1
|
Shankey NT, Cohen RE. Neural control of reproduction in reptiles. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:307-321. [PMID: 38247297 DOI: 10.1002/jez.2783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Reptiles display considerable diversity in reproductive behavior, making them great models to study the neuroendocrine control of reproductive behavior. Many reptile species are seasonally breeding, such that they become reproductively active during their breeding season and regress to a nonreproductive state during their nonbreeding season, with this transition often prompted by environmental cues. In this review, we will focus on summarizing the neural and neuroendocrine mechanisms controlling reproductive behavior. Three major areas of the brain are involved in reproductive behavior: the preoptic area (POA), amygdala, and ventromedial hypothalamus (VMH). The POA and VMH are sexually dimorphic areas, regulating behaviors in males and females respectively, and all three areas display seasonal plasticity. Lesions to these areas disrupt the onset and maintenance of reproductive behaviors, but the exact roles of these regions vary between sexes and species. Different hormones influence these regions to elicit seasonal transitions. Circulating testosterone (T) and estradiol (E2) peak during the breeding season and their influence on reproduction is well-documented across vertebrates. The conversion of T into E2 and 5α-dihydrotestosterone can also affect behavior. Melatonin and corticosterone have generally inhibitory effects on reproductive behavior, while serotonin and other neurohormones seem to stimulate it. In general, there is relatively little information on the neuroendocrine control of reproduction in reptiles compared to other vertebrate groups. This review highlights areas that should be considered for future areas of research.
Collapse
Affiliation(s)
- Nicholas T Shankey
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, Minnesota, USA
| | - Rachel E Cohen
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, Minnesota, USA
| |
Collapse
|
2
|
Finger JW, Kelley M, Hamilton M, Zhang Y, Elsey R, Mendonca M, Kavazis AN. Changes in antioxidant enzyme levels following capture in juvenile American Alligators (Alligator mississippiensis) are tissue dependent. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2021-0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many parameters used to investigate stress in vertebrates are temporally sensitive. The act of capture and sampling can influence them, hindering their functionality for evaluating the effects of stressors. Consequently, the investigation and subsequent incorporation of less time sensitive parameters are necessary to better evaluate stressors affecting vertebrates. In this study, we investigated how capture stress and handling associated with sampling influences antioxidant status in American Alligators (Alligator mississippiensis, Daudin, 1802; hereafter Alligator), long-lived, top-trophic carnivores found in the southeastern United States, by measuring levels of two antioxidant enzymes in destructive (brain and pancreas) and nondestructive (tail scutes) tissues: superoxide-dismutase-1 (SOD1) and glutathione peroxidase-1 (GPX1). Capture stress had no effect on pancreatic SOD1 and no effect on brain and pancreatic GPX1 (all p > 0.05). However, brain SOD1, scute SOD1, and scute GPX1 were all impacted by capture stress. These disparate results illustrate that the influence of capture stress on antioxidant enzymes in Alligators is tissue and marker dependent, necessitating further investigation. Our results provide a firm foundation to further investigate oxidative status in crocodilians.
Collapse
Affiliation(s)
- John W. Finger
- Auburn University, 1383, Department of Biological Sciences, Auburn, United States, 36849-5412
| | - Meghan Kelley
- Auburn University, 1383, Auburn, Alabama, United States
| | - Matthew Hamilton
- Purdue University, 311308, West Lafayette, Indiana, United States
| | - Yufeng Zhang
- The University of Memphis, 5415, Memphis, Tennessee, United States
| | - Ruth Elsey
- Departement of wildlife and fisheries, Louisiana, USA, 5476 Grand Chenier Highway, Grand Chenier, United States, 70643
| | - Mary Mendonca
- Auburn University, 1383, Auburn, Alabama, United States
| | | |
Collapse
|
3
|
Finger JW, Kelley MD, Zhang Y, Hamilton MT, Elsey RM, Mendonca MT, Kavazis A. Short-term capture stress and its effects on corticosterone levels and heat shock proteins in captive American Alligators (Alligator mississippiensis). CAN J ZOOL 2021. [DOI: 10.1139/cjz-2021-0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Heat shock proteins (HSPs) are important mediators of the normal cellular function and the cellular stress response. As such, HSPs are often utilized to measure the effects of stressors on organisms in vivo. However, multiple variables can influence their expression, including time or season, confounding results. To investigate the utility of HSPs in measuring effects of stressors in a top-trophic carnivore, we captured 20 American Alligators (Alligator mississippiensis (Daudin, 1802)), placed them in burlap sacks for 2 h and collected blood samples over four time points (baseline, 1 and 2 h after placement into burlap sacks, and 24 h after initial capture) to measure plasma corticosterone (the main crocodilian glucocorticoid) and levels of HSP60, HSP70, and HSP90. Time point significantly affected plasma corticosterone levels in Alligators (p < 0.0001), with levels significantly elevated at 1, 2, and 24 h, relative to baseline (all p < 0.05). However, capture stress did not affect HSP60, HSP70, or HSP90 in red blood cells (all p > 0.05). Our results suggest HSPs may be important biomarkers for investigating the impacts of stressors on captive and wild crocodilians, as they are not acutely elevated by capture or handling stress.
Collapse
Affiliation(s)
- John W. Finger
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Meghan D. Kelley
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yufeng Zhang
- College of Health Sciences, University of Memphis, Memphis, TN 38152, USA
| | - Matthew T. Hamilton
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Ruth M. Elsey
- Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, LA 70643, USA
| | - Mary T. Mendonca
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Andreas Kavazis
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
4
|
Kohno S, Zhu J, Guillette LJ. Stress responses in the chemistry and mRNA abundance of the peripheral blood in the American alligator. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 333:151-163. [PMID: 31885208 DOI: 10.1002/jez.2337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 11/07/2022]
Abstract
To monitor physiological and toxicological conditions in an endangered species, noninvasive to minimally invasive sampling methods are needed. We analyzed peripheral blood cells to determine if we could monitor some physiological responses of the American alligator following capture stress. Juvenile American alligators were restrained for 16 h to examine the stress response in plasma and blood cells. Plasma corticosterone concentrations were increased by restraint as were plasma concentrations of aspartate aminotransferase (AST), creatine kinase (CK), uric acid, and glucose; a sexually dimorphic response was seen in AST and CK concentrations. The lapse time of restraint was associated with altered messenger RNA (mRNA) levels of the glucocorticoid receptor (GCR) in red blood cells and JUN proto-oncogene in both white and red blood cells. A two-way cluster analysis revealed that two major clusters of factors were associated with the responses seen: (a) mRNA levels of GCR and heat-shock proteins in both blood cells were associated with plasma corticosterone concentration, whereas (b) androgen receptors and JUN mRNA levels in both blood cells were associated with cloacal temperature and body composition. Blood cells appear to be an excellent source to examine the cellular stress response to steroid hormone signals in mRNA levels. We propose that this approach, using blood cells, could provide essential insights into the molecular responses associated with stress in reptiles as well as many other nontraditional model species, including endangered species.
Collapse
Affiliation(s)
- Satomi Kohno
- Department of Biology, St Cloud State University, St Cloud, Minnesota.,Department of Obstetrics and Gynecology, Hollings Marine Laboratory, CoEE Center for Marine Genomics and Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina (MUSC), and Charleston, Charleston, South Carolina
| | - Jianguo Zhu
- Department of Obstetrics and Gynecology, Hollings Marine Laboratory, CoEE Center for Marine Genomics and Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina (MUSC), and Charleston, Charleston, South Carolina
| | - Louis J Guillette
- Department of Obstetrics and Gynecology, Hollings Marine Laboratory, CoEE Center for Marine Genomics and Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina (MUSC), and Charleston, Charleston, South Carolina
| |
Collapse
|
5
|
Visual Obstruction has No Effect on Post Capture Corticosterone Levels of Juvenile American Alligators (Alligator mississippiensis). J HERPETOL 2018. [DOI: 10.1670/18-080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Hamilton MT, Finger JW, Elsey RM, Mastromonaco GF, Tuberville TD. Corticosterone in American alligator (Alligator mississippiensis) tail scutes: Evaluating the feasibility of using unconventional samples for investigating environmental stressors. Gen Comp Endocrinol 2018; 268:7-13. [PMID: 30031024 DOI: 10.1016/j.ygcen.2018.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/23/2018] [Accepted: 07/13/2018] [Indexed: 12/31/2022]
Abstract
Baseline plasma corticosterone (CORT) concentrations have been widely used to investigate the effects of stressors in wild and captive crocodilians. However, collecting baseline plasma CORT samples from wild crocodilians may be particularly difficult due to the capture and handling protocols used for large individuals. Thus, it may prove beneficial to use recently modified techniques for extracting CORT deposited in keratinized and non-keratinized tissues to better quantify the effects of long-term stress in crocodilians. In this study, we investigated the feasibility of using American alligator (Alligator mississippiensis) tail scute tissues to quantify CORT by collecting blood and tail scutes from 40 alligators before and after a short-term handling stressor. The objective of the current study was to better understand CORT deposition in crocodilian scutes and whether short-term increases in CORT could be detected. We found that CORT can be reliably extracted from alligator scute tissue and quantified using a commercially available enzyme immunoassay. However, there was a significant increase in scute CORT concentrations following an alligator being exposed to a short-term stressor (p = 0.017), although the magnitude of change was less than observed in plasma samples from the same individuals (p = 0.002). Furthermore, our results indicate that there was a significant effect of body condition on an alligator's post-stressor CORT concentration (p = 0.02). While our study is among the first to experimentally examine the usefulness of tissue CORT in crocodilians, a combination of field and laboratory experiments are needed to better understand deposition rates of CORT in scute tissues and to further validate the usefulness of tissue glucocorticoids for evaluating the effects of stress.
Collapse
Affiliation(s)
- Matthew T Hamilton
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA.
| | - John W Finger
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA; Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | - Ruth M Elsey
- Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, LA 70643, USA
| | | | - Tracey D Tuberville
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
| |
Collapse
|
7
|
Finger JW, Hamilton MT, Kelley MD, Zhang Y, Kavazis AN, Glenn TC, Tuberville TD. Dietary Selenomethionine Administration and Its Effects on the American Alligator (Alligator mississippiensis): Oxidative Status and Corticosterone Levels. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 75:37-44. [PMID: 29737374 DOI: 10.1007/s00244-018-0530-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
Selenium (Se) is an essential nutrient which in excess causes toxicity. The disposal of incompletely combusted coal, which often is rich in Se, into aquatic settling basins is increasing the risk of Se exposure worldwide. However, very few studies have looked at the physiological effects of Se exposure on long-lived, top trophic vertebrates, such as the American alligator (Alligator mississippiensis). During a 7-week period, alligators were fed one of three dietary treatments: mice injected with deionized water or mice injected with water containing 1000 or 2000 ppm selenomethionine (SeMet). One week after the last feeding alligators were bled within 3 min of capture for plasma corticosterone (CORT). A few days later, all alligators were euthanized and whole blood and tail tissue were harvested to measure oxidative damage, an antioxidant-associated transcription factor, and antioxidant enzymes [glutathione peroxidase-1 (GPX1), superoxide dismutase-1 (SOD1), and SOD2] by Western blotting. There was a dose-dependent increase in baseline CORT levels in alligators administered SeMet. Except for blood SOD2 levels, SeMet treatment had no effect (p > 0.05 for all) on oxidative status: oxidative damage, GPX1, SOD1, and muscle SOD2 levels were similar among treatments. Our results illustrate that high levels of Se may act as a stressor to crocodilians. Future studies should investigate further the physiological effects of Se accumulation in long-lived, top-trophic vertebrates.
Collapse
Affiliation(s)
- John W Finger
- Department of Environmental Health Science, University of Georgia, Athens, GA, 30602, USA.
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC, 29802, USA.
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Matthew T Hamilton
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC, 29802, USA
| | - Meghan D Kelley
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yufeng Zhang
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA, 30602, USA
| | - Tracey D Tuberville
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC, 29802, USA
| |
Collapse
|
8
|
Sparkman AM, Clark AD, Brummett LJ, Chism KR, Combrink LL, Kabey NM, Schwartz TS. Convergence in reduced body size, head size, and blood glucose in three island reptiles. Ecol Evol 2018; 8:6169-6182. [PMID: 29988440 PMCID: PMC6024148 DOI: 10.1002/ece3.4171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022] Open
Abstract
Many oceanic islands harbor diverse species that differ markedly from their mainland relatives with respect to morphology, behavior, and physiology. A particularly common morphological change exhibited by a wide range of species on islands worldwide involves either a reduction in body size, termed island dwarfism, or an increase in body size, termed island gigantism. While numerous instances of dwarfism and gigantism have been well documented, documentation of other morphological changes on islands remains limited. Furthermore, we lack a basic understanding of the physiological mechanisms that underlie these changes, and whether they are convergent. A major hypothesis for the repeated evolution of dwarfism posits selection for smaller, more efficient body sizes in the context of low resource availability. Under this hypothesis, we would expect the physiological mechanisms known to be downregulated in model organisms exhibiting small body sizes due to dietary restriction or artificial selection would also be downregulated in wild species exhibiting dwarfism on islands. We measured body size, relative head size, and circulating blood glucose in three species of reptiles-two snakes and one lizard-in the California Channel Islands relative to mainland populations. Collating data from 6 years of study, we found that relative to mainland population the island populations had smaller body size (i.e., island dwarfism), smaller head sizes relative to body size, and lower levels of blood glucose, although with some variation by sex and year. These findings suggest that the island populations of these three species have independently evolved convergent physiological changes (lower glucose set point) corresponding to convergent changes in morphology that are consistent with a scenario of reduced resource availability and/or changes in prey size on the islands. This provides a powerful system to further investigate ecological, physiological, and genetic variables to elucidate the mechanisms underlying convergent changes in life history on islands.
Collapse
Affiliation(s)
| | - Amanda D. Clark
- Department of Biological SciencesAuburn UniversityAuburnAlabama
| | | | | | | | - Nicole M. Kabey
- Department of BiologyWestmont CollegeSanta BarbaraCalifornia
| | | |
Collapse
|
9
|
Merchant M, Hale A, Brueggen J, Harbsmeier C, Adams C. Crocodiles Alter Skin Color in Response to Environmental Color Conditions. Sci Rep 2018; 8:6174. [PMID: 29670146 PMCID: PMC5906620 DOI: 10.1038/s41598-018-24579-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/06/2018] [Indexed: 11/12/2022] Open
Abstract
Many species alter skin color to varying degrees and by different mechanisms. Here, we show that some crocodylians modify skin coloration in response to changing light and environmental conditions. Within the Family, Crocodylidae, all members of the genus Crocodylus lightened substantially when transitioned from dark enclosure to white enclosures, whereas Mecistops and Osteolaemus showed little/no change. The two members of the Family Gavialidae showed an opposite response, lightening under darker conditions, while all member of the Family Alligatoridae showed no changes. Observed color changes were rapid and reversible, occurring within 60–90 minutes. The response is visually-mediated and modulated by serum α-melanocyte-stimulating hormone (α-MSH), resulting in redistribution of melanosomes within melanophores. Injection of crocodiles with α-MSH caused the skin to lighten. These results represent a novel description of color change in crocodylians, and have important phylogenetic implications. The data support the inclusion of the Malayan gharial in the Family Gavialidae, and the shift of the African slender-snouted crocodile from the genus Crocodylus to the monophyletic genus Mecistops.
Collapse
Affiliation(s)
- Mark Merchant
- Department of Chemistry and Physics, McNeese State University, Lake Charles, Louisiana, USA.
| | - Amber Hale
- Department of Biology, McNeese State University, Lake Charles, Louisiana, USA
| | | | | | | |
Collapse
|
10
|
Nell LA, Frederick PC, Mazzotti FJ, Vliet KA, Brandt LA. Presence of Breeding Birds Improves Body Condition for a Crocodilian Nest Protector. PLoS One 2016; 11:e0149572. [PMID: 26934602 PMCID: PMC4775066 DOI: 10.1371/journal.pone.0149572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/02/2016] [Indexed: 11/29/2022] Open
Abstract
Ecological associations where one species enhances habitat for another nearby species (facilitations) shape fundamental community dynamics and can promote niche expansion, thereby influencing how and where species persist and coexist. For the many breeding birds facing high nest-predation pressure, enemy-free space can be gained by nesting near more formidable animals for physical protection. While the benefits to protected species seem well documented, very few studies have explored whether and how protector species are affected by nest protection associations. Long-legged wading birds (Pelecaniformes and Ciconiiformes) actively choose nesting sites above resident American alligators (Alligator mississippiensis), apparently to take advantage of the protection from mammalian nest predators that alligator presence offers. Previous research has shown that wading bird nesting colonies could provide substantial food for alligators in the form of dropped chicks. We compared alligator body condition in similar habitat with and without wading bird nesting colonies present. Alligator morphometric body condition indices were significantly higher in colony than in non-colony locations, an effect that was statistically independent of a range of environmental variables. Since colonially nesting birds and crocodilians co-occur in many tropical and subtropical wetlands, our results highlight a potentially widespread keystone process between two ecologically important species-groups. These findings suggest the interaction is highly beneficial for both groups of actors, and illustrate how selective pressures may have acted to form and reinforce a strongly positive ecological interaction.
Collapse
Affiliation(s)
- Lucas A. Nell
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Peter C. Frederick
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States of America
| | - Frank J. Mazzotti
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Davie, Florida, United States of America
| | - Kent A. Vliet
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
| | - Laura A. Brandt
- United States Fish and Wildlife Service, Davie, Florida, United States of America
| |
Collapse
|
11
|
Finger JW, Thomson PC, Isberg SR. Unexpected lower testosterone in faster growing farmed saltwater crocodile (Crocodylus porosus) hatchlings. Gen Comp Endocrinol 2016; 226:1-4. [PMID: 26631457 DOI: 10.1016/j.ygcen.2015.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
Agricultural production of the saltwater crocodile (Crocodylus porosus) is an emergent industry in northern Australia with many of the factors affecting production remaining unknown. In this study, we sought to expand upon our previous findings of reference corticosterone and immune function by reporting baseline sex hormone levels [testosterone (TEST) and estradiol (ESTR)] and their association with growth. This was achieved by sampling 253 hatchling crocodiles repeatedly at 3, 6, and 9months of age. Sampling age had a significant effect on both TEST (p<0.001) and ESTR (p<0.001) suggesting climatic/abiotic factors have an influence even in prepubescent crocodiles. Stress, as measured by plasma corticosterone, had no detectable effect on plasma ESTR or TEST levels. Unexpectedly however, TEST was higher in slower-growing crocodiles, which is contrary to what has been reported for the American alligator. ESTR was not associated with growth.
Collapse
Affiliation(s)
- John W Finger
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA; Faculty of Veterinary Science, University of Sydney, NSW 2006, Australia; Centre for Crocodile Research, PO Box 329, Noonamah, NT 0837, Australia
| | - Peter C Thomson
- Faculty of Veterinary Science, University of Sydney, NSW 2006, Australia
| | - Sally R Isberg
- Faculty of Veterinary Science, University of Sydney, NSW 2006, Australia; Centre for Crocodile Research, PO Box 329, Noonamah, NT 0837, Australia.
| |
Collapse
|
12
|
Lance VA, Elsey RM, Trosclair III PL. Sexual Maturity in Male American Alligators in Southwest Louisiana. SOUTH AMERICAN JOURNAL OF HERPETOLOGY 2015. [DOI: 10.2994/sajh-d-15-00005.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Moro D, MacAulay I. Computer-Aided Pattern Recognition of Large Reptiles as a Noninvasive Application to Identify Individuals. J APPL ANIM WELF SCI 2014; 17:125-35. [DOI: 10.1080/10888705.2014.883925] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Hamlin HJ, Lowers RH, Guillette LJ. Seasonal androgen cycles in adult male American alligators (Alligator mississippiensis) from a barrier island population. Biol Reprod 2011; 85:1108-13. [PMID: 21816848 DOI: 10.1095/biolreprod.111.092692] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The seasonal patterns of two primary plasma androgens, testosterone (T) and dehydroepiandrosterone (DHEA), were assessed in adult male alligators from the Merritt Island National Wildlife Refuge, a unique barrier island environment and home to the Kennedy Space Center in Florida. Samples were collected monthly from 2008 to 2009, with additional samples collected at more random intervals in 2007 and 2010. Plasma T concentrations peaked in April, coincident with breeding and courtship, and declined rapidly throughout the summer. Seasonal plasma T patterns in smaller though reproductively active adult males differed from those in their larger counterparts during the breeding season. Both size classes showed significant increases in plasma T concentration from February to March, at the beginning of the breeding season. However, smaller adults did not experience the peak in plasma T concentrations in April that were observed in larger adults, and their concentrations were significantly lower than those of larger males for the remainder of the breeding season. Plasma DHEA concentrations peaked in May and were significantly reduced by June. This is the first study to demonstrate the presence of DHEA in a crocodilian, and the high plasma DHEA concentrations that paralleled the animals' reproductive activity suggest a reproductive and/or behavioral role in adult male alligators. Similar to androgen variations in some birds, plasma DHEA concentrations in the alligators were considerably higher than T concentrations during the nonbreeding season, suggesting a potential role in maintaining nonbreeding seasonal aggression.
Collapse
Affiliation(s)
- Heather J Hamlin
- Department of Biology, University of Florida, Gainesville, Florida, USA.
| | | | | |
Collapse
|
15
|
Smith CF, Schuett GW, Schwenk K. Relationship of plasma sex steroids to the mating season of copperheads at the north-eastern extreme of their range. J Zool (1987) 2010. [DOI: 10.1111/j.1469-7998.2009.00669.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Swett MB, Breuner CW. Plasma testosterone correlates with morph type across breeding substages in male white-throated Sparrows. Physiol Biochem Zool 2009; 82:572-9. [PMID: 19637970 DOI: 10.1086/605392] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
White-throated sparrows (Zonotrichia albicollis) exhibit a genetic polymorphism that affects plumage and behavior in both sexes. White-striped morphs are more territorially aggressive, whereas tan-striped morphs provision nestlings at a higher rate. We investigated testosterone physiology in this species in an effort to understand hormonal mechanisms for the observed differences in aggression and parental care between the morphs. We found a small but significant difference in plasma testosterone between free-living white-striped and tan-striped males over the course of the breeding season. This difference correlates with previously observed differences in aggressive behavior and suggests that testosterone may mediate these differences. Testosterone remained higher in white-striped males relative to tan-striped males when males were provisioning nestlings and fledglings. Thus, testosterone may also contribute to the relatively reduced levels of parental care exhibited by white-striped males. In contrast to males, plasma testosterone did not differ between free-living white-striped and tan-striped females, which suggests that testosterone does not mediate differences in aggression between female morphs. Injection with gonadotropin-releasing hormone led to greater testosterone secretion in both captive and free-living males and captive females but did not differ by morph. Therefore, we conclude that differences in plasma testosterone between the morphs are due to differences in testosterone regulation upstream of the pituitary.
Collapse
Affiliation(s)
- M B Swett
- Division of Biological Sciences, University of Montana, 32 Campus Drive, HS104, Missoula, Montana 59812, USA
| | | |
Collapse
|
17
|
Firth BT, Christian KA, Belan I, Kennaway DJ. Melatonin rhythms in the Australian freshwater crocodile (Crocodylus johnstoni): a reptile lacking a pineal complex? J Comp Physiol B 2009; 180:67-72. [DOI: 10.1007/s00360-009-0387-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 06/19/2009] [Accepted: 06/20/2009] [Indexed: 11/28/2022]
|
18
|
Germano JM, Bishop PJ. Suitability of amphibians and reptiles for translocation. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2009; 23:7-15. [PMID: 19143783 DOI: 10.1111/j.1523-1739.2008.01123.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Translocations are important tools in the field of conservation. Despite increased use over the last few decades, the appropriateness of translocations for amphibians and reptiles has been debated widely over the past 20 years. To provide a comprehensive evaluation of the suitability of amphibians and reptiles for translocation, we reviewed the results of amphibian and reptile translocation projects published between 1991 and 2006. The success rate of amphibian and reptile translocations reported over this period was twice that reported in an earlier review in 1991. Success and failure rates were independent of the taxonomic class (Amphibia or Reptilia) released. Reptile translocations driven by human-wildlife conflict mitigation had a higher failure rate than those motivated by conservation, and more recent projects of reptile translocations had unknown outcomes. The outcomes of amphibian translocations were significantly related to the number of animals released, with projects releasing over 1000 individuals being most successful. The most common reported causes of translocation failure were homing and migration of introduced individuals out of release sites and poor habitat. The increased success of amphibian and reptile translocations reviewed in this study compared with the 1991 review is encouraging for future conservation projects. Nevertheless, more preparation, monitoring, reporting of results, and experimental testing of techniques and reintroduction questions need to occur to improve translocations of amphibians and reptiles as a whole.
Collapse
Affiliation(s)
- Jennifer M Germano
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | | |
Collapse
|
19
|
Delehanty B, Boonstra R. Impact of live trapping on stress profiles of Richardson's ground squirrel (Spermophilus richardsonii). Gen Comp Endocrinol 2009; 160:176-82. [PMID: 19059261 DOI: 10.1016/j.ygcen.2008.11.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 11/17/2008] [Accepted: 11/17/2008] [Indexed: 11/22/2022]
Abstract
Researching the physiological ecology of natural populations requires an understanding of the impact of capture-induced stress because of its numerous effects on physiological processes. In many cases, initial blood samples to which comparisons are made are obtained well after capture and may differ markedly from free-ranging conditions. We examined the extent to which stress profiles of male Richardson's ground squirrels (Spermophilus richardsonii) were affected by short-term responses to live trapping. We compared stress profiles of true base animals (blood samples obtained <3 min of capture) with those of nominal base animals (blood samples obtained >1 h after capture). Total cortisol increased almost 40% whereas our measure of corticosteroid binding globulin (CBG) decreased by 21%, resulting in a two-fold increase in free cortisol levels in nominal base animals compared with true base animals. Capture caused androgen concentrations to fall to almost half of those of true base animals. Energy mobilization increased markedly (22% in glucose and 221% in free fatty acids). Although white blood cell counts did not change, the number of neutrophils was 48% higher in true base animals. There were no changes in hematocrit or lymphocyte counts. Although most of the changes were predictable, the changes in CBG and androgens were unexpected based on previous work on closely related Arctic ground squirrels (Spermophilus parryii). Our results emphasize the value of obtaining true base measurements whenever possible in order to assess the directions and degree of bias introduced by trapping.
Collapse
Affiliation(s)
- Brendan Delehanty
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto at Scarborough, Toronto, Ont., Canada M1C 1A4.
| | | |
Collapse
|
20
|
Graham SP, Earley RL, Hoss SK, Schuett GW, Grober MS. The reproductive biology of male cottonmouths (Agkistrodon piscivorus): do plasma steroid hormones predict the mating season? Gen Comp Endocrinol 2008; 159:226-35. [PMID: 18823979 DOI: 10.1016/j.ygcen.2008.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 08/27/2008] [Accepted: 09/09/2008] [Indexed: 11/25/2022]
Abstract
To better understand the proximate causation of the two major types of mating seasons described for North American pitvipers, we conducted a field study of the cottonmouth (Agkistrodon piscivorus) in Georgia from September 2003 to May 2005 that included an extensive observational regime and collection of tissues for behavioral, anatomical, histological, and hormone analysis. Enzyme immunoassays (EIA) of plasma samples and standard histological procedures were conducted on reproductive tissues. Evidence from the annual testosterone (T) and sexual segment of the kidney (SSK) cycle and their relationship to the spermatogenic cycle provide correlative evidence of a unimodal mating pattern in this species of pitviper, as these variables consistently predict the mating season in all snake species previously examined under natural conditions. In most reptiles studied to date, high plasma levels of T and corticosterone (CORT) coincide during the mating period, making the cottonmouth an exception to this trend; we suggest two possible explanations for increased CORT during spring (regulation of a spring basking period), and decreased CORT during summer (avoiding reproductive behavioral inhibition), in this species.
Collapse
Affiliation(s)
- Sean P Graham
- Center for Behavioral Neuroscience, Georgia State University, 33 Gilmer Street, S.E., Unit 8, Atlanta, GA 30303-3088, USA.
| | | | | | | | | |
Collapse
|
21
|
Swett MB, Breuner CW. Interaction of testosterone, corticosterone and corticosterone binding globulin in the white-throated sparrow (Zonotrichia albicollis). Comp Biochem Physiol A Mol Integr Physiol 2008; 151:226-31. [PMID: 18644248 DOI: 10.1016/j.cbpa.2008.06.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 06/24/2008] [Accepted: 06/26/2008] [Indexed: 02/05/2023]
Abstract
Plasma binding globulins bind steroid hormones and are thought to regulate hormone access to tissues. Mammals have both sex steroid binding globulin (SSBG) and corticosteroid binding globulin (CBG). Birds, however, have no detectable SSBG, leading to the early conclusion that birds have no plasma regulation of sex steroids. CBG, however, can bind androgens with relatively high affinity. In birds, therefore, the control of androgenic effects may be tightly regulated by glucocorticoid physiology because glucocorticoids compete with androgens for CBG binding sites. We report levels of total testosterone (T), total corticosterone, CBG, and estimated free T in the males, the more aggressive morph had higher levels of total T; female morphs did not differ. Approximately 96% of T was bound to CBG, but a lack of morph or sex-specific differences in corticosterone titers or CBG capacity caused patterns of free T to mirror those of total T. While CBG has the potential to greatly influence T availability to tissues, in this species interactions between T, CBG and corticosterone do not appear to alter general patterns of T availability to tissues.
Collapse
Affiliation(s)
- M B Swett
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.
| | | |
Collapse
|
22
|
Roberts ML, Buchanan KL, Hasselquist D, Evans MR. Effects of testosterone and corticosterone on immunocompetence in the zebra finch. Horm Behav 2007; 51:126-34. [PMID: 17049519 DOI: 10.1016/j.yhbeh.2006.09.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 09/04/2006] [Accepted: 09/05/2006] [Indexed: 11/29/2022]
Abstract
The original immunocompetence handicap hypothesis (ICHH) suggested that testosterone has a handicapping effect in males by both promoting the development of sexual signals and suppressing immune function. A modified version, the stress-linked ICHH, has recently proposed that testosterone is immunosuppressive indirectly by increasing production of corticosterone. To test both the original and stress-mediated versions of the ICHH, we implanted male zebra finches taken from lines selected for divergent maximum stress-induced levels of corticosterone (high, low and control) with either empty or testosterone-filled implants. Their humoral and cell-mediated immune responses were then assessed by challenge with diphtheria:tetanus vaccine and phytohemagglutinin respectively. We found no effect of the hormone manipulations on either PHA or tetanus antibody responses, but found a significant interaction between titers of both testosterone and corticosterone on diphtheria secondary antibody response; antibody response was greatest in individuals with high levels of both hormones. There was also a significant interactive effect between testosterone treatment group and corticosterone titer on body mass; the body mass of males in the elevated testosterone treatment group decreased with increasing corticosterone titer. These results suggest that, contrary to the assumption of the stress-mediated version of the ICHH, high plasma levels of corticosterone are not immunosuppressive, but are in fact immuno-enhancing in the presence of high levels of plasma testosterone. Equally, the central assumption of the ICHH that testosterone is obligately immunosuppressive is also not supported. The same individuals with the highest levels of both hormones and consequently the most robust antibody response also possessed the lowest body mass.
Collapse
Affiliation(s)
- Mark L Roberts
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn, Cornwall TR10 9EZ, UK.
| | | | | | | |
Collapse
|
23
|
Schuett GW, Repp RA, Taylor EN, DeNardo DF, Earley RL, Van Kirk EA, Murdoch WJ. Winter profile of plasma sex steroid levels in free-living male western diamond-backed rattlesnakes, Crotalus atrox (Serpentes: Viperidae). Gen Comp Endocrinol 2006; 149:72-80. [PMID: 16828091 DOI: 10.1016/j.ygcen.2006.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 05/08/2006] [Accepted: 05/10/2006] [Indexed: 11/20/2022]
Abstract
Recent field studies on the reproductive ecology of western diamond-backed rattlesnakes (Crotalus atrox) from populations in southern Arizona showed significant differences in the concentration of plasma sex steroids (testosterone, T; 5alpha-dihydrotestosterone, DHT; and 17beta-estradiol, E2) throughout the active season (March-October), and peak levels were coincident with the two mating periods (late summer and early spring). There is, however, no information on levels of sex steroids during winter. Similar to most snakes, hibernating individuals of C. atrox are typically inaccessible, but in southern Arizona, where environmental conditions are typically mild during winter, adult males frequently bask at or near the entrances of communal dens. Basking activity, therefore, offers a unique logistical opportunity to assess the complete annual profile of plasma sex steroid levels in males of a temperate reptile in nature. From November to February, we measured levels of plasma T, DHT, and E2 in adult male C. atrox that were located basking at communal dens. Additionally, cloacal, core body, and ambient air temperatures were obtained to investigate potential relationships between body temperatures and levels of sex steroids. Mean levels of T, DHT, and E2 were relatively high, and the concentration hierarchy was T>DHT>E2. Mean levels of T, DHT, and E2 showed no significant variation across the four months of sampling; however, E2 levels decreased progressively. In the annul cycle, sex steroid levels during winter were not basal when compared to values obtained during the active season. Mean cloacal temperatures of basking males were significantly higher than core body temperatures of non-basking males (inside dens) from November-December, and in February, which suggests that one function of winter basking is to elevate body temperatures. Steroid levels, nonetheless, were not significantly correlated with cloacal temperatures. We suggest that future field studies of male C. atrox should: (a) investigate sex steroid levels in non-basking individuals and (b) test whether elevated levels of sex steroids during winter facilitate the large increases that occur in early spring, which are coincident with the second mating season. Our findings on the reproductive biology of C. atrox and other viperids are discussed in the context of the associated-dissociated model of reproduction.
Collapse
Affiliation(s)
- Gordon W Schuett
- Department of Biology, Center for Behavioral Neuroscience, Georgia State University, 33 Gilmer Street, S. E., Atlanta, GA 30303-3088, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Romero LM, Wikelski M. Diurnal and nocturnal differences in hypothalamic-pituitary-adrenal axis function in Galápagos marine iguanas. Gen Comp Endocrinol 2006; 145:177-81. [PMID: 16263124 DOI: 10.1016/j.ygcen.2005.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 08/30/2005] [Accepted: 09/01/2005] [Indexed: 11/21/2022]
Abstract
Temporal modulation of the stress response is a ubiquitous characteristic of animals. Here, we investigate possible mechanisms underlying daily changes in corticosterone release in an ectotherm model system. Earlier work indicated that free-living Galápagos marine iguanas (Amblyrhynchus cristatus) have lower corticosterone concentrations during the night than during the day. This could result from: (i) a lower circadian secretion of adrenocorticotropic hormone (ACTH) as seen in mammals; (ii) from an increase in corticosterone negative feedback; or (iii) reflect lower metabolic activity during the night when core body temperature falls (from 35 degrees C during the day to as low as 21 degrees C during the night). To begin to distinguish between these three possibilities, exogenous ACTH was used to compare diel differences in adrenocortical tissue responsiveness, and dexamethasone was used to compare diel differences in the efficacy of corticosterone negative feedback. Low levels of exogenous ACTH (30 IU/kg body weight) potently stimulated both daytime and nighttime corticosterone release. Dexamethasone (1 mg/kg) inhibited only daytime, but not nighttime endogenous corticosterone release. Because the response to ACTH was similar between day and night we suggest that a simple lowering of core body temperature cannot explain the nighttime reduction in corticosterone release. However, the failure of negative feedback at night suggests that the response is not equivalent to the controlled downregulation seen in mammals.
Collapse
Affiliation(s)
- L Michael Romero
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| | | |
Collapse
|
25
|
Yoshikane M, Kay WR, Shibata Y, Inoue M, Yanai T, Kamata R, Edmonds JS, Morita M. Very high concentrations of DDE and toxaphene residues in crocodiles from the Ord River, Western Australia: an investigation into possible endocrine disruption. ACTA ACUST UNITED AC 2006; 8:649-61. [PMID: 16767233 DOI: 10.1039/b518059g] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organochlorine pesticide concentrations, particularly those of the DDT family and of toxaphene, were measured by gas chromatography in samples of liver and body fat taken from Australian freshwater crocodiles Crocodylus johnstoni at three locations along the Ord River in Western Australia. The three sampling sites were the irrigation area, downstream of the irrigation area, and well upstream of the irrigation area; the last site serving as the control. DDT and toxaphene were applied in large and known quantities to cotton grown in the Ord Irrigation Area from 1964 to 1974. Thus the residues in the crocodile tissues are representative of the situation almost thirty years after the use of DDT and toxaphene ceased in the area. Very high concentrations of p,p'-DDE and toxaphene were found in the lipid-rich tissues that were examined. Livers and body fat from estuarine crocodiles Crocodylus porosus from the downstream site were also analysed. As p,p'-DDE and toxaphene are both known to be disruptive of endocrine systems, a range of blood parameters, including estradiol and testesterone concentrations, were also measured for all the animals studied. The ovaries and testes of the freshwater crocodiles were also examined histologically. There were no obvious effects on blood chemistry or gonad histology of the large burden of pesticides and their metabolites carried by exposed animals, although the limited number of samples and the variability of the breeding state of the animals examined may have masked possible effects. The isolation of the area, the accurately known applications of DDT and toxaphene, and the simplicity of the drainage system make the lower Ord River a unique natural laboratory for studying the long term breakdown and effects of pesticides applied in a tropical environment.
Collapse
Affiliation(s)
- Mitsuha Yoshikane
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | | | | | | | | | | | | | | |
Collapse
|