1
|
Cintron MA, Baumer Y, Pang AP, Aquino Peterson EM, Ortiz-Whittingham LR, Jacobs JA, Sharda S, Potharaju KA, Baez AS, Gutierrez-Huerta CA, Ortiz-Chaparro EN, Collins BS, Mitchell VM, Saurabh A, Mendelsohn LG, Redekar NR, Paul S, Corley MJ, Powell-Wiley TM. Associations between the neural-hematopoietic-inflammatory axis and DNA methylation of stress-related genes in human leukocytes: Data from the Washington, D.C. cardiovascular health and needs assessment. Brain Behav Immun Health 2025; 45:100976. [PMID: 40166762 PMCID: PMC11957810 DOI: 10.1016/j.bbih.2025.100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 04/02/2025] Open
Abstract
Chronic stress is associated with cardiovascular disease (CVD) risk and elevated amygdala activity. Previous research suggests a plausible connection between amygdala activity, hematopoietic tissue activity, and cardiovascular events; however, the underlying biological mechanisms linking these relationships are incompletely understood. Chronic stress is thought to modulate epigenomic modifications. Our investigation focused on associations between amygdala activity (left (L), right (R), maximum (M), and average (Av) AmygA), and splenic (SpleenA), and bone marrow activity (BMA) as determined by 18Fluorodeoxyglucose (FDG) on Positron Emission Tomography/Computed Tomography (PET/CT) scans. Subsequently, we assessed how these markers of chronic stress and hematopoietic activity might relate to the DNA methylation of stress-associated genes in a community-based cohort of African American individuals from Washington D.C. at risk for CVD. To assess the relationships between AmgyA, SpleenA, BMA, and DNA methylation, linear regression models were run and adjusted for body mass index and 10-year predicted atherosclerotic CVD risk. Among 60 participants (93.3% female, mean age 60.8), M-AmygA positively associated with SpleenA (β = 0.29; p = 0.001), but not BMA (β = 0.01; p = 0.89). M-AmygA (β = 0.37; p = 0.01 and β = 0.31; p = 0.02, respectively) and SpleenA (β = 0.73; p < 0.01 and β = 0.59; p = 0.005, respectively) were associated with both IL-1β and TNFα. Decreased M-AmygA, SpleenA, IL-1β, and TNFα were associated with methylation of NFκB1 at cg07955720 and STAT3 at cg19438966. Our findings suggest a potential association between AmygA, SpleenA, and pro-inflammatory cytokines in the setting of chronic stress, suggesting an adverse hematopoietic effect. Furthermore, findings reveal associations with epigenetic markers of NFκB and JAK/STAT pathways linked to chronic stress.
Collapse
Affiliation(s)
- Manuel A. Cintron
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alina P.S. Pang
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Elizabeth M. Aquino Peterson
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lola R. Ortiz-Whittingham
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joshua A. Jacobs
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sonal Sharda
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kameswari A. Potharaju
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew S. Baez
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cristhian A. Gutierrez-Huerta
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erika N. Ortiz-Chaparro
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Billy S. Collins
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Valerie M. Mitchell
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Abhinav Saurabh
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laurel G. Mendelsohn
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Neelam R. Redekar
- Integrated Data Sciences Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Subrata Paul
- Integrated Data Sciences Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael J. Corley
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Intramural Research Program, National Institute on Minority Health Disparities, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Brennen M, Tappen R, Johnson V. The Association of Perceived Stress, Glucocorticoids Receptors, and Corticotropin-Releasing Hormone Gene Expression During Pregnancy. Biol Res Nurs 2025:10998004251336366. [PMID: 40260623 DOI: 10.1177/10998004251336366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
The preterm birth rate and the maternal mortality rate are 1.6 and 2.6 times higher for Black women than for White women, respectively, in the United States. This disproportionate difference in maternal health outcomes is a notable health inequity. The purpose of this study was to evaluate the influence of perceived stress, and glucocorticoid receptors (GR) on histone acetylation (HAT) of the corticotropin-releasing hormone (CRH) gene between non-Hispanic Black and non-Hispanic White women in their second trimester of pregnancy. This study used a cross-sectional design to analyze secondary, deidentified data including peripheral blood monocyte cells, from a prior study. The study sample consisted of 32 non-Hispanic Black women and 73 non-Hispanic White women from the parent study. A four-step hierarchical linear regression analysis was used to analyze the influence of race, perceived stress, and GR on the HAT of the CRH gene. The hierarchical linear regression analysis found that race, perceived stress, and GR significantly predicted the HAT of the CRH. GR explained 41.33% of the variation in HAT CRH of the gene, and age plus race explained an additional 3.56% of the variation in HAT CRH of the gene. The findings of this study suggest that perceived stress and GR among young Black women were associated with higher levels of HAT of the CRH gene, which may contribute to adverse pregnancy outcomes such as preeclampsia and preterm birth. These findings highlight stress-related factors contributing to maternal morbidity, and the need for a comprehensive approach to improving prenatal healthcare.
Collapse
Affiliation(s)
- Marlene Brennen
- Christine E. Lynn College of Nursing, Florida Atlantic University, Boca Raton, FL, USA
| | - Ruth Tappen
- Christine E. Lynn College of Nursing, Florida Atlantic University, Boca Raton, FL, USA
| | - Vanessa Johnson
- Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
3
|
Chen M, He Y, Jia Y, Wu L, Zhao R. Liver transcriptome response to avian pathogenic Escherichia coli infection in broilers with corticosterone treatment. Poult Sci 2025; 104:105020. [PMID: 40088534 PMCID: PMC11937665 DOI: 10.1016/j.psj.2025.105020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025] Open
Abstract
Avian pathogenic Escherichia coli (APEC) infection has high morbidity and mortality, and multiple stressors encountered during rearing place poultry in a state of stress. However, research on how poultry cope with APEC infection under stress situation is still limited. In this study, we established a broiler stress model by corticosterone (CORT) administration subcutaneously for 7 consecutive days, followed by APEC challenge intramuscularly. CORT treatment significantly reduced body weight (BW) and average daily gain (ADG) while increasing feed conversion ratio (FCR) (P < 0.01). APEC infection significantly decreased ADG (P < 0.01). CORT treatment and APEC infection elevated plasma corticosterone and heterophil to lymphocyte (H/L) ratio (P < 0.05). Additionally, plasma aspartate aminotransferase (AST), AST to alanine aminotransferase (AST/ALT) ratio, and lactate dehydrogenase (LDH) levels increased significantly (P < 0.01). Histopathological analysis revealed structural damage of liver, indicating that CORT treatment and APEC infection induced liver injury. However, CORT pretreatment broilers exhibited a milder histopathological lesions and significantly lower AST, ALT, and LDH levels (P < 0.05) compared to APEC infection alone. CORT treatment and APEC infection increased plasma levels of lysozyme (LZM), total protein (TP), and globulin (GLOB) (P < 0.05), while CORT pretreatment further elevating their concentrations compared to APEC infection alone, suggesting an enhanced innate immune response. Liver transcriptomic analysis identified 768, 335, and 567 differentially expressed genes (DEGs) following CORT, APEC, or both treatments, respectively, enriched in cytokine-cytokine receptor interaction, PPAR signaling pathway, Toll-like receptor signaling pathway, MAPK signaling pathway, steroid hormone biosynthesis pathway, arachidonic acid metabolism, and phagosome pathway, etc., indicating that CORT treatment regulates lipid metabolism and immunity, while APEC infection induces inflammation and disrupts lipid metabolism. Notably, CORT pretreatment may mitigate APEC induced liver injury by enhancing phagosome function. Moreover, glucocorticoid receptor (GR) may regulate DEGs expressions, thus affected broilers response to CORT, APEC, or both treatments. These results suggest that CORT treatment, APEC infection, or both significantly affect the growth performance, immune response and liver function of broilers, while lipid metabolism may play a crucial role.
Collapse
Affiliation(s)
- Mengru Chen
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yifei He
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yimin Jia
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Lei Wu
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
4
|
Pham K, Lazenby M, Yamada K, Lattin CR, Wada H. Zebra finches (Taeniopygia castanotis) display varying degrees of stress resilience in response to constant light. Gen Comp Endocrinol 2025; 361:114644. [PMID: 39592083 PMCID: PMC11811949 DOI: 10.1016/j.ygcen.2024.114644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
The ability for traits to recover after exposure to stress varies depending on the magnitude, duration, or type of stressor. One such stressor is circadian rhythm disruption stemming from exposure to light at night. Circadian rhythm disruption may lead to long-term physiological consequences; however, the capacity in which individuals recover and display stress resilience is not known. Here, we exposed zebra finches (Taeniopygia castanotis) to constant light (24L:0D) or a regular light/dark cycle (14L:10D) for 23 days, followed by a recovery period for 12 days. We measured body mass, corticosterone, and glucose levels at multiple timepoints, and relative protein expression of glucocorticoid receptors at euthanasia. Body mass significantly increased over time in light-exposed birds compared to controls, but a 12-day recovery period reversed this increase. Baseline levels of circulating glucose decreased in light-exposed birds compared to controls, but returned to pretreatment levels after the 12-day recovery period. In contrast, the glucose stress response did not show a similar recovery trend, suggesting longer recovery is needed or that this is a persistent effect in light-exposed birds. Surprisingly, we did not detect any differences in baseline corticosterone or reactivity of the hypothalamic-pituitiary-adrenal (HPA) axis between groups throughout the experiment. Moreover, we did not detect differences between relative protein expression of glucocorticoid receptors or a relationship with HPA axis reactivity. Yet, we found a positive relationship between glucocorticoid receptors and the glucose stress response, but only in the light group. Our results indicate that physiological and morphological traits differ in their ability to recover in response to constant light and warrants further investigation on the mechanisms driving stress resilience under a disrupted circadian rhythm.
Collapse
Affiliation(s)
- Kevin Pham
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA.
| | - Madeline Lazenby
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - KayLene Yamada
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Christine R Lattin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Haruka Wada
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
5
|
Bekhbat M. Glycolytic metabolism: Food for immune cells, fuel for depression? Brain Behav Immun Health 2024; 40:100843. [PMID: 39263313 PMCID: PMC11387811 DOI: 10.1016/j.bbih.2024.100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/16/2024] [Accepted: 08/10/2024] [Indexed: 09/13/2024] Open
Abstract
Inflammation is one biological pathway thought to impact the brain to contribute to major depressive disorder (MDD) and is reliably associated with resistance to standard antidepressant treatments. While peripheral immune cells, particularly monocytes, have been associated with aspects of increased inflammation in MDD and symptom severity, significant gaps in knowledge exist regarding the mechanisms by which these cells are activated to contribute to behavioral symptoms in MDD. One concept that has gained recent appreciation is that metabolic rewiring to glycolysis in activated myeloid cells plays a crucial role in facilitating these cells' pro-inflammatory functions, which may underlie myeloid contribution to systemic inflammation and its effects on the brain. Given emerging evidence from translational studies of depression that peripheral monocytes exhibit signs of glycolytic activation, better understanding the immunometabolic phenotypes of monocytes which are known to be elevated in MDD with high inflammation is a critical step toward comprehending and treating the impact of inflammation on the brain. This narrative review examines the extant literature on glycolytic metabolism of circulating monocytes in depression and discusses the functional implications of immunometabolic shifts at both cellular and systemic levels. Additionally, it proposes potential therapeutic applications of existing immunomodulators that target glycolysis and related metabolic pathways in order to reverse the impact of elevated inflammation on the brain and depressive symptoms.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
6
|
Gupta A, Vejapi M, Knezevic NN. The role of nitric oxide and neuroendocrine system in pain generation. Mol Cell Endocrinol 2024; 591:112270. [PMID: 38750811 DOI: 10.1016/j.mce.2024.112270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Previous studies have indicated a complex interplay between the nitric oxide (NO) pain signaling pathways and hormonal signaling pathways in the body. This article delineates the role of nitric oxide signaling in neuropathic and inflammatory pain generation and subsequently discusses how the neuroendocrine system is involved in pain generation. Hormonal systems including the hypothalamic-pituitary axis (HPA) generation of cortisol, the renin-angiotensin-aldosterone system, calcitonin, melatonin, and sex hormones could potentially contribute to the generation of nitric oxide involved in the sensation of pain. Further research is necessary to clarify this relationship and may reveal therapeutic targets involving NO signaling that alleviate neuropathic and inflammatory pain.
Collapse
Affiliation(s)
- Aayush Gupta
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA; Rosalind Franklin University of Medicine and Science, USA
| | - Maja Vejapi
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA; Department of Anesthesiology, University of Illinois, Chicago, IL, USA; Department of Surgery, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
7
|
Radithia D, Mahdani FY, Bakti RK, Parmadiati AE, Subarnbhesaj A, Pramitha SR, Pradnyani IGAS. Effectiveness of low-level laser therapy in reducing pain score and healing time of recurrent aphthous stomatitis: a systematic review and meta-analysis. Syst Rev 2024; 13:192. [PMID: 39039581 PMCID: PMC11264394 DOI: 10.1186/s13643-024-02595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Recurrent aphthous stomatitis (RAS) is a common chronic inflammatory oral disease that negatively impacts the quality of life. Current therapies aim to reduce pain and healing process yet challenges such as rapid loss due to salivary flushing in topical drugs and adverse effects due to prolonged use of systemic medications require further notice. Low-level laser therapy is reported with immediate pain relief and faster healing thus preserving the potential for optimal treatment modalities. This review critically analyses and summarizes the effectiveness of LLLT in reducing pain scores and healing time of RAS. METHODS A systematic search was conducted in ScienceDirect, PubMed, and Scopus using keywords of low-level laser therapy, photo-biomodulation therapy, and recurrent aphthous stomatitis. RCTs between 1967 to June 2022, presenting characteristics of the laser and reporting pain score and/or healing time of RAS after irradiation were included. Animal studies and recurrent aphthous ulcers with a history of systemic conditions were excluded. Studies were critically appraised using the RoB 2 tool. A meta-analysis was performed using inverse variance random effects. RESULTS Fourteen trials with a total of 664 patients were included. Reduced pain was reported in 13 studies, while shortened healing time was presented in 4. The pooling of two studies after CO2 irradiation demonstrated faster healing time compared to placebo (MD - 3.72; 95% CI - 4.18, - 3.25). CONCLUSION Pain score and healing time of RAS were reduced after irradiation with LLLT. RoB resulted in "some concerns" urging well-designed RCTs with larger samples to further assess each laser application for comparison. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42022355737.
Collapse
Affiliation(s)
- Desiana Radithia
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo No.47, Pacar Kembang, Kec. Tambaksari, Kota SBY, Jawa Timur, 60132, Indonesia.
| | - Fatma Yasmin Mahdani
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo No.47, Pacar Kembang, Kec. Tambaksari, Kota SBY, Jawa Timur, 60132, Indonesia
| | - Reiska Kumala Bakti
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo No.47, Pacar Kembang, Kec. Tambaksari, Kota SBY, Jawa Timur, 60132, Indonesia
| | - Adiastuti Endah Parmadiati
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo No.47, Pacar Kembang, Kec. Tambaksari, Kota SBY, Jawa Timur, 60132, Indonesia
| | - Ajiravudh Subarnbhesaj
- Department of Oral Biomedical Science, Division of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, 123 Thanon Mittraphap, Tambon Nai Mueang, Mueang Khon Kaen District, Khon Kaen, 40002, Thailand
| | - Selviana Rizky Pramitha
- Oral Medicine Specialist Study Program, Faculty of Dental Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo No.47, Pacar Kembang, Kec. Tambaksari, Kota SBY, Jawa Timur, 60132, Indonesia
| | - I Gusti Agung Sri Pradnyani
- Oral Medicine Specialist Study Program, Faculty of Dental Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo No.47, Pacar Kembang, Kec. Tambaksari, Kota SBY, Jawa Timur, 60132, Indonesia
| |
Collapse
|
8
|
Joëls M, Karst H, Tasker JG. The emerging role of rapid corticosteroid actions on excitatory and inhibitory synaptic signaling in the brain. Front Neuroendocrinol 2024; 74:101146. [PMID: 39004314 DOI: 10.1016/j.yfrne.2024.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
Over the past two decades, there has been increasing evidence for the importance of rapid-onset actions of corticosteroid hormones in the brain. Here, we highlight the distinct rapid corticosteroid actions that regulate excitatory and inhibitory synaptic transmission in the hypothalamus, the hippocampus, basolateral amygdala, and prefrontal cortex. The receptors that mediate rapid corticosteroid actions are located at or close to the plasma membrane, though many of the receptor characteristics remain unresolved. Rapid-onset corticosteroid effects play a role in fast neuroendocrine feedback as well as in higher brain functions, including increased aggression and anxiety, and impaired memory retrieval. The rapid non-genomic corticosteroid actions precede and complement slow-onset, long-lasting transcriptional actions of the steroids. Both rapid and slow corticosteroid actions appear to be indispensable to adapt to a continuously changing environment, and their imbalance can increase an individual's susceptibility to psychopathology.
Collapse
Affiliation(s)
- Marian Joëls
- University Medical Center Groningen, University of Groningen, the Netherlands; University Medical Center Utrecht, Utrecht University, the Netherlands.
| | - Henk Karst
- University Medical Center Utrecht, Utrecht University, the Netherlands; SILS-CNS. University of Amsterdam, the Netherlands.
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, and Southeast Louisiana Veterans Affairs Healthcare System, New Orleans, USA.
| |
Collapse
|
9
|
Martin-Iglesias D, Paredes-Ruiz D, Ruiz-Irastorza G. Use of Glucocorticoids in SLE: A Clinical Approach. Mediterr J Rheumatol 2024; 35:342-353. [PMID: 39193186 PMCID: PMC11345604 DOI: 10.31138/mjr.230124.uos] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/15/2024] [Accepted: 06/26/2024] [Indexed: 08/29/2024] Open
Abstract
Glucocorticoids (GCs) are one of the most effective first-line treatments for systemic lupus erythematosus (SLE). However, GC burden is associated with damage. The initial GC dose and tapering schedule should be tailored to the severity of the clinical scenario. As lupus therapy should prompt remission while minimising damage, recent guidelines recommend a more accurate approach to the use of GCs, setting lower starting doses and rapid tapering schemes, and encouraging maintenance prednisolone doses <5 mg/day. Methylprednisolone pulses (MP) help to reduce the dose of oral GCs and improve the clinical response in both severe and non-severe manifestations, without significant side effects. Fixed-tapering GC scheme provides a useful strategy to reduce GCs exposure. Long-term antimalarial treatment and early initiation of immunosuppressive drugs improve clinical efficacy while reducing GC toxicity. Besides, withdrawal of GCs is an achievable goal in patients in prolonged remission on stable treatment, and recent studies have attempted to identify the most suitable candidates. In this article, we review the pharmacological basis, clinical evidence of efficacy, dose-related harms, and potential withdrawal of GCs. We also review guidelines recommendations and finally give a personal and practical approach to dealing with the use of GCs in SLE patients.
Collapse
Affiliation(s)
- Daniel Martin-Iglesias
- Autoimmune Diseases Research Unit, Biobizkaia Health Research Institute, Department of Internal Medicine, Hospital Universitario Cruces, Spain
| | - Diana Paredes-Ruiz
- Autoimmune Diseases Research Unit, Biobizkaia Health Research Institute, Department of Internal Medicine, Hospital Universitario Cruces, Spain
| | - Guillermo Ruiz-Irastorza
- Autoimmune Diseases Research Unit, Biobizkaia Health Research Institute, Department of Internal Medicine, Hospital Universitario Cruces, Spain
- University of the Basque Country, Bizkaia, the Basque Country, Spain
| |
Collapse
|
10
|
Paredes-Ruiz D, Martin-Iglesias D, Ruiz-Irastorza G. Balancing risks and benefits in the use of hydroxychloroquine and glucocorticoids in systemic lupus erythematosus. Expert Rev Clin Immunol 2024; 20:359-373. [PMID: 38112074 DOI: 10.1080/1744666x.2023.2294938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
INTRODUCTION Hydroxychloroquine (HCQ) and glucocorticoids (GCs) constitute the oldest and more used drugs in the treatment of systemic lupus erythematosus (SLE). Despite this long experience, both are still subject to a number of uncertainties, mainly regarding the dose. AREAS COVERED We review the main mechanisms of action, the clinical and toxic effects of HCQ and GCs and analyze the recommendations for the use of both in guidelines published since 2018. We offer a set of recommendations based on the pharmacology, mechanisms of action and clinical evidence. EXPERT OPINION HCQ is the backbone therapy for SLE, and a judicious use must be accomplished, using doses that allow a good control of lupus without compromising the safety of treatments very much prolonged over the time. Stable doses of 200 mg/day seem to accomplish both conditions. GCs should be used more judiciously, with methyl-prednisolone pulses as the main therapy for inducing rapid remission and doses ≤5-2.5 mg/day be never exceeded in long-term maintenance treatments.
Collapse
Affiliation(s)
- Diana Paredes-Ruiz
- Autoimmune Diseases Research Unit, Department of Internal Medicine, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, The Basque Country, Spain
| | - Daniel Martin-Iglesias
- Autoimmune Diseases Research Unit, Department of Internal Medicine, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, The Basque Country, Spain
| | - Guillermo Ruiz-Irastorza
- Autoimmune Diseases Research Unit, Department of Internal Medicine, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, The Basque Country, Spain
- Department of Medicine, University of the Basque Country, The Basque Country, Spain
| |
Collapse
|
11
|
Duarte-Silva S, Da Silva JD, Monteiro-Fernandes D, Costa MD, Neves-Carvalho A, Raposo M, Soares-Cunha C, Correia JS, Nogueira-Goncalves G, Fernandes HS, Oliveira S, Ferreira-Fernandes AR, Rodrigues F, Pereira-Sousa J, Vilasboas-Campos D, Guerreiro S, Campos J, Meireles-Costa L, Rodrigues CM, Cabantous S, Sousa SF, Lima M, Teixeira-Castro A, Maciel P. Glucocorticoid receptor-dependent therapeutic efficacy of tauroursodeoxycholic acid in preclinical models of spinocerebellar ataxia type 3. J Clin Invest 2024; 134:e162246. [PMID: 38227368 PMCID: PMC10904051 DOI: 10.1172/jci162246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/09/2024] [Indexed: 01/17/2024] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is an adult-onset neurodegenerative disease caused by a polyglutamine expansion in the ataxin-3 (ATXN3) gene. No effective treatment is available for this disorder, other than symptom-directed approaches. Bile acids have shown therapeutic efficacy in neurodegenerative disease models. Here, we pinpointed tauroursodeoxycholic acid (TUDCA) as an efficient therapeutic, improving the motor and neuropathological phenotype of SCA3 nematode and mouse models. Surprisingly, transcriptomic and functional in vivo data showed that TUDCA acts in neuronal tissue through the glucocorticoid receptor (GR), but independently of its canonical receptor, the farnesoid X receptor (FXR). TUDCA was predicted to bind to the GR, in a similar fashion to corticosteroid molecules. GR levels were decreased in disease-affected brain regions, likely due to increased protein degradation as a consequence of ATXN3 dysfunction being restored by TUDCA treatment. Analysis of a SCA3 clinical cohort showed intriguing correlations between the peripheral expression of GR and the predicted age at disease onset in presymptomatic subjects and FKBP5 expression with disease progression, suggesting this pathway as a potential source of biomarkers for future study. We have established a novel in vivo mechanism for the neuroprotective effects of TUDCA in SCA3 and propose this readily available drug for clinical trials in SCA3 patients.
Collapse
Affiliation(s)
- Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Diogo Da Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Medical Genetics Center Dr. Jacinto de Magalhães, Santo António University Hospital Center, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Biomedical Sciences Institute, Porto University, Porto, Portugal
| | - Daniela Monteiro-Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Marta Daniela Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Andreia Neves-Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mafalda Raposo
- Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana S. Correia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Gonçalo Nogueira-Goncalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Henrique S. Fernandes
- UCIBIO – Applied Molecular Biosciences Unit, BioSIM – Departamento de Biomedicina and
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Stephanie Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Rita Ferreira-Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Pereira-Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Daniela Vilasboas-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara Guerreiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Liliana Meireles-Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cecilia M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Stephanie Cabantous
- Cancer Research Center of Toulouse (CRCT), Inserm, Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Sergio F. Sousa
- UCIBIO – Applied Molecular Biosciences Unit, BioSIM – Departamento de Biomedicina and
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Manuela Lima
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patricia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
12
|
Sundermann EE, Dastgheyb R, Moore DJ, Buchholz AS, Bondi MW, Ellis RJ, Letendre SL, Heaton RK, Rubin LH. Identifying and distinguishing cognitive profiles among virally suppressed people with HIV. Neuropsychology 2024; 38:169-183. [PMID: 37971860 PMCID: PMC11260085 DOI: 10.1037/neu0000935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
OBJECTIVE Cognitive deficits are common among people with HIV (PWH), even when virally suppressed. We identified cognitive profiles among virally suppressed PWH and determined how sociodemographic, clinical/behavioral, and HIV disease characteristics distinguish profile membership. METHOD Participants included 704 virally suppressed PWH (Mage = 43.9 [SD = 10.2], 88% male, 58.9% non-Hispanic White) from the HIV Neurobehavioral Research Program. Demographically adjusted T scores were derived from a neuropsychological evaluation comprised of 13 tests. We implemented a pipeline involving dimension reduction and clustering to identify profiles of cognitive performance. Random forest models on a 70/30 training/testing set with internal cross-validation were used to identify sociodemographic, clinical/behavioral, and HIV disease correlates of profile membership. RESULTS Six cognitive profiles were identified: (a) "unimpaired" (19.9%); (b) weakness in verbal learning and memory (15.5%); (c) weakness in executive function and learning (25.8%); (d) weakness in motor, processing speed, and executive function (8.1%); (e) impaired learning and recall with weak-to-impaired motor, processing speed, and executive function (13.1%); (f) global deficits (17.6%). The most discriminative sociodemographic, clinical/behavioral, and HIV disease characteristics varied by profile with self-reported mood symptoms and cognitive/functional difficulties (e.g., language/communication, memory, and overall everyday function complaints) most consistently associated with profile membership. CONCLUSIONS Cognitive profiles and their associated factors among PWH are heterogeneous, but learning/memory deficits were most common and self-reported mood, and cognitive/functional difficulties were most consistently related to profile membership. This heterogeneity in cognitive profiles and their correlates in PWH suggests that differing mechanisms contribute to cognitive deficits and, thus, underscores the need for personalized risk reduction and therapeutic strategies among PWH. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | - David J Moore
- Department of Psychiatry, University of California, San Diego
| | | | - Mark W Bondi
- Department of Psychiatry, University of California, San Diego
| | - Ronald J Ellis
- Department of Psychiatry, University of California, San Diego
| | | | - Robert K Heaton
- Department of Psychiatry, University of California, San Diego
| | - Leah H Rubin
- Department of Neurology, Johns Hopkins University
| |
Collapse
|
13
|
Qiu B, Zhong Z, Dou L, Xu Y, Zou Y, Weldon K, Wang J, Zhang L, Liu M, Williams KE, Spence JP, Bell RL, Lai Z, Yong W, Liang T. Knocking out Fkbp51 decreases CCl 4-induced liver injury through enhancement of mitochondrial function and Parkin activity. Cell Biosci 2024; 14:1. [PMID: 38167156 PMCID: PMC10763032 DOI: 10.1186/s13578-023-01184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND AND AIMS Previously, we found that FK506 binding protein 51 (Fkbp51) knockout (KO) mice resist high fat diet-induced fatty liver and alcohol-induced liver injury. The aim of this research is to identify the mechanism of Fkbp51 in liver injury. METHODS Carbon tetrachloride (CCl4)-induced liver injury was compared between Fkbp51 KO and wild type (WT) mice. Step-wise and in-depth analyses were applied, including liver histology, biochemistry, RNA-Seq, mitochondrial respiration, electron microscopy, and molecular assessments. The selective FKBP51 inhibitor (SAFit2) was tested as a potential treatment to ameliorate liver injury. RESULTS Fkbp51 knockout mice exhibited protection against liver injury, as evidenced by liver histology, reduced fibrosis-associated markers and lower serum liver enzyme levels. RNA-seq identified differentially expressed genes and involved pathways, such as fibrogenesis, inflammation, mitochondria, and oxidative metabolism pathways and predicted the interaction of FKBP51, Parkin, and HSP90. Cellular studies supported co-localization of Parkin and FKBP51 in the mitochondrial network, and Parkin was shown to be expressed higher in the liver of KO mice at baseline and after liver injury relative to WT. Further functional analysis identified that KO mice exhibited increased ATP production and enhanced mitochondrial respiration. KO mice have increased mitochondrial size, increased autophagy/mitophagy and mitochondrial-derived vesicles (MDV), and reduced reactive oxygen species (ROS) production, which supports enhancement of mitochondrial quality control (MQC). Application of SAFit2, an FKBP51 inhibitor, reduced the effects of CCl4-induced liver injury and was associated with increased Parkin, pAKT, and ATP production. CONCLUSIONS Downregulation of FKBP51 represents a promising therapeutic target for liver disease treatment.
Collapse
Affiliation(s)
- Bin Qiu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
- Department of Pharmacology, Yale University School of Medicine, New Haven, CI, 06520, USA
| | - Zhaohui Zhong
- General Surgery Department, Peking University People's Hospital, Beijing, 100032, China
| | - Longyu Dou
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yuxue Xu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yi Zou
- Greehey Children's Cancer Research Institute, UT Health, San Antonio, TX, 78229, USA
| | - Korri Weldon
- Greehey Children's Cancer Research Institute, UT Health, San Antonio, TX, 78229, USA
| | - Jun Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Lingling Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Ming Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Kent E Williams
- Department of Medicine, Indiana University, School of Medicine, Indianapolis, 46202, USA
| | - John Paul Spence
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, 46202, USA
| | - Richard L Bell
- Department of Psychiatry, Indiana University, School of Medicine, Indianapolis, 46202, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, UT Health, San Antonio, TX, 78229, USA
| | - Weidong Yong
- Department of Surgery, Indiana University, School of Medicine, Indianapolis, 46202, USA.
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| | - Tiebing Liang
- Department of Medicine, Indiana University, School of Medicine, Indianapolis, 46202, USA.
| |
Collapse
|
14
|
Wu J, Dong L, Xiang J, Di G. Static electric field exposure decreases white blood cell count in peripheral blood through activating hypothalamic-pituitary-adrenal axis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:305-315. [PMID: 36409881 DOI: 10.1080/09603123.2022.2148636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
With the development of ultra-high-voltage (UHV) direct-current (DC) transmission, the health risk from the static electric field (SEF) generated by UHV DC transmission lines has drawn public attention. To investigate the effect of SEF exposure on white blood cell (WBC) count, mice were exposed to 56.3 kV/m SEF. Results revealed that total WBC count and lymphocyte count significantly decreased and serum levels of corticotropin-releasing hormone, adrenocorticotropic hormone and corticosterone (CORT) significantly increased after the exposure of 7d and 14d. All indices above recovered after the exposure of 21d. Analysis showed that the exposure of 7d and 14d could activate hypothalamic-pituitary-adrenal (HPA) axis. The increased CORT could bind to the glucocorticoid receptor (GR) in lymphocytes, and then promote the migration and apoptosis of lymphocytes. After the exposure of 21d, the magnitude of HPA axis activation declined through CORT-mediated negative feedback and the regulation of stress-related neural circuitry, so WBC count recovered.
Collapse
Affiliation(s)
- Jiahong Wu
- Institute of Environmental Process, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Li Dong
- Institute of Environmental Process, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Junli Xiang
- Institute of Environmental Process, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Guoqing Di
- Institute of Environmental Process, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Rowson S, Bekhbat M, Kelly S, Hyer MM, Dyer S, Weinshenker D, Neigh G. Chronic adolescent stress alters GR-FKBP5 interactions in the hippocampus of adult female rats. Stress 2024; 27:2312467. [PMID: 38557197 PMCID: PMC11067065 DOI: 10.1080/10253890.2024.2312467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/25/2024] [Indexed: 04/04/2024] Open
Abstract
Chronic stress exposure during development can have lasting behavioral consequences that differ in males and females. More specifically, increased depressive behaviors in females, but not males, are observed in both humans and rodent models of chronic stress. Despite these known stress-induced outcomes, the molecular consequences of chronic adolescent stress in the adult brain are less clear. The stress hormone corticosterone activates the glucocorticoid receptor, and activity of the receptor is regulated through interactions with co-chaperones-such as the immunophilin FK506 binding proteins 5 (FKBP5). Previously, it has been reported that the adult stress response is modified by a history of chronic stress; therefore, the current study assessed the impact of chronic adolescent stress on the interactions of the glucocorticoid receptor (GR) with its regulatory co-chaperone FKBP5 in response to acute stress in adulthood. Although protein presence for FKBP5 did not differ by group, assessment of GR-FKBP5 interactions demonstrated that adult females with a history of chronic adolescent stress had elevated GR-FKBP5 interactions in the hippocampus following an acute stress challenge which could potentially contribute to a reduced translocation pattern given previous literature describing the impact of FKBP5 on GR activity. Interestingly, the altered co-chaperone interactions of the GR in the stressed female hippocampus were not coupled to an observable difference in transcription of GR-regulated genes. Together, these studies show that chronic adolescent stress causes lasting changes to co-chaperone interactions with the glucocorticoid receptor following stress exposure in adulthood and highlight the potential role that FKBP5 plays in these modifications. Understanding the long-term implications of adolescent stress exposure will provide a mechanistic framework to guide the development of interventions for adult disorders related to early life stress exposures.
Collapse
Affiliation(s)
- Sydney Rowson
- Molecular and Systems Pharmacology Graduate Program, Emory University, Atlanta, GA, USA
| | - Mandakh Bekhbat
- Neuroscience Graduate Program, Emory University, Atlanta, GA, USA
| | - Sean Kelly
- Department of Physiology, Emory University, Atlanta, GA, USA
| | - Molly M. Hyer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Samya Dyer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Gretchen Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
16
|
Yu Z, Iyer L, Swiercz AP, Paronett E, Ramadan M, Marvar PJ, Posnack NG. The Impact of Chronic Phthalate Exposure on Rodent Anxiety and Cognition. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:203-212. [PMID: 38298799 PMCID: PMC10829632 DOI: 10.1016/j.bpsgos.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 02/02/2024] Open
Abstract
Background There is a growing importance for environmental contributions to psychiatric disorders and understanding the impact of the exposome (i.e., pollutants and toxins). For example, increased biomonitoring and epidemiological studies suggest that daily phthalate chemical exposure contributes to neurological and behavioral abnormalities; however, these mechanisms remain poorly understood. Therefore, the current study was aimed at examining the effects of chronic phthalate exposure on rodent anxiety behaviors and cognition and the impact on hypothalamic-pituitary-adrenal axis function. Methods Adult male mice (C57BL6/J) were administered MEHP via drinking water (1 mg/mL), and anxiety-like behavior and cognition combined with hypothalamic-pituitary-adrenal axis and inflammatory assays were assessed after 3 weeks of MEHP exposure. Results MEHP-treated mice exhibited enhanced generalized anxiety-like behaviors, as demonstrated by reduced time spent in the open-arm of the elevated plus maze and center exploration in the open field. Tests of spatial memory and cognition were unchanged. Following MEHP administration, circulating levels of corticosterone and proinflammatory cytokines were significantly increased, while at the tissue level, there were MEHP-dependent reductions in glucocorticoid metabolism genes Hsd11b1 and Hsd11b2. Conclusions These data suggest that chronic MEHP exposure leads to enhanced generalized anxiety behaviors independent of rodent measures of cognition and memory, which may be driven by MEHP-dependent effects on hypothalamic-pituitary-adrenal axis and peripheral glucocorticoid metabolism function.
Collapse
Affiliation(s)
- Zhe Yu
- Department of Pharmacology and Physiology, George Washington University, Washington, DC
| | - Laxmi Iyer
- Department of Anatomy, Physiology and Genetics, Uniformed Services University Health Sciences, Bethesda, Maryland
| | - Adam P. Swiercz
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth Paronett
- Department of Pharmacology and Physiology, George Washington University, Washington, DC
| | - Manelle Ramadan
- Children’s National Heart Institute, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC
| | - Paul J. Marvar
- Department of Pharmacology and Physiology, George Washington University, Washington, DC
- Department of Psychiatry and Behavioral Sciences, George Washington University, Washington, DC
| | - Nikki Gillum Posnack
- Department of Pharmacology and Physiology, George Washington University, Washington, DC
- Children’s National Heart Institute, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC
| |
Collapse
|
17
|
Flori E, Mosca S, Kovacs D, Briganti S, Ottaviani M, Mastrofrancesco A, Truglio M, Picardo M. Skin Anti-Inflammatory Potential with Reduced Side Effects of Novel Glucocorticoid Receptor Agonists. Int J Mol Sci 2023; 25:267. [PMID: 38203435 PMCID: PMC10778823 DOI: 10.3390/ijms25010267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Glucocorticoids (GCs) are commonly used in the treatment of inflammatory skin diseases, although the balance between therapeutic benefits and side effects is still crucial in clinical practice. One of the major and well-known adverse effects of topical GCs is cutaneous atrophy, which seems to be related to the activation of the glucorticoid receptor (GR) genomic pathway. Dissociating anti-inflammatory activity from atrophogenicity represents an important goal to achieve, in order to avoid side effects on keratinocytes and fibroblasts, known target cells of GC action. To this end, we evaluated the biological activity and safety profile of two novel chemical compounds, DE.303 and KL.202, developed as non-transcriptionally acting GR ligands. In primary keratinocytes, both compounds demonstrated anti-inflammatory properties inhibiting NF-κB activity, downregulating inflammatory cytokine release and interfering with pivotal signaling pathways involved in the inflammatory process. Of note, these beneficial actions were not associated with GC-related atrophic effects: treatments of primary keratinocytes and fibroblasts with DE.303 and KL.202 did not induce, contrarily to dexamethasone-a known potent GC-alterations in extracellular matrix components and lipid synthesis, thus confirming their safety profile. These data provide the basis for evaluating these compounds as effective alternatives to the currently used GCs in managing inflammatory skin diseases.
Collapse
Affiliation(s)
- Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.M.); (D.K.); (S.B.); (M.O.)
| | - Sarah Mosca
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.M.); (D.K.); (S.B.); (M.O.)
| | - Daniela Kovacs
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.M.); (D.K.); (S.B.); (M.O.)
| | - Stefania Briganti
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.M.); (D.K.); (S.B.); (M.O.)
| | - Monica Ottaviani
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.M.); (D.K.); (S.B.); (M.O.)
| | - Arianna Mastrofrancesco
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (A.M.); (M.T.)
| | - Mauro Truglio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (A.M.); (M.T.)
| | - Mauro Picardo
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy;
| |
Collapse
|
18
|
Paredes-Ruiz D, Ruiz-Irastorza G, Amoura Z. Systemic lupus erythematosus and glucocorticoids: A never-ending story? Best Pract Res Clin Rheumatol 2023; 37:101873. [PMID: 37957076 DOI: 10.1016/j.berh.2023.101873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 11/15/2023]
Abstract
Glucocorticoids (GCs) continue to be essential agents for the management of systemic lupus erythematosus, since there are no other drugs able to active remission of active disease so rapidly. However, their potential for causing irreversible damage greatly limit their use. Fortunately, some strategies may help take advantage of their huge anti-inflammatory power while limiting GC-induced side effects. This article reviews the pharmacological basis of GC action and their translation into the clinical ground. We also offer the practical approach for the use of GC in induction and maintenance therapy as well as the strategies for GC withdrawal of the respective practice of the authors. The three main basic principles are a) using methyl-prednisolone pulses to induce remission not only in severe disease; b) limiting initial doses of prednisone to ≤30 mg/d, with rapid tapering to ≤5 mg/d, which should be the dose for maintenance therapy; and c) individualizing the decision and the strategy to withdraw GCs. Long-term therapy with HCQ and the early introduction of immunosuppressive treatment would help achieve these objectives.
Collapse
Affiliation(s)
- Diana Paredes-Ruiz
- Autoimmune Diseases Research Unit. Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Guillermo Ruiz-Irastorza
- Autoimmune Diseases Research Unit. Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain; Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bizkaia, Spain.
| | - Zahir Amoura
- Sorbonne Université, Faculté de Médecine, Groupement Hospitalier Pitié Salpêtrière, Centre National de Référence du Lupus Systémique, du Syndrome des Antiphospholipides et autres maladies auto-immunes, Service de Médecine Interne 2, Institut E3M, CIMI-Paris, Paris, France
| |
Collapse
|
19
|
Grams KJ, Neumueller SE, Mouradian GC, Burgraff NJ, Hodges MR, Pan L, Forster HV. Mild and moderate chronic hypercapnia elicit distinct transcriptomic responses of immune function in cardiorespiratory nuclei. Physiol Genomics 2023; 55:487-503. [PMID: 37602394 PMCID: PMC11178267 DOI: 10.1152/physiolgenomics.00038.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023] Open
Abstract
Chronic hypercapnia (CH) is a hallmark of respiratory-related diseases, and the level of hypercapnia can acutely or progressively become more severe. Previously, we have shown time-dependent adaptations in steady-state physiology during mild (arterial Pco2 ∼55 mmHg) and moderate (∼60 mmHg) CH in adult goats, including transient (mild CH) or sustained (moderate CH) suppression of acute chemosensitivity suggesting limitations in adaptive respiratory control mechanisms as the level of CH increases. Changes in specific markers of glutamate receptor plasticity, interleukin-1ß, and serotonergic modulation within key nodes of cardiorespiratory control do not fully account for the physiological adaptations to CH. Here, we used an unbiased approach (bulk tissue RNA sequencing) to test the hypothesis that mild or moderate CH elicits distinct gene expression profiles in important brain stem regions of cardiorespiratory control, which may explain the contrasting responses to CH. Gene expression profiles from the brain regions validated the accuracy of tissue biopsy methodology. Differential gene expression analyses revealed greater effects of CH on brain stem sites compared with the medial prefrontal cortex. Mild CH elicited an upregulation of predominantly immune-related genes and predicted activation of immune-related pathways and functions. In contrast, moderate CH broadly led to downregulation of genes and predicted inactivation of cellular pathways related to the immune response and vascular function. These data suggest that mild CH leads to a steady-state activation of neuroinflammatory pathways within the brain stem, whereas moderate CH drives the opposite response. Transcriptional shifts in immune-related functions may underlie the cardiorespiratory network's capability to respond to acute, more severe hypercapnia when in a state of progressively increased CH.NEW & NOTEWORTHY Mild chronic hypercapnia (CH) broadly upregulated immune-related genes and a predicted activation of biological pathways related to immune cell activity and the overall immune response. In contrast, moderate CH primarily downregulated genes related to major histocompatibility complex signaling and vasculature function that led to a predicted inactivation of pathways involving the immune response and vascular endothelial function. The severity-dependent effect on immune responses suggests that neuroinflammation has an important role in CH and may be important in the maintenance of proper ventilatory responses to acute and chronic hypercapnia.
Collapse
Affiliation(s)
- Kirstyn J Grams
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Suzanne E Neumueller
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Gary C Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Nicholas J Burgraff
- Center for Integrated Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Lawrence Pan
- Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Hubert V Forster
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, United States
| |
Collapse
|
20
|
Liu P, Song S, Yang P, Rao X, Wang Y, Bai X. Aucubin improves chronic unpredictable mild stress-induced depressive behavior in mice via the GR/NF-κB/NLRP3 axis. Int Immunopharmacol 2023; 123:110677. [PMID: 37523973 DOI: 10.1016/j.intimp.2023.110677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/21/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Eucommia ulmoides Oliv (EUO) is a traditional therapeutic drug that tonifies the liver and kidney and may improve depression. However, the mechanism of action of the main component, aucubin (AU), is unknown. To study the therapeutic effect of AU, we constructed a chronic unpredictable mild stress (CUMS) depression model in mice. Depression-like behaviors, pathological damage, hormonal changes, inflammation, intranuclear expression of glucocorticoidreceptor (GR), and hippocampal protein expression were assessed. Immunofluorescence staining of the hippocampus showed that CUMS decreased neuronal regeneration, and axons were observed to be reduced and broken. Intracellular GR expression decreased in the hippocampus and hypothalamus, and serum levels of stress hormones increased. Furthermore, molecular changes indicative of pyroptosis were observed. AU administration reversed these changes and significantly improved the depression-like behavior induced by CUMS. Our results suggested that AU improves depression by promoting the intranuclear expression of GR and inhibiting nuclear factor-kappa B-mediated inflammatory activation-driven cell pyroptosis.
Collapse
Affiliation(s)
- Ping Liu
- Department of Clinical Pharmacy, Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| | - Shiyuan Song
- Department of Clinical Pharmacy, Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563000, China.
| | - Ping Yang
- Department of Clinical Pharmacy, Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563000, China.
| | - Xiuming Rao
- Department of Clinical Pharmacy, Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563000, China.
| | - Yuqi Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| | - Xinyu Bai
- Department of Clinical Pharmacy, Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
21
|
Fonseca E, Vázquez M, Rodriguez-Lorenzo L, Mallo N, Pinheiro I, Sousa ML, Cabaleiro S, Quarato M, Spuch-Calvar M, Correa-Duarte MA, López-Mayán JJ, Mackey M, Moreda A, Vasconcelos V, Espiña B, Campos A, Araújo MJ. Getting fat and stressed: Effects of dietary intake of titanium dioxide nanoparticles in the liver of turbot Scophthalmus maximus. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131915. [PMID: 37413800 DOI: 10.1016/j.jhazmat.2023.131915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
The extensive use of nanomaterials, including titanium dioxide nanoparticles (TiO2 NPs), raises concerns about their persistence in ecosystems. Protecting aquatic ecosystems and ensuring healthy and safe aquaculture products requires the assessment of the potential impacts of NPs on organisms. Here, we study the effects of a sublethal concentration of citrate-coated TiO2 NPs of two different primary sizes over time in flatfish turbot, Scophthalmus maximus (Linnaeus, 1758). Bioaccumulation, histology and gene expression were assessed in the liver to address morphophysiological responses to citrate-coated TiO2 NPs. Our analyses demonstrated a variable abundance of lipid droplets (LDs) in hepatocytes dependent on TiO2 NPs size, an increase in turbot exposed to smaller TiO2 NPs and a depletion with larger TiO2 NPs. The expression patterns of genes related to oxidative and immune responses and lipid metabolism (nrf2, nfκb1, and cpt1a) were dependent on the presence of TiO2 NPs and time of exposure supporting the variance in hepatic LDs distribution over time with the different NPs. The citrate coating is proposed as the likely catalyst for such effects. Thus, our findings highlight the need to scrutinize the risks associated with exposure to NPs with distinct properties, such as primary size, coatings, and crystalline forms, in aquatic organisms.
Collapse
Affiliation(s)
- Elza Fonseca
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - María Vázquez
- CETGA - Centro Técnológico del Cluster de la Acuicultura, Punta de Couso s/n, 15965 Ribeira, A Coruña, Spain
| | - Laura Rodriguez-Lorenzo
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Natalia Mallo
- CETGA - Centro Técnológico del Cluster de la Acuicultura, Punta de Couso s/n, 15965 Ribeira, A Coruña, Spain
| | - Ivone Pinheiro
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Maria Lígia Sousa
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Santiago Cabaleiro
- CETGA - Centro Técnológico del Cluster de la Acuicultura, Punta de Couso s/n, 15965 Ribeira, A Coruña, Spain
| | - Monica Quarato
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Miguel Spuch-Calvar
- CINBIO - Centro de Investigación en Nanomateriais e Biomedicina, Universidade de Vigo, 36310 Vigo, Spain
| | - Miguel A Correa-Duarte
- CINBIO - Centro de Investigación en Nanomateriais e Biomedicina, Universidade de Vigo, 36310 Vigo, Spain
| | - Juan José López-Mayán
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute de Materiais iMATUS. Faculty of Chemistry, University of Santiago de Compostela, Av. das Ciencias s/n, 15782 Santiago de Compostela, Spain
| | - Mick Mackey
- IRMRC - Indigo Rock Marine Research Centre, Gearhies, Bantry, Co., Cork P75 AX07, Ireland
| | - Antonio Moreda
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute de Materiais iMATUS. Faculty of Chemistry, University of Santiago de Compostela, Av. das Ciencias s/n, 15782 Santiago de Compostela, Spain
| | - Vítor Vasconcelos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences, University of Porto, Biology Department, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Begoña Espiña
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Alexandre Campos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Mário Jorge Araújo
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
22
|
Müller H, Herzberg D, Chihuailaf R, Strobel P, Werner M, Bustamante H. Changes in Dynamic Thiol/Disulfide Homeostasis, and Substance P, B-Endorphin and α-Tocopherol Concentrations in the Spinal Cord of Chronically Lame Dairy Cows. Animals (Basel) 2023; 13:1620. [PMID: 37238050 PMCID: PMC10215632 DOI: 10.3390/ani13101620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Initial lameness inflammation leads to chronic lameness and development of chronic pain due to the release of pro-inflammatory mediators such as reactive oxygen species (ROS), which are implicated in the transition from acute to chronic pain, and free radical scavengers countering thiol, substance P (SP), and β-endorphin (BE). The present study aimed to evaluate the dynamic thiol-disulfide homeostasis, α-tocopherol concentrations and SP and BE concentrations in the spinal cord of chronically lame dairy cows. Ten lame and 10 non-lame cows with a parity range of 2-6 were selected for the study. Lame cows had a history of up to 3 months of lameness. Spinal cord samples were obtained from the L2 to L4 lumbar vertebrae aspect of each animal. A thiol-disulfide homeostasis assay was performed using absorbance, and the α-tocopherol concentration was determined by HPLC. SP and BE concentrations were measured using ELISA kits. The results indicated that SP and BE were significantly higher in the spinal cord of lame cows. In contrast, disulfide levels and α-tocopherol concentrations were significantly lower in the spinal cord of lame cows. In conclusion, disulfide levels and α-tocopherol concentrations indicated a defective antioxidant response in cows with chronic lameness. The results of SP and BE concentrations suggested chronic pain and a defective endogenous analgesic response.
Collapse
Affiliation(s)
- Heine Müller
- Graduate School, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile
- Veterinary Clinical Sciences Institute, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile;
- Veterinary Clinical Hospital, School of Agricultural and Veterinary Sciences, Universidad Viña del Mar, Viña del Mar 2571959, Chile
| | - Daniel Herzberg
- Graduate School, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Ricardo Chihuailaf
- Veterinary Clinical Sciences Institute, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile;
| | - Pablo Strobel
- Animal Science Institute, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Marianne Werner
- Animal Science Institute, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Hedie Bustamante
- Veterinary Clinical Sciences Institute, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile;
| |
Collapse
|
23
|
Gellisch M, Bablok M, Divvela SSK, Morosan-Puopolo G, Brand-Saberi B. Systemic Prenatal Stress Exposure through Corticosterone Application Adversely Affects Avian Embryonic Skin Development. BIOLOGY 2023; 12:biology12050656. [PMID: 37237470 DOI: 10.3390/biology12050656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023]
Abstract
Prenatal stress exposure is considered a risk factor for developmental deficits and postnatal behavioral disorders. While the effect of glucocorticoid-associated prenatal stress exposure has been comprehensively studied in many organ systems, there is a lack of in-depth embryological investigations regarding the effects of stress on the integumentary system. To approach this, we employed the avian embryo as a model organism and investigated the effects of systemic pathologically-elevated glucocorticoid exposure on the development of the integumentary system. After standardized corticosterone injections on embryonic day 6, we compared the stress-exposed embryos with a control cohort, using histological and immunohistochemical analyses as well as in situ hybridization. The overarching developmental deficits observed in the stress-exposed embryos were reflected through downregulation of both vimentin as well as fibronectin. In addition, a deficient composition in the different skin layers became apparent, which could be linked to a reduced expression of Dermo-1 along with significantly reduced proliferation rates. An impairment of skin appendage formation could be demonstrated by diminished expression of Sonic hedgehog. These results contribute to a more profound understanding of prenatal stress causing severe deficits in the integumentary system of developing organisms.
Collapse
Affiliation(s)
- Morris Gellisch
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Martin Bablok
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Satya Srirama Karthik Divvela
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Gabriela Morosan-Puopolo
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
24
|
Yu Z, Iyer L, Swiercz AP, Paronett E, Ramadan M, Marvar PJ, Posnack NG. The Impact of Chronic Phthalate Exposure on Rodent Anxiety and Cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.13.536567. [PMID: 37886449 PMCID: PMC10602041 DOI: 10.1101/2023.04.13.536567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
There is a growing importance for environmental contributions to psychiatric disorders and understanding the impact of the exposome (i.e., pollutants and toxins). Increased biomonitoring and epidemiological studies, for example, suggest that daily phthalate chemical exposure contribute to neurological and behavioral abnormalities, however these mechanisms remain poorly understood. The current study therefore aimed to examine the effects of chronic phthalate exposure on rodent anxiety behaviors, cognition, and the impact on hypothalamic-pituitary- adrenal (HPA)-axis function. Adult male mice (C57BL6/J) were administered mono-2-ethylhexyl phthalate (MEHP) via drinking water (1 mg/ml), and anxiety-like behavior, cognition combined with HPA- axis and inflammatory assays were assessed after 3 weeks of MEHP exposure. MEHP-treated mice exhibited enhanced generalized anxiety-like behaviors, as demonstrated by reduced time spent in the open-arm of the elevated plus maze (EPM) and center exploration in the open field (OF). Tests of spatial, cognition and memory function were unchanged. Following MEHP administration, circulating levels of corticosterone and pro- inflammatory cytokines were significantly increased, while at the tissue level, MEHP-dependent reductions in glucocorticoid metabolism genes 11β-hydroxysteroid dehydrogenase (11β-HSD) 1 and 2. These data suggest that chronic MEHP exposure leads to enhanced generalized-anxiety behaviors independent of rodent measures of cognition and memory, which maybe driven by MEHP-dependent effects on HPA-axis and peripheral glucocorticoid metabolism function.
Collapse
|
25
|
Fries GR, Saldana VA, Finnstein J, Rein T. Molecular pathways of major depressive disorder converge on the synapse. Mol Psychiatry 2023; 28:284-297. [PMID: 36203007 PMCID: PMC9540059 DOI: 10.1038/s41380-022-01806-1] [Citation(s) in RCA: 195] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 01/07/2023]
Abstract
Major depressive disorder (MDD) is a psychiatric disease of still poorly understood molecular etiology. Extensive studies at different molecular levels point to a high complexity of numerous interrelated pathways as the underpinnings of depression. Major systems under consideration include monoamines, stress, neurotrophins and neurogenesis, excitatory and inhibitory neurotransmission, mitochondrial dysfunction, (epi)genetics, inflammation, the opioid system, myelination, and the gut-brain axis, among others. This review aims at illustrating how these multiple signaling pathways and systems may interact to provide a more comprehensive view of MDD's neurobiology. In particular, considering the pattern of synaptic activity as the closest physical representation of mood, emotion, and conscience we can conceptualize, each pathway or molecular system will be scrutinized for links to synaptic neurotransmission. Models of the neurobiology of MDD will be discussed as well as future actions to improve the understanding of the disease and treatment options.
Collapse
Affiliation(s)
- Gabriel R. Fries
- grid.267308.80000 0000 9206 2401Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX 77054 USA ,grid.240145.60000 0001 2291 4776Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030 USA
| | - Valeria A. Saldana
- grid.262285.90000 0000 8800 2297Frank H. Netter MD School of Medicine at Quinnipiac University, 370 Bassett Road, North Haven, CT 06473 USA
| | - Johannes Finnstein
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Project Group Molecular Pathways of Depression, Max Planck Institute of Psychiatry, Kraepelinstr. 10, 80804 Munich, Germany
| | - Theo Rein
- Department of Translational Research in Psychiatry, Project Group Molecular Pathways of Depression, Max Planck Institute of Psychiatry, Kraepelinstr. 10, 80804, Munich, Germany.
| |
Collapse
|
26
|
Zahir FR. Epigenomic impacts of meditative practices. Epigenomics 2022; 14:1593-1608. [PMID: 36891912 DOI: 10.2217/epi-2022-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Meditative practices (MPs) are an inherent lifestyle and healing practice employed in Eastern medicine and spirituality. Integrating MPs into world mainstream medicine (WMM) requires effective empirical investigation of psychophysiological impacts. Epigenomic regulation is a probable mechanism of action that is empirically assessable. Recently, WMM-styled studies have screened the epigenomic impacts of MPs with early encouraging results. This article discusses the variety of MPs extant across three major Eastern religio-spiritual-healing traditions and their integration into WMM via the lens of epigenomic modulation. MPs unanimously report positive impacts on stress-reduction pathways, known to be epigenomically sensitive. Early high-resolution assays show MPs are potent in altering the epigenome - dynamically and by inducing long-term changes. This suggests the importance of integrating MPs into WMM.
Collapse
Affiliation(s)
- Farah R Zahir
- Irfa'a Foundation, 5063 North Service Road, Burlington, ON, L7L 5H6 Canada
- Departent of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1 Canada
| |
Collapse
|
27
|
Srinivasan M, Walker C. Circadian Clock, Glucocorticoids and NF-κB Signaling in Neuroinflammation- Implicating Glucocorticoid Induced Leucine Zipper as a Molecular Link. ASN Neuro 2022; 14:17590914221120190. [PMID: 36317290 PMCID: PMC9629546 DOI: 10.1177/17590914221120190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Inflammation including neuroinflammation is considered a protective response and is directed to repair, regenerate, and restore damaged tissues in the central nervous system. Persistent inflammation due to chronic stress, age related accrual of free radicals, subclinical infections or other factors lead to reduced survival and increased neuronal death. Circadian abnormalities secondary to altered sleep/wake cycles is one of the earliest signs of neurodegenerative diseases. Brain specific or global deficiency of core circadian trans-activator brain and muscle ARNT (Arylhydrocarbon Receptor Nuclear Translocator)-like protein 1 (BMAL1) or that of the transrepressor REV-ERBα, impaired neural function and cognitive performance in rodents. Consistently, transcripts of inflammatory cytokines and host immune responses have been shown to exhibit diurnal variation, in parallel with the disruption of the circadian rhythm. Glucocorticoids that exhibit both a circadian rhythm similar to that of the core clock transactivator BMAL1 and tissue specific ultradian rhythm are critical in the control of neuroinflammation and re-establishment of homeostasis. It is widely accepted that the glucocorticoids suppress nuclear factor-kappa B (NF-κB) mediated transactivation and suppress inflammation. Recent mechanistic elucidations suggest that the core clock components also modulate NF-κB mediated transactivation in the brain and peripheral tissues. In this review we discuss evidence for interactions between the circadian clock components, glucocorticoids and NF-κB signaling responses in the brain and propose glucocorticoid induced leucine zipper (GILZ) encoded by Tsc22d3, as a molecular link that connect all three pathways in the maintenance of CNS homeostasis as well as in the pathogenesis of neuroinflammation-neurodegeneration.
Collapse
Affiliation(s)
- Mythily Srinivasan
- Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, Indiana University Purdue University at Indianapolis, Indiana, USA,Provaidya LLC, Indiana Center for Biomedical Innovation, Indianapolis, Indiana, USA,Mythily Srinivasan, Oral Pathology, Radiology and Medicine, Indiana University School of Dentistry, Indianapolis, Indiana, United States; Provaidya LLC, Indiana Center for Biomedical Innovation, 1800 North Capitol Av, Indianapolis, IN 46202, United States.
;
| | - Chandler Walker
- Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, Indiana University Purdue University at Indianapolis, Indiana, USA,Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indiana University Purdue University at Indianapolis, Indiana, USA
| |
Collapse
|
28
|
Shao R, Lou X, Xue J, Yang Y, Ning D, Chen G, Jiang L. Thioredoxin-1 regulates IRE1α to ameliorate sepsis-induced NLRP3 inflammasome activation and oxidative stress in Raw 264.7 cell. Immunopharmacol Immunotoxicol 2022; 45:277-286. [PMID: 36263912 DOI: 10.1080/08923973.2022.2138431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sepsis is life-threatening organ dysfunction caused by the dysregulated host response to infection. Endoplasmic reticulum stress (ERS)-mediated inositol-requiring enzyme 1 α (IRE1α) inflammatory signaling pathway is involved in sepsis. NLRP3 inflammasome plays a key role in the activation of caspase-1 and the maturation of IL-1β and IL-18, and finally enhances the inflammatory response. More and more evidences show that ERS is an endogenous trigger of NLRP3 inflammasome. Thioredoxin-1 (Trx-1) is a small ubiquitous thiol-1 protein with redox/inflammation modulatory properties relevant to sepsis pathogenesis. In this study, we investigated the role of Trx-1 in ERS mediated IRE1α/NLRP3 signaling pathway in Raw 264.7 cells. Our results show that Trx-1 reduces the release of inflammatory factors and reactive oxygen species (ROS) by regulating the related proteins in the IRE1α/NLRP3 signaling pathway expression.
Collapse
Affiliation(s)
- Ruifei Shao
- Faculty of Life science and Technology, Kunming University of Science and Technology, Kunming 650500, China.,Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiran Lou
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Jinfang Xue
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yan Yang
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Deyuan Ning
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Guobing Chen
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Lihong Jiang
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, Kunming 650032, China
| |
Collapse
|
29
|
Li X, Jin X, Wang J, Li X, Zhang H. Dexamethasone attenuates dry eye-induced pyroptosis by regulating the KCNQ1OT1/miR-214 cascade. Steroids 2022; 186:109073. [PMID: 35779698 DOI: 10.1016/j.steroids.2022.109073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Dry eye disease (DED) is an inflammatory disorder of the ocular surface seriously affecting the quality of life of patients. Topical dexamethasone (Dex) administration protects the cornea from the hyperosmotic stress (HS) induced by tears. Pyroptosis participates in the activation of epithelial inflammation during DED. However, it remains unclear whether Dex attenuates the progression of DED through pyroptosis. In this study, we aimed to investigate the effect of Dex on DED using both cell and animal models and its underlying mechanism. The inflammatory factors contained in tears were detected using a cytokine assay. The pyroptosis in DED mice and human corneal epithelial cells (HCECs) treated with hyperosmotic medium under various treatments was evaluated by immunohistochemical assays (IHC) or western blotting (WB). RNA expression was manipulated with siRNA or agomir microRNAs and measured using a polymerase chain reaction. The scratch assay was used to assess the migration rate of HCECs. Remaining corneal defects were evaluated using fluorescein staining and photographed using a digital camera. Dex could suppress the release of inflammatory factors and notably attenuate pyroptosis, KCNQ1OT1 expression, and NF-κB activation induced by HS injury in vivo and in vitro. KCNQ1OT1 upregulation could activate pyroptosis by sponging miR-214. Furthermore, KCNQ1OT1 knockdown and miR-214 overexpression reversed the effect of HS, promoted the migration of HCECs, and accelerated corneal wound healing. Dex effectively suppressed HS-induced pyroptosis through the KCNQ1OT1/miR-214/caspase-1 signaling axis by inhibiting the NF-κB activation. Our results provide a novel understanding of the mechanism of Dex as an anti-inflammatory drug in DED.
Collapse
Affiliation(s)
- Xuran Li
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, China
| | - Xin Jin
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, China
| | - Jingrao Wang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, China
| | - Xinyue Li
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, China
| | - Hong Zhang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, China.
| |
Collapse
|
30
|
Watowich MM, Chiou KL, Montague MJ, Simons ND, Horvath JE, Ruiz-Lambides AV, Martínez MI, Higham JP, Brent LJN, Platt ML, Snyder-Mackler N. Natural disaster and immunological aging in a nonhuman primate. Proc Natl Acad Sci U S A 2022; 119:e2121663119. [PMID: 35131902 PMCID: PMC8872742 DOI: 10.1073/pnas.2121663119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022] Open
Abstract
Weather-related disasters are increasing in frequency and severity, leaving survivors to cope with ensuing mental, financial, and physical hardships. This adversity can exacerbate existing morbidities, trigger new ones, and increase the risk of mortality-features that are also characteristic of advanced age-inviting the hypothesis that extreme weather events may accelerate aging. To test this idea, we examined the impact of Hurricane Maria and its aftermath on immune cell gene expression in large, age-matched, cross-sectional samples from free-ranging rhesus macaques (Macaca mulatta) living on an isolated island. A cross section of macaques was sampled 1 to 4 y before (n = 435) and 1 y after (n = 108) the hurricane. Hurricane Maria was significantly associated with differential expression of 4% of immune-cell-expressed genes, and these effects were correlated with age-associated alterations in gene expression. We further found that individuals exposed to the hurricane had a gene expression profile that was, on average, 1.96 y older than individuals that were not-roughly equivalent to an increase in 7 to 8 y of a human life. Living through an intense hurricane and its aftermath was associated with expression of key immune genes, dysregulated proteostasis networks, and greater expression of inflammatory immune cell-specific marker genes. Together, our findings illuminate potential mechanisms through which the adversity unleashed by extreme weather and potentially other natural disasters might become biologically embedded, accelerate age-related molecular immune phenotypes, and ultimately contribute to earlier onset of disease and death.
Collapse
Affiliation(s)
- Marina M Watowich
- Department of Biology, University of Washington, Seattle, WA 98195
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281
- School of Life Sciences, Arizona State University, Tempe, AZ 85281
| | - Kenneth L Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281
- School of Life Sciences, Arizona State University, Tempe, AZ 85281
| | - Michael J Montague
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Noah D Simons
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708
| | - Julie E Horvath
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC 27707
- Research and Collections Section, North Carolina Museum of Natural Sciences, Raleigh, NC 27601
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695
| | - Angelina V Ruiz-Lambides
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, San Juan, PR 00936
| | - Melween I Martínez
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, San Juan, PR 00936
| | - James P Higham
- Department of Anthropology, New York University, New York, NY 10003
- New York Consortium in Evolutionary Primatology, New York, NY 10016
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter EX4 4QG, United Kingdom
| | - Michael L Platt
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104
- Marketing Department, Wharton School of Business, University of Pennsylvania, Philadelphia, PA 19104
| | - Noah Snyder-Mackler
- Department of Biology, University of Washington, Seattle, WA 98195;
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281
- School of Life Sciences, Arizona State University, Tempe, AZ 85281
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85281
- Department of Psychology, University of Washington, Seattle, WA 98195
| |
Collapse
|
31
|
Ravi M, Bernabe B, Michopoulos V. Stress-Related Mental Health Disorders and Inflammation in Pregnancy: The Current Landscape and the Need for Further Investigation. Front Psychiatry 2022; 13:868936. [PMID: 35836664 PMCID: PMC9273991 DOI: 10.3389/fpsyt.2022.868936] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
Many studies have focused on psychoimmunological mechanisms of risk for stress-related mental health disorders. However, significantly fewer studies have focused on understanding mechanisms of risk for stress-related disorders during pregnancy, a period characterized by dramatic changes in both the innate and adaptive immune systems. The current review summarizes and synthesizes the extant literature on the immune system during pregnancy, as well as the sparse existing evidence highlighting the associations between inflammation and mood, anxiety, and fear-related disorders in pregnancy. In general, pregnant persons demonstrate lower baseline levels of systemic inflammation, but respond strongly when presented with an immune challenge. Stress and trauma exposure may therefore result in strong inflammatory responses in pregnant persons that increases risk for adverse behavioral health outcomes. Overall, the existing literature suggests that stress, trauma exposure, and stress-related psychopathology are associated with higher levels of systemic inflammation in pregnant persons, but highlight the need for further investigation as the existing data are equivocal and vary based on which specific immune markers are impacted. Better understanding of the psychoimmunology of pregnancy is necessary to reduce burden of prenatal mental illness, increase the likelihood of a successful pregnancy, and reduce the intergenerational impacts of prenatal stress-related mental health disorders.
Collapse
Affiliation(s)
- Meghna Ravi
- Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Brandy Bernabe
- Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States.,Emory National Primate Research Center, Atlanta, GA, United States
| |
Collapse
|
32
|
Lu B, Xie J, Fu D, Chen X, Zhao M, Gui M, Yao L, Zhou X, Li J. Huoxue Qianyang Qutan recipe attenuates cardiac fibrosis by inhibiting the NLRP3 inflammasome signalling pathway in obese hypertensive rats. PHARMACEUTICAL BIOLOGY 2021; 59:1045-1057. [PMID: 34362291 PMCID: PMC8354174 DOI: 10.1080/13880209.2021.1953541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT HuoXue QianYang QuTan Recipe (HQQR) is used to manage hypertension and cardiac remodelling, but the mechanism is elusive. OBJECTIVE To determine the mechanism of HQQR on obesity hypertension (OBH)-related myocardial fibrosis. MATERIALS AND METHODS OBH models were prepared using spontaneously hypertensive rats (SHRs) and divided (n = 6) into saline, low-dose (19.35 g/kg/d) HQQR, high-dose (38.7 g/kg/d) HQQR, and valsartan (30 mg/kg/d) groups for 10 weeks. Systolic blood pressure (SBP), and Lee's index were measured. Heart tissues were examined by histology. HQQR's effects were examined on cardiac fibroblasts (CFs) stimulated with angiotensin II and treated with HQQR, a caspase-1 inhibitor, siNLRP3, and oeNLRP3. RESULTS HQQR(H) reduced SBP (201.67 ± 21.00 vs. 169.00 ± 10.00), Lee's index (321.50 ± 3.87 vs. 314.58 ± 3.88), and left ventricle mass index (3.26 ± 0.27 vs. 2.71 ± 0.12) in vivo. HQQR reduced percentage of fibrosis area (18.99 ± 3.90 vs. 13.37 ± 3.39), IL-1β (10.07 ± 1.16 vs. 5.35 ± 1.29), and inhibited activation of NLRP3/caspase-1/IL-1β pathway. HQQR also inhibiting the proliferation (1.09 ± 0.02 vs. 0.84 ± 0.01), fibroblast to myofibroblast transition (14.74 ± 3.39 vs. 3.97 ± 0.53), and collagen deposition (Col I; 0.50 ± 0.02 vs. 0.27 ± 0.05 and Col III; 0.48 ± 0.21 vs. 0.26 ± 0.11) with different concentrations selected based on IC50 in vitro (all ps < 0.05). NLRP3 interference further confirmed HQQR inhibiting NLRP3 inflammasome signalling. CONCLUSION HQQR blunted cardiac fibrosis development in OBH and suppressed CFs proliferation by directly interfering with the NLRP3/caspase-1/IL-1β pathway.
Collapse
Affiliation(s)
- Bo Lu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Xie
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Deyu Fu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaozhe Chen
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingyi Zhao
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingtai Gui
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Yao
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xunjie Zhou
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhua Li
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
33
|
Thomas J, Thomson EM. Modulation by Ozone of Glucocorticoid-Regulating Factors in the Lungs in Relation to Stress Axis Reactivity. TOXICS 2021; 9:toxics9110290. [PMID: 34822681 PMCID: PMC8622418 DOI: 10.3390/toxics9110290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022]
Abstract
Exposure to air pollutants increases levels of circulating glucocorticoid stress hormones that exert profound effects relevant to health and disease. However, the nature and magnitude of tissue-level effects are modulated by factors that regulate local glucocorticoid activity; accordingly, inter-individual differences could contribute to susceptibility. In the present study, we characterized effects of ozone (O3) inhalation on glucocorticoid-regulating factors in the lungs of rat strains with contrasting hypothalamic–pituitary–adrenal stress axis responses. Hyper-responsive Fischer (F344) and less responsive Lewis (LEW) rats were exposed to air or 0.8 ppm O3 for 4 h by nose-only inhalation. Levels of the high-specificity and -affinity corticosteroid-binding globulin protein increased in the lungs of both strains proportional to the rise in corticosterone levels following O3 exposure. Ozone reduced the ratio of 11β-hydroxysteroid dehydrogenase type 1 (HSDB1)/HSDB2 mRNA in the lungs of F344 but not LEW, indicating strain-specific transcriptional regulation of the major glucocorticoid metabolism factors that control tissue-level action. Intercellular adhesion molecule (ICAM)-1 and total elastase activity were increased by O3 in both strains, consistent with extravasation and tissue remodeling processes following injury. However, mRNA levels of inflammatory markers were significantly higher in the lungs of O3-exposed LEW compared to F344. The data show that strain differences in the glucocorticoid response to O3 are accompanied by corresponding changes in regulatory factors, and that these effects are collectively associated with a differential inflammatory response to O3. Innate differences in glucocorticoid regulatory factors may modulate the pulmonary effects of inhaled pollutants, thereby contributing to differential susceptibility.
Collapse
Affiliation(s)
- Jith Thomas
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada;
| | - Errol M. Thomson
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada;
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: ; Tel.: +1-613-941-7151
| |
Collapse
|
34
|
Luis Araujo Minari A, Avila F, Missae Oyama L, Vagner Thomatieli Dos Santos R. Inflammatory response of the peripheral neuroendocrine system following downhill running. Cytokine 2021; 149:155746. [PMID: 34678553 DOI: 10.1016/j.cyto.2021.155746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/06/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
Exploring the relationship between exercise inflammation and the peripheral neuroendocrine system is essential for understanding how acute or repetitive bouts of exercise can contribute to skeletal muscle adaption. In severe damage, some evidence demonstrates that peripheral neuroendocrine receptors might contribute to inflammatory resolution, supporting the muscle healing process through myogenesis. In this sense, the current study aimed to evaluate two classic peripheral neuronal receptors along with skeletal muscle inflammation and adaptation parameters in triceps brachii after exercise. We euthanized C57BL (10 to 12 weeks old) male mice before, and one, two, and three days after a downhill running protocol. The positive Ly6C cells, along with interleukin-6 (IL-6), nuclear factor kappa B (NF-κB), glucocorticoid receptor (GR), α7 subunits of the nicotinic acetylcholine receptor (nAChRs), and myonuclei accretion were analyzed. Our main results demonstrated that nAChRs increased with the inflammatory and myonuclei accretion responses regardless of NF-κB and GR protein expression. These results indicate that increased nAChR may contribute to skeletal muscle adaption after downhill running in mice.
Collapse
Affiliation(s)
| | - Felipe Avila
- Departamento de Fisiologia - Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Lila Missae Oyama
- Departamento de Fisiologia - Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Ronaldo Vagner Thomatieli Dos Santos
- Departamento de Psicobiologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil; Departamento de Biociências - Campus da Baixada Santista, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil.
| |
Collapse
|
35
|
Thomas J, Stalker A, Breznan D, Thomson EM. Ozone-dependent increases in lung glucocorticoids and macrophage response: Effect modification by innate stress axis function. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103662. [PMID: 33878450 DOI: 10.1016/j.etap.2021.103662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Although considerable inter-individual variability exists in health effects associated with air pollutant exposure, underlying reasons remain unclear. We examined whether innate differences in stress axis function modify lung glucocorticoid and macrophage responses to ozone (O3). Highly-stress responsive Fischer (F344) and less responsive Lewis (LEW) rats were exposed for 4 h by nose-only inhalation to air or O3 (0.8 ppm). Ozone increased corticosterone recovered by bronchoalveolar lavage in both strains (F344 > LEW). Higher corticosterone in F344 was associated with a blunted response to O3 of macrophage pro-inflammatory genes compared to LEW. Pharmacological inhibition of O3-dependent corticosterone production in F344 enhanced the inflammatory gene response to O3, mimicking the LEW phenotype. Examination of potential impacts of glucocorticoids on macrophage function using a human monocyte-derived macrophage cell line (THP-1) showed that cortisol modified phagocytosis in a macrophage phenotype-dependent manner. Overall, our data implicate endogenous glucocorticoids in the regulation of pulmonary macrophage responses to O3.
Collapse
Affiliation(s)
- Jith Thomas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Andrew Stalker
- Biologic and Radiopharmaceutical Drugs Directorate, Centre for Biologics Evaluation, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Dalibor Breznan
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Errol M Thomson
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.
| |
Collapse
|
36
|
Lu L, Huang J, Deng X, Sun X, Dong J. Application of glucocorticoids in patients with novel coronavirus infection: From bench to bedside. TRADITIONAL MEDICINE AND MODERN MEDICINE 2021. [DOI: 10.1142/s257590002030009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glucocorticoids (GCs) have potential anti-inflammatory and immunosuppressive effects. There is plenty of controversy about the application of glucocorticoids in the treatment of coronavirus disease 2019 (COVID-19). This paper briefly summarizes the mechanism of glucocorticoids and their receptors and clinical applications in COVID-19. Through reviewing the current literature, our aim is to have a deeper understanding of the mechanism of GCs and their clinical applications, so as to find possible ways to enhance their efficacy and reduce drug resistance or side effects.
Collapse
Affiliation(s)
- Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Jianhua Huang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Xiaohong Deng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Xianjun Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| |
Collapse
|
37
|
Zhong Y, Duan Z, Su M, Lin Y, Zhang J. Inflammatory responses associated with hyposaline stress in gill epithelial cells of the spotted scat Scatophagus argus. FISH & SHELLFISH IMMUNOLOGY 2021; 114:142-151. [PMID: 33940172 DOI: 10.1016/j.fsi.2021.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/12/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
The molecular processes of immune responses in mucosal tissues such as fish gills under environmental stress are poorly understood. In the present study, pro-inflammatory response under hyposaline stress and its regulation by cortisol/corticosteroid receptors (CRs) in gill epithelial cells of the spotted scat Scatophagus argus were analyzed. The fish were transferred to freshwater for 6 days (144 h) of acclimation. Following freshwater exposure, the cortisol concentration increased transiently before returning to the control level over time. mRNA expression of pro-inflammatory cytokines (TNF-a, IL-1b and IL-6) was stimulated by cortisol through CR signals at early stages of acclimation, but hyposaline stress inhibited their levels by the end of the experimental period. The transcriptional profile of anti-inflammatory cytokine IL-10 was quite different from these pro-inflammatory cytokines, and its value fluctuated within a narrow range during the experimental period. Full-length cDNAs of mineralocorticoid receptor (MR) and glucocorticoid receptor 1 (GR1) (different kinds of CRs) were cloned from the gills. Our results showed that MR and GR displayed mutually antagonistic effects during hyposaline stress. MR responded quickly at early stages, and its expression decreased with the drop of cortisol concentration. By contrast, GR expression was maintained at high levels after the acclimation of freshwater exposure. The tight coordination of GR and MR helps to shape the effects of stress on the immune system, which in turn, regulates the stress response. Our results confirm the interaction between endocrine and cytokine messengers and a clear difference in the sensitivity of GR and MR during the hyposaline challenge in gill epithelial cells of the spotted scat Scatophagus argus.
Collapse
Affiliation(s)
- Yong Zhong
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, College of Life Science, Shenzhen University, Shenzhen, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Zhengyu Duan
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, College of Life Science, Shenzhen University, Shenzhen, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, College of Life Science, Shenzhen University, Shenzhen, China
| | - Yanquan Lin
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, College of Life Science, Shenzhen University, Shenzhen, China; Dafeng South Ocean Marine Technology Company, Shenzhen, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, College of Life Science, Shenzhen University, Shenzhen, China.
| |
Collapse
|
38
|
Womersley JS, Nothling J, Toikumo S, Malan-Müller S, van den Heuvel LL, McGregor NW, Seedat S, Hemmings SMJ. Childhood trauma, the stress response and metabolic syndrome: A focus on DNA methylation. Eur J Neurosci 2021; 55:2253-2296. [PMID: 34169602 DOI: 10.1111/ejn.15370] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/13/2021] [Accepted: 06/12/2021] [Indexed: 12/12/2022]
Abstract
Childhood trauma (CT) is well established as a potent risk factor for the development of mental disorders. However, the potential of adverse early experiences to exert chronic and profound effects on physical health, including aberrant metabolic phenotypes, has only been more recently explored. Among these consequences is metabolic syndrome (MetS), which is characterised by at least three of five related cardiometabolic traits: hypertension, insulin resistance/hyperglycaemia, raised triglycerides, low high-density lipoprotein and central obesity. The deleterious effects of CT on health outcomes may be partially attributable to dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, which coordinates the response to stress, and the consequent fostering of a pro-inflammatory environment. Epigenetic tags, such as DNA methylation, which are sensitive to environmental influences provide a means whereby the effects of CT can be biologically embedded and persist into adulthood to affect health and well-being. The methylome regulates the transcription of genes involved in the stress response, metabolism and inflammation. This narrative review examines the evidence for DNA methylation in CT and MetS in order to identify shared neuroendocrine and immune correlates that may mediate the increased risk of MetS following CT exposure. Our review specifically highlights differential methylation of FKBP5, the gene that encodes FK506-binding protein 51 and has pleiotropic effects on stress responding, inflammation and energy metabolism, as a central candidate to understand the molecular aetiology underlying CT-associated MetS risk.
Collapse
Affiliation(s)
- Jacqueline S Womersley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jani Nothling
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Sylvanus Toikumo
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stefanie Malan-Müller
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Leigh L van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nathaniel W McGregor
- Systems Genetics Working Group, Department of Genetics, Faculty of Agriculture, Stellenbosch University, Stellenbosch, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sîan M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
39
|
Rodrigues-Braz D, Zhao M, Yesilirmak N, Aractingi S, Behar-Cohen F, Bourges JL. Cutaneous and ocular rosacea: Common and specific physiopathogenic mechanisms and study models. Mol Vis 2021; 27:323-353. [PMID: 34035646 PMCID: PMC8131178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/11/2021] [Indexed: 11/21/2022] Open
Abstract
Rosacea is a chronic inflammatory disease that affects the face skin. It is clinically classified into the following four subgroups depending on its location and severity: erythematotelangiectatic, papulopustular, phymatous, and ocular. Rosacea is a multifactorial disease triggered by favoring factors, the pathogenesis of which remains imperfectly understood. Recognized mechanisms include the innate immune system, with the implication of Toll-like receptors (TLRs) and cathelicidins; neurovascular deregulation involving vascular endothelial growth factor (VEGF), transient receptor potential (TRP) ion channels, and neuropeptides; and dysfunction of skin sebaceous glands and ocular meibomian glands. Microorganisms, genetic predisposition, corticosteroid treatment, and ultraviolet B (UVB) radiation are favoring factors. In this paper, we review the common and specific molecular mechanisms involved in the pathogenesis of cutaneous and ocular rosacea and discuss laboratory and clinical studies, as well as experimental models.
Collapse
Affiliation(s)
- Daniela Rodrigues-Braz
- Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, Inserm, UMRS1138, Team 17, Physiopathology of ocular diseases: therapeutic innovations, Paris, France
| | - Min Zhao
- Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, Inserm, UMRS1138, Team 17, Physiopathology of ocular diseases: therapeutic innovations, Paris, France
| | - Nilufer Yesilirmak
- Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, Inserm, UMRS1138, Team 17, Physiopathology of ocular diseases: therapeutic innovations, Paris, France
- Department of Ophthalmology, Ankara Yildirim Beyazit University, Ankara, Turkey
- Ophtalmopole, Assistance Publique -Hôpitaux de Paris (AP-HP), Cochin Hospital, Paris, France
| | - Selim Aractingi
- Department of Dermatology, AP-HP, Cochin Hospital, Paris, France
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, Inserm, UMRS1138, Team 17, Physiopathology of ocular diseases: therapeutic innovations, Paris, France
- Ophtalmopole, Assistance Publique -Hôpitaux de Paris (AP-HP), Cochin Hospital, Paris, France
| | - Jean-Louis Bourges
- Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, Inserm, UMRS1138, Team 17, Physiopathology of ocular diseases: therapeutic innovations, Paris, France
- Ophtalmopole, Assistance Publique -Hôpitaux de Paris (AP-HP), Cochin Hospital, Paris, France
| |
Collapse
|
40
|
Pinosylvin Shifts Macrophage Polarization to Support Resolution of Inflammation. Molecules 2021; 26:molecules26092772. [PMID: 34066748 PMCID: PMC8125806 DOI: 10.3390/molecules26092772] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022] Open
Abstract
Pinosylvin is a natural stilbenoid found particularly in Scots pine. Stilbenoids are a group of phenolic compounds identified as protective agents against pathogens for many plants. Stilbenoids also possess health-promoting properties in humans; for instance, they are anti-inflammatory through their suppressing action on proinflammatory M1-type macrophage activation. Macrophages respond to environmental changes by polarizing towards proinflammatory M1 phenotype in infection and inflammatory diseases, or towards anti-inflammatory M2 phenotype, mediating resolution of inflammation and repair. In the present study, we investigated the effects of pinosylvin on M2-type macrophage activation, aiming to test the hypothesis that pinosylvin could polarize macrophages from M1 to M2 phenotype to support resolution of inflammation. We used lipopolysaccharide (LPS) to induce M1 phenotype and interleukin-4 (IL-4) to induce M2 phenotype in J774 murine and U937 human macrophages, and we measured expression of M1 and M2-markers. Interestingly, along with inhibiting the expression of M1-type markers, pinosylvin had an enhancing effect on the M2-type activation, shown as an increased expression of arginase-1 (Arg-1) and mannose receptor C type 1 (MRC1) in murine macrophages, and C-C motif chemokine ligands 17 and 26 (CCL17 and CCL26) in human macrophages. In IL-4-treated macrophages, pinosylvin enhanced PPAR-γ expression but had no effect on STAT6 phosphorylation. The results show, for the first time, that pinosylvin shifts macrophage polarization from the pro-inflammatory M1 phenotype towards M2 phenotype, supporting resolution of inflammation and repair.
Collapse
|
41
|
Robles TF. Annual Research Review: Social relationships and the immune system during development. J Child Psychol Psychiatry 2021; 62:539-559. [PMID: 33164229 DOI: 10.1111/jcpp.13350] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/22/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022]
Abstract
A child's social relationships serve critical functions during development. The interface between a child's social world and their immune system, particularly innate immunity, which helped children survive in the face of infections, nutritional scarcity, and violence throughout human history, is the focus of this Annual Research Review. This article reviews the state of research on social relationships and innate immune inflammation during childhood. Warmth and rejection in childhood social relationships, as well as physical trauma and unpredictable social environments, were not consistently related to circulating inflammatory markers such as interleukin-6 and C-reactive protein during childhood. Instead, links between social environments and inflammation were observed in studies that focus on children with greater background risk factors, such as low family socioeconomic status, family history of mood disorders, or presence of chronic interpersonal stressors combined with acute episodic stressors. In addition, studies on worse childhood social environments and greater inflammation in adulthood were more consistent. Warmth and rejection in the social environment may be related to sensitivity of immune cells to the anti-inflammatory actions of glucocorticoids, though this is primarily observed in adolescent women at risk for depression. Additional mechanistic evidence suggests that greater warmth and less rejection are related to processes that regulate inflammation, including greater expression of the glucocorticoid receptor gene and lower expression of genes that are responsive to the pro-inflammatory transcription factor NF-kappa B. The article concludes by discussing implications of the interface between a child's social relationships and inflammation for mental health and other recent (on evolutionary timescales) health threats, as well as recommendations for future research, and recommendations for researchers interested in integrating inflammatory measures in developmental research.
Collapse
Affiliation(s)
- Theodore F Robles
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
42
|
Zhu Y, Wu X, Zhou R, Sie O, Niu Z, Wang F, Fang Y. Hypothalamic-Pituitary-End-Organ Axes: Hormone Function in Female Patients with Major Depressive Disorder. Neurosci Bull 2021; 37:1176-1187. [PMID: 33909242 DOI: 10.1007/s12264-021-00689-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/27/2020] [Indexed: 12/27/2022] Open
Abstract
Classic hypothalamic-pituitary-end-organ feedback loops - the hypothalamic-pituitary-adrenal axis (HPAA), hypothalamic-pituitary-thyroidal axis (HPTA), and hypothalamic-pituitary-gonadal axis (HPGA) - are associated with the neuroendocrine and immune systems in major depressive disorder (MDD). Female patients with MDD present with evident neuroendocrine and immunological changes. Glucocorticoid, thyroid hormone, and reproductive steroid levels fluctuate with menstrual cycles, which might lead to glucocorticoid receptor resistance, impairment of triiodothyronine conversion, and sex hormone secretion disorders. In this review, we summarize the independent and interactive functions of these three axes in female MDD patients. The similar molecular structure of steroids implies an interrelationship between the hypothalamic-pituitary-end-organ axes and the competitive inhibitory effects at the receptor level, especially when considering the HPAA and HPGA.
Collapse
Affiliation(s)
- Yuncheng Zhu
- Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai, 200083, China.,Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xiaohui Wu
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Rubai Zhou
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Oliver Sie
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhiang Niu
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Fang Wang
- Shanghai Yangpu Mental Health Center, Shanghai, 200093, China.
| | - Yiru Fang
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China. .,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 201108, China.
| |
Collapse
|
43
|
Bekhbat M, Mukhara D, Dozmorov MG, Stansfield JC, Benusa SD, Hyer MM, Rowson SA, Kelly SD, Qin Z, Dupree JL, Tharp GK, Tansey MG, Neigh GN. Adolescent stress sensitizes the adult neuroimmune transcriptome and leads to sex-specific microglial and behavioral phenotypes. Neuropsychopharmacology 2021; 46:949-958. [PMID: 33558677 PMCID: PMC8115118 DOI: 10.1038/s41386-021-00970-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/30/2023]
Abstract
Adolescent exposure to chronic stress, a risk factor for mood disorders in adulthood, sensitizes the neuroinflammatory response to a subsequent immune challenge. We previously showed that chronic adolescent stress (CAS) in rats led to distinct patterns of neuroimmune priming in adult male and female rats. However, sex differences in the neuroimmune consequences of CAS and their underlying mechanisms are not fully understood. Here we hypothesized that biological sex would dictate differential induction of inflammation-related transcriptomic pathways and immune cell involvement (microglia activation and leukocyte presence) in the hippocampus of male and female rats with a history of CAS. Adolescent rats underwent CAS (six restraint and six social defeat episodes during postnatal days 38-49), and behavioral assessments were conducted in adolescence and adulthood. Neuroimmune measures were obtained following vehicle or a systemic lipopolysaccharide (LPS) challenge in adulthood. CAS led to increased time in the corners of the open field in adolescence. In males, CAS also increased social avoidance. As adults, CAS rats displayed an exaggerated enrichment of the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) pathway and chemokine induction following LPS challenge, and increased number of perivascular CD45+ cells in the hippocampus. However, CAS females, but not males, showed exaggerated glucocorticoid receptor (GR) pathway enrichment and increased microglial complexity. These results provide further insight to the mechanisms by which peripheral immune events may influence neuroimmune responses differentially among males and females and further demonstrate the importance of adolescent stress in shaping adult responses.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- grid.189967.80000 0001 0941 6502Department of Physiology, Emory University, Atlanta, GA 30322 USA
| | - Deepika Mukhara
- grid.224260.00000 0004 0458 8737Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Mikhail G. Dozmorov
- grid.417264.20000 0001 2194 2791Center for Clinical and Translational Research, Virginia Commonwealth University Medical Center, Richmond, VA 23298 USA
| | - John C. Stansfield
- grid.417264.20000 0001 2194 2791Center for Clinical and Translational Research, Virginia Commonwealth University Medical Center, Richmond, VA 23298 USA
| | - Savannah D. Benusa
- grid.224260.00000 0004 0458 8737Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Molly M. Hyer
- grid.224260.00000 0004 0458 8737Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Sydney A. Rowson
- grid.189967.80000 0001 0941 6502Department of Physiology, Emory University, Atlanta, GA 30322 USA
| | - Sean D. Kelly
- grid.189967.80000 0001 0941 6502Department of Physiology, Emory University, Atlanta, GA 30322 USA
| | - Zhaohui Qin
- grid.189967.80000 0001 0941 6502Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA USA
| | - Jeffrey L. Dupree
- grid.224260.00000 0004 0458 8737Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Gregory K. Tharp
- grid.189967.80000 0001 0941 6502Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30322 USA
| | - Malú G. Tansey
- grid.189967.80000 0001 0941 6502Department of Physiology, Emory University, Atlanta, GA 30322 USA
| | - Gretchen N. Neigh
- grid.189967.80000 0001 0941 6502Department of Physiology, Emory University, Atlanta, GA 30322 USA ,grid.224260.00000 0004 0458 8737Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA ,grid.189967.80000 0001 0941 6502Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA 30322 USA
| |
Collapse
|
44
|
Rao X, Liu L, Wang H, Yu Y, Li W, Chai T, Zhou W, Ji P, Song J, Wei H, Xie P. Regulation of Gut Microbiota Disrupts the Glucocorticoid Receptor Pathway and Inflammation-related Pathways in the Mouse Hippocampus. Exp Neurobiol 2021; 30:59-72. [PMID: 33462159 PMCID: PMC7926043 DOI: 10.5607/en20055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 11/19/2022] Open
Abstract
An increasing number of studies have recently indicated the important effects of gut microbes on various functions of the central nervous system. However, the underlying mechanisms by which gut microbiota regulate brain functions and behavioral phenotypes remain largely unknown. We therefore used isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic analysis to obtain proteomic profiles of the hippocampus in germ-free (GF), colonized GF, and specific pathogen-free (SPF) mice. We then integrated the resulting proteomic data with previously reported mRNA microarray data, to further explore the effects of gut microbes on host brain functions. We identified that 61 proteins were upregulated and 242 proteins were downregulated in GF mice compared with SPF mice. Of these, 124 proteins were significantly restored following gut microbiota colonization. Bioinformatic analysis of these significant proteins indicated that the glucocorticoid receptor signaling pathway and inflammation-related pathways were the most enriched disrupted pathways. This study provides new insights into the pathological mechanisms of gut microbiota-regulated diseases.
Collapse
Affiliation(s)
- Xuechen Rao
- College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China.,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lanxiang Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Ying Yu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wenxia Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tingjia Chai
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ping Ji
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Jinlin Song
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
45
|
Szczepankiewicz D, Narożna B, Celichowski P, Sakrajda K, Kołodziejski P, Banach E, Zakowicz P, Pruszyńska-Oszmałek E, Pawlak J, Wiłkość M, Dmitrzak-Węglarz M, Skibińska M, Bejger A, Twarowska-Hauser J, Rybakowski JK, Nogowski L, Szczepankiewicz A. Genes involved in glucocorticoid receptor signalling affect susceptibility to mood disorders. World J Biol Psychiatry 2021; 22:149-160. [PMID: 32400287 DOI: 10.1080/15622975.2020.1766109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES In mood disorders chronic stress contributes to decreased glucocorticoid receptor signalling in the brain and resistance in the periphery. We hypothesised that aberrant glucocorticoid receptor function may result from genetic predisposition and that decreased GR signalling in the brain correlates with the expression of genes regulating GR complex formation. METHODS We performed the association analysis of 698 patients: 490 patients with bipolar disorder and 208 patients with major depressive disorder and 564 control subjects. We genotyped 11 variants using TaqMan assays. Gene expression in the brain tissue was done in male Wistar rats after chronic mild stress protocol. The SRSF5 serum concentration was performed using ELISA. Data were analysed in Statistica and GraphPad. RESULTS We found an association of STIP1 and SRSF5 variants with major depressive disorder and BAG1 variant with bipolar disorder. Gene expression analysis in a rat model of depression confirmed significant changes in the expression of SRSF5, BAG1, and FKBP4 in the brain. For SRSF5, we observed significantly increased expression in the serum of depressed females and male rats exposed to chronic stress. CONCLUSIONS Our results indicate the involvement of genes associated with GR function, SRSF5, BAG1, and FKBP4 with susceptibility to mood disorders.
Collapse
Affiliation(s)
- Dawid Szczepankiewicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poznan, Poland
| | - Beata Narożna
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poland
| | - Piotr Celichowski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Kosma Sakrajda
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poland
| | - Paweł Kołodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poznan, Poland
| | - Ewa Banach
- Laboratory of Neurobiology, Department of Molecular and Cellular Neurobiology, Nencki Institute, Warsaw, Poland
| | - Przemysław Zakowicz
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland.,Children and Adolescent Treatment Center, Zielona Góra, Poland
| | - Ewa Pruszyńska-Oszmałek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poznan, Poland
| | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Monika Wiłkość
- Department of Individual Differences Psychology, Psychology Institute, Kazimierz Wielki University in Bydgoszcz, Bydgoszcz, Poland
| | | | - Maria Skibińska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Alicja Bejger
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Janusz K Rybakowski
- Deparment of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland.,Department of Psychiatric Nursing, Poznan University of Medical Sciences, Poznan, Poland
| | - Leszek Nogowski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poznan, Poland
| | | |
Collapse
|
46
|
Kmiecik SW, Drzewicka K, Melchior F, Mayer MP. Heat shock transcription factor 1 is SUMOylated in the activated trimeric state. J Biol Chem 2021; 296:100324. [PMID: 33493517 PMCID: PMC7949154 DOI: 10.1016/j.jbc.2021.100324] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/23/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
The heat shock response is a transcriptional program of organisms to counteract an imbalance in protein homeostasis. It is orchestrated in all eukaryotic cells by heat shock transcription factor 1 (Hsf1). Despite very intensive research, the intricacies of the Hsf1 activation-attenuation cycle remain elusive at a molecular level. Post-translational modifications belong to one of the key mechanisms proposed to adapt the Hsf1 activity to the needs of individual cells, and phosphorylation of Hsf1 at multiple sites has attracted much attention. According to cell biological and proteomics data, Hsf1 is also modified by small ubiquitin-like modifier (SUMO) at several sites. How SUMOylation affects Hsf1 activity at a molecular level is still unclear. Here, we analyzed Hsf1 SUMOylation in vitro with purified components to address questions that could not be answered in cell culture models. In vitro Hsf1 is primarily conjugated at lysine 298 with a single SUMO, though we did detect low-level SUMOylation at other sites. Different SUMO E3 ligases such as protein inhibitor of activated STAT 4 enhanced the efficiency of in vitro modification but did not alter SUMO site preferences. We provide evidence that Hsf1 trimerization and phosphorylation at serines 303 and 307 increases SUMOylation efficiency, suggesting that Hsf1 is SUMOylated in its activated state. Hsf1 can be SUMOylated when DNA bound, and SUMOylation of Hsf1 does neither alter DNA-binding affinity nor affects heat shock cognate 71kDa protein (HSPA8)+DnaJ homolog subfamily B member 1-mediated monomerization of Hsf1 trimers and concomitant dislocation from DNA. We propose that SUMOylation acts at the transcription level of the heat shock response.
Collapse
Affiliation(s)
- Szymon W Kmiecik
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Heidelberg, Germany
| | - Katarzyna Drzewicka
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Heidelberg, Germany
| | - Frauke Melchior
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Heidelberg, Germany
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Heidelberg, Germany.
| |
Collapse
|
47
|
Chinese Herbal Medicine for the Treatment of Depression: Effects on the Neuroendocrine-Immune Network. Pharmaceuticals (Basel) 2021; 14:ph14010065. [PMID: 33466877 PMCID: PMC7830381 DOI: 10.3390/ph14010065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
The neuroimmune and neuroendocrine systems are two critical biological systems in the pathogenesis of depression. Clinical and preclinical studies have demonstrated that the activation of the neuroinflammatory response of the immune system and hyperactivity of the hypothalamus–pituitary–adrenal (HPA) axis of the neuroendocrine system commonly coexist in patients with depression and that these two systems bidirectionally regulate one another through neural, immunological, and humoral intersystem interactions. The neuroendocrine-immune network poses difficulties associated with the development of antidepressant agents directed toward these biological systems for the effective treatment of depression. On the other hand, multidrug and multitarget Chinese Herbal Medicine (CHM) has great potential to assist in the development of novel medications for the systematic pharmacotherapy of depression. In this narrative essay, we conclusively analyze the mechanisms of action of CHM antidepressant constituents and formulas, specifically through the modulation of the neuroendocrine-immune network, by reviewing recent preclinical studies conducted using depressive animal models. Some CHM herbal constituents and formulas are highlighted as examples, and their mechanisms of action at both the molecular and systems levels are discussed. Furthermore, we discuss the crosstalk of these two biological systems and the systems pharmacology approach for understanding the system-wide mechanism of action of CHM on the neuroendocrine-immune network in depression treatment. The holistic, multidrug, and multitarget nature of CHM represents an excellent example of systems medicine in the effective treatment of depression.
Collapse
|
48
|
Abame MA, He Y, Wu S, Xie Z, Zhang J, Gong X, Wu C, Shen J. Chronic administration of synthetic cannabidiol induces antidepressant effects involving modulation of serotonin and noradrenaline levels in the hippocampus. Neurosci Lett 2020; 744:135594. [PMID: 33388355 DOI: 10.1016/j.neulet.2020.135594] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 12/20/2022]
Abstract
Cannabidiol (CBD) is a non-psychotomimetic compound derived from Cannabis sativa. Preclinical and clinical studies have shown therapeutic potential of CBD in a variety of disorders. Despite several research efforts on CBD, its antidepressant activity has been poorly investigated and the exact mechanism of action remains unclear. Thus, this study aimed to further explore the mechanism of CBD after chronic administration (7 days). First, the dose level of CBD that is enough to produce antidepressant effects after chronic administration was explored. Second, the changes in key proteins and neurotransmitters through such methods as real-time polymerase chain reaction (RT-PCR), western blotting, and high-performance liquid chromatography-electrochemical detection (HPLC-ECD) were critically studied. Furthermore, correlation between behavioral phenotypes with protein and neurotransmitters was established and the possible mechanism was herein postulated. The results showed that only the high dose CBD 100 mg/kg chronic administration induced antidepressant-like effects in mice subjected to forced swim test. Chronic CBD 100 mg/kg administration resulted in significant increases in serotonin (5-HT) and noradrenaline (NA) levels in the hippocampus (HPC). Similarly, the chronic administration of CBD 30 mg/kg and CBD 100 mg/kg significantly decreased nuclear factor kappa B (NF-κB) expression in the HPC. Moreover, none of the treatments were observed to induce locomotor effects. Thus, we concluded that chronic administration of CBD (100 mg/kg) induced antidepressant-like effects by increasing 5-HT and NA levels in the HPC. These results shed new light on further discovery of the antidepressant effect of CBD.
Collapse
Affiliation(s)
- Melkamu Alemu Abame
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang He
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
| | - Song Wu
- Department of Druggabilty Evaluation, Topharman Shanghai Co., Ltd., Shanghai, 201203, China
| | - Zhifei Xie
- Department of Druggabilty Evaluation, Topharman Shanghai Co., Ltd., Shanghai, 201203, China
| | - Jian Zhang
- Department of Druggabilty Evaluation, Topharman Shanghai Co., Ltd., Shanghai, 201203, China
| | - Xudong Gong
- Department of Druggabilty Evaluation, Topharman Shanghai Co., Ltd., Shanghai, 201203, China
| | - Chunhui Wu
- Department of Druggabilty Evaluation, Topharman Shanghai Co., Ltd., Shanghai, 201203, China
| | - Jingshan Shen
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
49
|
Ruiz-Conca M, Gardela J, Jauregi-Miguel A, Martinez CA, Rodríguez-Martinez H, López-Béjar M, Alvarez-Rodriguez M. Seminal Plasma Triggers the Differential Expression of the Glucocorticoid Receptor ( NR3C1/GR) in the Rabbit Reproductive Tract. Animals (Basel) 2020; 10:E2158. [PMID: 33228207 PMCID: PMC7699521 DOI: 10.3390/ani10112158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Rabbits are interesting as research animal models for reproduction, due to their condition of species of induced ovulation, with the release of endogenous gonadotropin-releasing hormone (GnRH) due to coitus. Glucocorticoid (GC) signaling, crucial for physiological homeostasis, is mediated through a yet unclear mechanism, by the GC receptor (NR3C1/GR). After mating, the female reproductive tract undergoes dynamic modifications, triggered by gene transcription, a pre-amble for fertilization and pregnancy. This study tested the hypothesis that when ovulation is induced, the expression of NR3C1 is influenced by sperm-free seminal plasma (SP), similarly to after mating (whole semen), along the different segments of the internal reproductive tract of female rabbits. Semen (mating) was compared to vaginal infusion of sperm-free SP (Experiment 1), and changes over time were also evaluated, i.e., 10, 24, 36, 68, and 72 h post-mating, corresponding to specific stages, i.e., ovulation, fertilization, and the interval of early embryo development up to the morula stage (Experiment 2). All does were treated with GnRH to induce ovulation. Samples were retrieved from seven segments of the reproductive tract (from the cervix to infundibulum), at 20 h post-mating or sperm-free SP infusion (Experiment 1) or at 10, 24, 36, 68, and 72 h post-mating (Experiment 2). Gene expression of NR3C1 was analyzed by qPCR. Results showed an increase in NR3C1 expression in the infundibulum compared to the other anatomical regions in the absence of spermatozoa when sperm-free SP infusion was performed (Experiment 1). Moreover, during the embryo transport through the oviduct, the distal isthmus was time-course upregulated, especially at 72 h, when morulae are retained in this anatomical region, while it was downregulated in the distal uterus at 68 h (Experiment 2). The overall results suggest that NR3C1, the GC receptor gene, assessed in the reproductive tract of does for the first time, shows differential expression changes during the interval of oviductal and uterine embryo transport that may imply a relevant role of the GC action, not only close to the site of ovulation and fertilization, but also in the endometrium.
Collapse
Affiliation(s)
- Mateo Ruiz-Conca
- Department of Biomedical and Clinical Sciences (BKV), Division of Children’s and Women Health (BKH), Obstetrics and Gynecology, Linköping University, 58185 Linköping, Sweden; (M.R.-C.); (J.G.); (C.A.M.); (H.R.-M.)
- Department of Animal Health and Anatomy, Veterinary Faculty, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain or
| | - Jaume Gardela
- Department of Biomedical and Clinical Sciences (BKV), Division of Children’s and Women Health (BKH), Obstetrics and Gynecology, Linköping University, 58185 Linköping, Sweden; (M.R.-C.); (J.G.); (C.A.M.); (H.R.-M.)
- Department of Animal Health and Anatomy, Veterinary Faculty, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain or
| | - Amaia Jauregi-Miguel
- Department of Biomedical and Clinical Sciences (BKV), Division of Molecular Medicine and Virology (MMV), Linköping University, 58185 Linköping, Sweden;
| | - Cristina A. Martinez
- Department of Biomedical and Clinical Sciences (BKV), Division of Children’s and Women Health (BKH), Obstetrics and Gynecology, Linköping University, 58185 Linköping, Sweden; (M.R.-C.); (J.G.); (C.A.M.); (H.R.-M.)
| | - Heriberto Rodríguez-Martinez
- Department of Biomedical and Clinical Sciences (BKV), Division of Children’s and Women Health (BKH), Obstetrics and Gynecology, Linköping University, 58185 Linköping, Sweden; (M.R.-C.); (J.G.); (C.A.M.); (H.R.-M.)
| | - Manel López-Béjar
- Department of Animal Health and Anatomy, Veterinary Faculty, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain or
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Manuel Alvarez-Rodriguez
- Department of Biomedical and Clinical Sciences (BKV), Division of Children’s and Women Health (BKH), Obstetrics and Gynecology, Linköping University, 58185 Linköping, Sweden; (M.R.-C.); (J.G.); (C.A.M.); (H.R.-M.)
- Department of Animal Health and Anatomy, Veterinary Faculty, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain or
| |
Collapse
|
50
|
Antagonism of Macrophage Migration Inhibitory Factory (MIF) after Traumatic Brain Injury Ameliorates Astrocytosis and Peripheral Lymphocyte Activation and Expansion. Int J Mol Sci 2020; 21:ijms21207448. [PMID: 33050322 PMCID: PMC7589344 DOI: 10.3390/ijms21207448] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury (TBI) precedes the onset of epilepsy in up to 15–20% of symptomatic epilepsies and up to 5% of all epilepsy. Treatment of acquired epilepsies, including post-traumatic epilepsy (PTE), presents clinical challenges, including frequent resistance to anti-epileptic therapies. Considering that over 1.6 million Americans present with a TBI each year, PTE is an urgent clinical problem. Neuroinflammation is thought to play a major causative role in many of the post-traumatic syndromes, including PTE. Increasing evidence suggests that neuroinflammation facilitates and potentially contributes to seizure induction and propagation. The inflammatory cytokine, macrophage migration inhibitory factor (MIF), is elevated after TBI and higher levels of MIF correlate with worse post-traumatic outcomes. MIF was recently demonstrated to directly alter the firing dynamics of CA1 pyramidal neurons in the hippocampus, a structure critically involved in many types of seizures. We hypothesized that antagonizing MIF after TBI would be anti-inflammatory, anti-neuroinflammatory and neuroprotective. The results show that administering the MIF antagonist ISO1 at 30 min after TBI prevented astrocytosis but was not neuroprotective in the peri-lesion cortex. The results also show that ISO1 inhibited the TBI-induced increase in γδT cells in the gut, and the percent of B cells infiltrating into the brain. The ISO1 treatment also increased this population of B cells in the spleen. These findings are discussed with an eye towards their therapeutic potential for post-traumatic syndromes, including PTE.
Collapse
|