5 + 15 days FA group, the rats were achieved by receiving 15 days FA after PM2.5 exposure for 6 months. The immune cells and inflammatory biomarker levels in the blood and brain were analyzed by flow cytometry, ELISA, and qRT-PCR. To assess HPA axis activation, the levels of hormones in the blood were also analyzed by ELISA. FA intervention increased the percentage of CD4 T cells and T cells in the blood, which had decreased after PM2.5 exposure in both male and female rats. The ELISA and qRT-PCR results showed that FA intervention significantly reduced the levels of inflammatory biomarkers in the peripheral blood, and alleviated neuroinflammation in the cortex, hippocampus, and striatum. In addition, FA intervention also inhibited the inflammation in the hypothalamus and pituitary and adrenal glands, and decreased the levels of HPA axis hormones. Our results indicate that FA intervention exerts a protective effect on the brain by decreasing inflammation and HPA axis activation after PM2.5 exposure in both male and female rats.
Collapse
Affiliation(s)
- Cuiying Liu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| | - Jian Yang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuequan Zhu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
16
|
Cao C, Zhou J, Wu X, Qian Y, Hong Y, Mu J, Jin L, Zhu C, Li S. Activation of CRHR1 contributes to cerebral endothelial barrier impairment via cPLA2 phosphorylation in experimental ischemic stroke. Cell Signal 2020; 66:109467. [DOI: 10.1016/j.cellsig.2019.109467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 11/27/2022]
|
17
|
Choy KW, Tsai APY, Lin PBC, Wu MY, Lee C, Alias A, Pang CY, Liew HK. The Role of Urocortins in Intracerebral Hemorrhage. Biomolecules 2020; 10:biom10010096. [PMID: 31935997 PMCID: PMC7022917 DOI: 10.3390/biom10010096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 12/22/2022] Open
Abstract
Intracerebral hemorrhage (ICH) causes an accumulation of blood in the brain parenchyma that disrupts the normal neurological function of the brain. Despite extensive clinical trials, no medical or surgical therapy has shown to be effective in managing ICH, resulting in a poor prognosis for the patients. Urocortin (UCN) is a 40-amino-acid endogenous neuropeptide that belongs to the corticotropin-releasing hormone (CRH) family. The effect of UCN is activated by binding to two G-protein coupled receptors, CRH-R1 and CRH-R2, which are expressed in brain neurons and glial cells in various brain regions. Current research has shown that UCN exerts neuroprotective effects in ICH models via anti-inflammatory effects, which generally reduced brain edema and reduced blood-brain barrier disruption. These effects gradually help in the improvement of the neurological outcome, and thus, UCN may be a potential therapeutic target in the treatment of ICH. This review summarizes the data published to date on the role of UCN in ICH and the possible protective mechanisms underlined.
Collapse
Affiliation(s)
- Ker Woon Choy
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 42300, Malaysia;
| | - Andy Po-Yi Tsai
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.P.-Y.T.); (P.B.-C.L.)
| | - Peter Bor-Chian Lin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.P.-Y.T.); (P.B.-C.L.)
| | - Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan;
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chihyi Lee
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Aspalilah Alias
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia;
| | - Cheng-Yoong Pang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Section 3, Zhong-yang Road, Hualien 970, Taiwan
- CardioVascular Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
- Correspondence: (C.-Y.P.); or (H.-K.L.); Tel.: +886-3-8561825 (ext. 15911) (H.-K.L.); Fax: +886-3-8562019 (H.-K.L.)
| | - Hock-Kean Liew
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Section 3, Zhong-yang Road, Hualien 970, Taiwan
- CardioVascular Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien 970, Taiwan
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Correspondence: (C.-Y.P.); or (H.-K.L.); Tel.: +886-3-8561825 (ext. 15911) (H.-K.L.); Fax: +886-3-8562019 (H.-K.L.)
| |
Collapse
|
18
|
Ding X, Yang Q, Su L, Huang X, Zhou Z. Correlation Between C3435T Locus of ABCB1 Gene and Poststroke Depression in China. DNA Cell Biol 2019; 38:808-813. [PMID: 31335167 DOI: 10.1089/dna.2018.4565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Xianhui Ding
- Department of Neurology, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui Province, P.R. China
| | - Qian Yang
- Department of Neurology, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui Province, P.R. China
| | - Liwei Su
- Department of Neurology, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui Province, P.R. China
| | - Xianjun Huang
- Department of Neurology, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui Province, P.R. China
| | - Zhiming Zhou
- Department of Neurology, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui Province, P.R. China
| |
Collapse
|
19
|
Gądek-Michalska A, Tadeusz J, Bugajski A, Bugajski J. Chronic Isolation Stress Affects Subsequent Crowding Stress-Induced Brain Nitric Oxide Synthase (NOS) Isoforms and Hypothalamic-Pituitary-Adrenal (HPA) Axis Responses. Neurotox Res 2019; 36:523-539. [PMID: 31209786 PMCID: PMC6745034 DOI: 10.1007/s12640-019-00067-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/29/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023]
Abstract
The nitric oxide (NO) pathway in the brain is involved in response to psychosocial stressors. The aim of this study was to elucidate the role of nNOS and iNOS in the prefrontal cortex (PFC), hippocampus (HIP), and hypothalamus (HYPO) during social isolation stress (IS), social crowding stress (CS), and a combined IS + CS. In the PFC, 3 days of CS increased iNOS but not nNOS protein level. In the HIP and HYPO, the levels of nNOS and iNOS significantly increased after 3 days of CS. In the PFC, IS alone (11 days) enhanced iNOS protein level following 3 days of CS and increased nNOS level in the HIP and HYPO after 14 days of CS. By contrast, in the HIP, IS abolished the subsequent CS-induced increase in nNOS in the HIP and strongly elevated iNOS level after 7 days of CS. In the HYPO, prior IS inhibited nNOS protein level induced by subsequent CS for 3 days, but increased nNOS protein level after longer exposure times to CS. Isolation stress strongly upregulated plasma interleukin-1β (IL-1β) and adrenocorticotropic hormone (ACTH) levels while corticosterone (CORT) level declined. We show that the modulatory action of the NO pathway and ACTH/CORT adaptation to chronic social isolation stress is dependent on the brain structure and nature and duration of the stressor. Our results indicate that isolation is a robust natural stressor in social animals; it enhances the NO pathway in the PFC and abolishes subsequent social CS-induced NOS responses in the HIP and HYPO.
Collapse
Affiliation(s)
- Anna Gądek-Michalska
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, 31-343, Kraków, Poland.
| | - Joanna Tadeusz
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, 31-343, Kraków, Poland
| | - Andrzej Bugajski
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18 Street, 31-121, Kraków, Poland
| | - Jan Bugajski
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, 31-343, Kraków, Poland
| |
Collapse
|
20
|
Baumgartner P, El Amki M, Bracko O, Luft AR, Wegener S. Sensorimotor stroke alters hippocampo-thalamic network activity. Sci Rep 2018; 8:15770. [PMID: 30361495 PMCID: PMC6202365 DOI: 10.1038/s41598-018-34002-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/10/2018] [Indexed: 01/06/2023] Open
Abstract
Many stroke survivors experience persisting episodic memory disturbances. Since hippocampal and para-hippocampal areas are usually spared from the infarcted area, alterations of memory processing networks remote from the ischemic brain region might be responsible for the observed clinical symptoms. To pinpoint changes in activity of hippocampal connections and their role in post-stroke cognitive impairment, we induced ischemic stroke by occlusion of the middle cerebral artery (MCAO) in adult rats and analyzed the functional and structural consequences using activity-dependent manganese (Mn2+) enhanced MRI (MEMRI) along with behavioral and histopathological analysis. MCAO caused stroke lesions of variable extent along with sensorimotor and cognitive deficits. Direct hippocampal injury occurred in some rats, but was no prerequisite for cognitive impairment. In healthy rats, injection of Mn2+ into the entorhinal cortex resulted in distribution of the tracer within the hippocampal subfields into the lateral septal nuclei. In MCAO rats, Mn2+ accumulated in the ipsilateral thalamus. Histopathological analysis revealed secondary thalamic degeneration 28 days after stroke. Our findings provide in vivo evidence that remote sensorimotor stroke modifies the activity of hippocampal-thalamic networks. In addition to potentially reversible alterations in signaling of these connections, structural damage of the thalamus likely reinforces dysfunction of hippocampal-thalamic circuitries.
Collapse
Affiliation(s)
- Philipp Baumgartner
- Department of Neurology, University Hospital and University of Zurich, Zurich, 8006, Switzerland
| | - Mohamad El Amki
- Department of Neurology, University Hospital and University of Zurich, Zurich, 8006, Switzerland
| | - Oliver Bracko
- Department of Neurology, University Hospital and University of Zurich, Zurich, 8006, Switzerland.,Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY14853, United States
| | - Andreas R Luft
- Department of Neurology, University Hospital and University of Zurich, Zurich, 8006, Switzerland
| | - Susanne Wegener
- Department of Neurology, University Hospital and University of Zurich, Zurich, 8006, Switzerland.
| |
Collapse
|
21
|
Jiang S, Li T, Ji T, Yi W, Yang Z, Wang S, Yang Y, Gu C. AMPK: Potential Therapeutic Target for Ischemic Stroke. Am J Cancer Res 2018; 8:4535-4551. [PMID: 30214637 PMCID: PMC6134933 DOI: 10.7150/thno.25674] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023] Open
Abstract
5'-AMP-activated protein kinase (AMPK), a member of the serine/threonine (Ser/Thr) kinase group, is universally distributed in various cells and organs. It is a significant endogenous defensive molecule that responds to harmful stimuli, such as cerebral ischemia, cerebral hemorrhage, and, neurodegenerative diseases (NDD). Cerebral ischemia, which results from insufficient blood flow or the blockage of blood vessels, is a major cause of ischemic stroke. Ischemic stroke has received increased attention due to its '3H' effects, namely high mortality, high morbidity, and high disability. Numerous studies have revealed that activation of AMPK plays a protective role in the brain, whereas its action in ischemic stroke remains elusive and poorly understood. Based on existing evidence, we introduce the basic structure, upstream regulators, and biological roles of AMPK. Second, we analyze the relationship between AMPK and the neurovascular unit (NVU). Third, the actions of AMPK in different phases of ischemia and current therapeutic methods are discussed. Finally, we evaluate existing controversy and provide a detailed analysis, followed by ethical issues, potential directions, and further prospects of AMPK. The information complied here may aid in clinical and basic research of AMPK, which may be a potent drug candidate for ischemic stroke treatment in the future.
Collapse
|
22
|
de la Tremblaye PB, Benoit SM, Schock S, Plamondon H. CRHR1 exacerbates the glial inflammatory response and alters BDNF/TrkB/pCREB signaling in a rat model of global cerebral ischemia: implications for neuroprotection and cognitive recovery. Prog Neuropsychopharmacol Biol Psychiatry 2017. [PMID: 28647536 DOI: 10.1016/j.pnpbp.2017.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study examined the impact of corticotropin-releasing hormone type 1 receptor (CRHR1) blockade using Antalarmin (ANT) on the expression of markers of neuroplasticity and inflammation, as well as neuroprotection and behavioral recovery following global cerebral ischemia. Male Wistar rats (N=50) were treated with ANT (2μg/2μl; icv) or a vehicle solution prior to a sham or four vessel (4VO) occlusion. Seven days post ischemia, anxiety was assessed in the Elevated Plus Maze and Open Field tests, and fear and spatial learning in a Y-Maze Passive Avoidance Task and the Barnes Maze. Thirty days post ischemia, brain derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) receptor expression, hippocampal neuronal death and inflammation were determined by analyzing immunoreactivity (ir) of neuron-specific nuclear protein (NeuN), microglia (IBA1, ionized calcium binding adaptor molecule 1), astrocytes (GFAP, glial fibrillary acidic protein) and TNFα (tumor necrosis factor alpha) a pro-inflammatory cytokine. Our findings revealed that ANT improved behavioral impairments, while conferring neuroprotection and blunting neuroinflammation in all hippocampal sub-regions post ischemia. We also observed reduced BDNF and TrkB mRNA and protein levels at the hippocampus, and increased expression at the hypothalamus and amygdala post ischemia, site-specific alterations which were regularized by pre-ischemic CRHR1 blockade. These findings support that CRHR1 actively contributes to altered brain plasticity, neuronal inflammation and injury and recovery of function following ischemic brain insults.
Collapse
Affiliation(s)
- Patricia B de la Tremblaye
- Behavioural Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON K1N 6N5, Canada
| | - Simon M Benoit
- Behavioural Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON K1N 6N5, Canada
| | - Sarah Schock
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Rd, Ottawa, ON K1H 8N5, Canada
| | - Hélène Plamondon
- Behavioural Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
23
|
Wang Y, Liu J, Wang X, Liu Z, Li F, Chen F, Geng X, Ji Z, Du H, Hu X. Frequencies of circulating B- and T-lymphocytes as indicators for stroke outcomes. Neuropsychiatr Dis Treat 2017; 13:2509-2518. [PMID: 29042780 PMCID: PMC5633294 DOI: 10.2147/ndt.s148073] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Stroke has high mortality and morbidity. Biomarkers are required for to predict stroke outcomes, which could help clinicians to provide rationale approaches for patient management. The dynamic changes in circulating immune cells have been reported in stroke patients and animal models of stroke. AIM The aim of this study was to explore biomarkers to predict stroke outcomes by investigating the relationship between the frequencies of circulating immune cells and stroke outcomes. METHODS In all, 50 acute ischemic stroke (AIS) patients were enrolled. Their blood samples were collected upon hospital admission and on day 1 and day 7 after stroke, and the leukocyte subsets were analyzed by flow cytometry. The dynamic changes in some types of immune cells in the AIS course and their correlation with clinical parameters were analyzed. Blood samples from 123 age- and gender-matched healthy subjects were used as controls. RESULTS The proportions of T-lymphocytes and NK cells in stroke patients were significantly lower than in healthy controls. The frequencies of B- and T-lymphocytes were negatively correlated with stroke severity at onset, including neurological deficits as assessed by National Institutes of Health Stroke Scale (NIHSS), and infarct volume as measured by the diffusion-weighted images (DWIs) of magnetic resonance (MR). Logistic regression analysis showed that modified Rankin scale (mRs) scores, a score system for the long-term neurological dysfunctions, were negatively correlated with the percentage of B-lymphocytes at stroke onset. CONCLUSION The proportions of B- and T-lymphocytes are associated with neurological outcomes of stroke patients and might be used as an indicator for severity and prognosis of ischemic stroke.
Collapse
Affiliation(s)
- Yanling Wang
- Department of Neurology, China-America Institute of Neuroscience
| | - Jihong Liu
- Department of Neurology, China-America Institute of Neuroscience
| | - Xuemei Wang
- Department of Neurology, China-America Institute of Neuroscience
| | - Zongjian Liu
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Fengwu Li
- Department of Neurology, China-America Institute of Neuroscience
| | - Fenghua Chen
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiaokun Geng
- Department of Neurology, China-America Institute of Neuroscience
| | - Zhili Ji
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Huishan Du
- Department of Neurology, China-America Institute of Neuroscience
| | - Xiaoming Hu
- Department of Neurology, China-America Institute of Neuroscience.,Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|