1
|
Bosi G, Maynard BJ, Pironi F, Sayyaf Dezfuli B. Parasites and the neuroendocrine control of fish intestinal function: an ancient struggle between pathogens and host. Parasitology 2022; 149:1842-1861. [PMID: 36076315 PMCID: PMC11010486 DOI: 10.1017/s0031182022001160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/29/2022]
Abstract
Most individual fish in wild and farmed populations can be infected with parasites. Fish intestines can harbour protozoans, myxozoans and helminths, which include several species of digeneans, cestodes, nematodes and acanthocephalans. Enteric parasites often induce inflammation of the intestine; the pathogen provokes changes in the host physiology, which will be genetically selected for if they benefit the parasite. The host response to intestinal parasites involves neural, endocrine and immune systems and interaction among these systems is coordinated by hormones, chemokines, cytokines and neurotransmitters including peptides. Intestinal fish parasites have effects on the components of the enteric nervous and endocrine systems; mechanical/chemical changes impair the activity of these systems, including gut motility and digestion. Investigations on the role of the neuroendocrine system in response to fish intestinal parasites are very few. This paper provides immunohistochemical and ultrastructural data on effects of parasites on the enteric nervous system and the enteric endocrine system in several fish–parasite systems. Emphasis is on the occurrence of 21 molecules including cholecystokinin-8, neuropeptide Y, enkephalins, galanin, vasoactive intestinal peptide and serotonin in infected tissues.
Collapse
Affiliation(s)
- Giampaolo Bosi
- Department of Veterinary Medicine and Animal Science, University of Milan, St. dell'Università 6, 26900 Lodi, Italy
| | - Barbara J. Maynard
- The Institute for Learning and Teaching, Colorado State University, Fort Collins, CO 80523, USA
| | - Flavio Pironi
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| | - Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Survival of metazoan parasites in fish: Putting into context the protective immune responses of teleost fish. ADVANCES IN PARASITOLOGY 2021; 112:77-132. [PMID: 34024360 DOI: 10.1016/bs.apar.2021.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Defence mechanisms of fish can be divided into specific and non-specific that act in concert and are often interdependent. Most fish in both wild and cultured populations are vulnerable to metazoan parasites. Endoparasitic helminths include several species of digeneans, cestodes, nematodes, and acanthocephalans. Although they may occur in large numbers, helminth infections rarely result in fish mortality. Conversely, some ectoparasites cause mass mortality in farmed fish. Given the importance of fish innate immunity, this review addresses non-specific defence mechanisms of fish against metazoan parasites, with emphasis on granulocyte responses involving mast cells, neutrophils, macrophages, rodlet cells, and mucous cells. Metazoan parasites are important disease agents that affect wild and farmed fish and can induce high economic loss and, as pathogen organisms, deserve considerable attention. The paper will provide our light and transmission electron microscopy data on metazoan parasites-fish innate immune and neuroendocrine systems. Insights about the structure and functions of the cell types listed above and a brief account of the effects and harms of each metazoan taxon to specific fish apparati/organs will be presented.
Collapse
|
3
|
The early stress responses in fish larvae. Acta Histochem 2016; 118:443-9. [PMID: 26968620 DOI: 10.1016/j.acthis.2016.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/22/2016] [Accepted: 03/02/2016] [Indexed: 12/21/2022]
Abstract
During the life cycle of fish the larval stages are the most interesting and variable. Teleost larvae undergo a daily increase in adaptability and many organs differentiate and become active. These processes are concerted and require an early neuro-immune-endocrine integration. In larvae communication among the nervous, endocrine and immune systems utilizes several known signal molecule families which could be different from those of the adult fish. The immune-neuroendocrine system was studied in several fish species, among which in particular the sea bass (Dicentrarchus labrax), that is a species of great commercial interest, very important in aquaculture and thus highly studied. Indeed the immune system of this species is the best known among marine teleosts. In this review the data on main signal molecules of stress carried out on larvae of fish are considered and discussed. For sea bass active roles in the early immunological responses of some well-known molecules involved in the stress, such as ACTH, nitric oxide, CRF, HSP-70 and cortisol have been proposed. These molecules and/or their receptors are biologically active mainly in the gut before complete differentiation of gut-associated lymphoid tissue (GALT), probably acting in an autocrine/paracrine way. An intriguing idea emerges from all results of these researches; the molecules involved in stress responses, expressed in the adult cells of the hypothalamic-pituitary axis, during the larval life of fish are present in several other localizations, where they perform probably the same role. It may be hypothesized that the functions performed by hypothalamic-pituitary system are particularly important for the survival of the larva and therefore they comprises several other localizations of body. Indeed the larval stages of fish are very crucial phases that include many physiological changes and several possible stress both internal and environmental.
Collapse
|
4
|
Albrizio M, Guaricci AC, Milano S, Macrì F, Aiudi G. Mu opioid receptor in spermatozoa, eggs and larvae of gilthead sea bream (Sparus Aurata) and its involvement in stress related to aquaculture. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:997-1009. [PMID: 24338156 DOI: 10.1007/s10695-013-9900-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/10/2013] [Indexed: 06/03/2023]
Abstract
In aquaculture, unfavourable conditions experienced during early development may have strong downstream effects on the adult phenotype and fitness. Sensitivity to stress, leading to disease, reduced growth and mortality, is higher in larvae than in adult fish. In this study, conducted on sea bream (Sparus aurata), we evidenced the presence of the mu opioid receptor in gametes and larvae at different developmental stages. Moreover, we evaluated the possibility of reducing the effects of artificially produced stress, altering temperature, salinity and pH, by naloxone (an opioid antagonist) and calcium. Results evidenced that mu opioid receptor is present in larvae and in gametes of both sexes and that, during larval growth, its expression level changes accordingly; furthermore, naloxone/calcium association is efficacious in increasing the survival period of treated larvae compared to controls. We conclude that in sea bream rearing, the use of naloxone/calcium against stress can improve fish farming techniques by reducing larval mortality and consequently increasing productivity.
Collapse
Affiliation(s)
- Maria Albrizio
- Department of Emergencies and Organ Transplantation, Section of Veterinary Clinics and Animal Productions, University of Bari Aldo Moro, Strada Prov. per Casamassima Km3, 70010, Valenzano, BA, Italy,
| | | | | | | | | |
Collapse
|
5
|
Mola L, Gambarelli A, Pederzoli A. Immunolocalization of corticotropin-releasing factor (CRF) and corticotropin-releasing factor receptor 2 (CRF-R2) in the developing gut of the sea bass (Dicentrarchus labrax L.). Acta Histochem 2011; 113:290-3. [PMID: 20045176 DOI: 10.1016/j.acthis.2009.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 11/13/2009] [Accepted: 11/18/2009] [Indexed: 11/19/2022]
Abstract
Our previous data indicated an important role for adrenocorticotropic (ACTH)-like molecules co-operating with macrophages to control the modifications in body homeostasis during the first period of the life of sea bass (up to 30 days post-hatching) before the lymphoid cells have reached complete maturation. The aim of the study was to determine the immunolocalization of corticotropin-releasing factor (CRF), which is a very important mediator of stress-related responses. Our data showed that immunostaining for CRF is localized already at 8 days after hatching in nerve fibers of the gastrointestinal tract wall from the pharynx to the anterior gut, when the larvae are still feeding on yolk. This pattern of immunolocalization appeared similar to that in 24-day-old larvae, but at this stage there were also large cells immunopositive to CRF located in the wall of the midgut and hindgut. Lipopolysaccharide (LPS) treatment, which is a known stimulator of stress hormone responses, did not modify the CRF immunostaining pattern, though it did affect the immunolocalization of the peripheral CRF receptor, i.e. CRF-R2. Immunolocalization of CRF-R2 appeared in nerve fibers of the gut wall in larvae fixed 1h after the end of lipopolysaccharide (LPS) treatment. The present results suggest that CRF plays important autocrine and/or paracrine roles in the early immune responses at the gut level in the larval stages of sea bass (Dicentrarchus labrax L.) as already proposed for ACTH. Moreover, our studies taken together with other research on fish, in comparison with mammals, suggest a phylogenetically old role of CRF in immune-endocrine interactions.
Collapse
Affiliation(s)
- Lucrezia Mola
- Department of Animal Biology, University of Modena and Reggio Emilia, Via Campi 213/D, Modena, Italy.
| | | | | |
Collapse
|
6
|
Abstract
This paper is the 27th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over 30 years of research. It summarizes papers published during 2004 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| | | |
Collapse
|
7
|
Mola L, Gambarelli A, Pederzoli A, Ottaviani E. ACTH response to LPS in the first stages of development of the fish Dicentrarchus labrax L. Gen Comp Endocrinol 2005; 143:99-103. [PMID: 16061067 DOI: 10.1016/j.ygcen.2005.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 01/03/2005] [Accepted: 02/28/2005] [Indexed: 10/25/2022]
Abstract
ACTH and ACTH receptor-like molecules were found at the examined stages of development (2, 4, 8, 12, 18, and 24 days post-hatching) in yolk sac, pronephros tubules, interrenal tissue, thymus, liver, spleen, cardinal veins, and skin of the teleost fish Dicentrarchus labrax. ACTH and the related receptor-like molecules show a similar distribution. LPS treatment at two different stages (8 and 24 days post-hatching) provoked both a release and an induction of ACTH-like molecules, suggesting an important role of this peptide to control the modifications in body homeostasis during the first period of the sea bass' life, i.e., 30 days post-hatching, before the lymphoid cells have reached complete maturation.
Collapse
Affiliation(s)
- Lucrezia Mola
- Department of Animal Biology, University of Modena and Reggio Emilia, via Campi 213/D, I-41100 Modena, Italy
| | | | | | | |
Collapse
|
8
|
Varsamos S, Nebel C, Charmantier G. Ontogeny of osmoregulation in postembryonic fish: a review. Comp Biochem Physiol A Mol Integr Physiol 2005; 141:401-29. [PMID: 16140237 DOI: 10.1016/j.cbpb.2005.01.013] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 01/13/2005] [Accepted: 01/17/2005] [Indexed: 11/26/2022]
Abstract
Salinity and its variations are among the key factors that affect survival, metabolism and distribution during the fish development. The successful establishment of a fish species in a given habitat depends on the ability of each developmental stage to cope with salinity through osmoregulation. It is well established that adult teleosts maintain their blood osmolality close to 300 mosM kg(-1) due to ion and water regulation effected at several sites: tegument, gut, branchial chambers, urinary organs. But fewer data are available in developing fish. We propose a review on the ontogeny of osmoregulation based on studies conducted in different species. Most teleost prelarvae are able to osmoregulate at hatch, and their ability increases in later stages. Before the occurrence of gills, the prelarval tegument where a high density of ionocytes (displaying high contents of Na+/K+-ATPase) is located appears temporarily as the main osmoregulatory site. Gills develop gradually during the prelarval stage along with the numerous ionocytes they support. The tegument and gill Na+/K+-ATPase activity varies ontogenetically. During the larval phase, the osmoregulatory function shifts from the skin to the gills, which become the main osmoregulatory site. The drinking rate normalized to body weight tends to decrease throughout development. The kidney and urinary bladder develop progressively during ontogeny and the capacity to produce hypotonic urine at low salinity increases accordingly. The development of the osmoregulatory functions is hormonally controlled. These events are inter-related and are correlated with changes in salinity tolerance, which often increases markedly at the metamorphic transition from larva to juvenile. In summary, the ability of ontogenetical stages of fish to tolerate salinity through osmoregulation relies on integumental ionocytes, then digestive tract development and drinking rate, developing branchial chambers and urinary organs. The physiological changes leading to variations in salinity tolerance are one of the main basis of the ontogenetical migrations or movements between habitats of different salinity regimes.
Collapse
Affiliation(s)
- Stamatis Varsamos
- Equipe Adaptation Ecophysiologique et Ontogenèse, UMR 5171 UM2-IFREMER-CNRS Génome Populations Interactions Adaptation, Université Montpellier II, cc 092, Place E. Bataillon, 34095 Montpellier cedex 05, France
| | | | | |
Collapse
|
9
|
Pepels PPLM, Balm PHM. Ontogeny of corticotropin-releasing factor and of hypothalamic-pituitary-interrenal axis responsiveness to stress in tilapia (Oreochromis mossambicus; Teleostei). Gen Comp Endocrinol 2004; 139:251-65. [PMID: 15560872 DOI: 10.1016/j.ygcen.2004.09.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 09/10/2004] [Accepted: 09/21/2004] [Indexed: 11/16/2022]
Abstract
The ontogeny of the corticotropin-releasing factor (CRF) system and of the ability of the hypothalamic-pituitary-interrenal (HPI) axis to respond to stressors (capture or confinement), or to cortisol treatment was investigated in tilapia (Oreochromis mossambicus). In 2 days post hatching (dph) larvae, the first developmental stage used for immunohistochemistry, CRF-immunoreactivity (ir) was observed in the nucleus preopticus (npo), and in two hypothalamic nuclei (nlt and nrl). In this stage, CRF- and AVT-ir was found in the neural part of the pituitary, and endocrine cells in the pars distalis and pars intermedia contained POMC-derived peptides. In the ventral telencephalon, CRF-ir cells were first observed 5 dph, whereas projections from these cells into the anterior part of the latero-dorsal telencephalon (Dla) from 7 dph onwards. CRF, ACTH, alpha-MSH, and cortisol were quantified by radioimmunoassays in homogenates of the anterior-cranial region of the larvae containing brain, pituitary, and headkidneys. CRF contents increased from 43 +/- 3 to 1070 +/- 70 pg/larvae between 5 and 110 dph. Larvae of age 5, 12, 24, and 42 dph were captured sequentially from a group. All life stages were able to rapidly increase their cortisol content in response to this stressor (ANOVA: P < 0.001). Overall, the developmental stage affected cortisol content (ANOVA: P < 0.001), but developmental stage did not influence the cortisol reaction to stress (ANOVA: P > 0.162). Whole brain CRF content did not change during the 20 min stress period and the relationship between CRF-producing neurons and the initial HPI stress response in early life stages remains to be established. Cortisol feeding of 18 and 29 dph larvae for periods ranging from 2 to 24 days resulted in elevations of the CRF content (P < 0.003) in comparison to controls. In 18 dph larvae cortisol feeding abolished the cortisol response to capture stress as observed in control fed larvae (P < 0.008). We propose that cortisol induced upregulation of CRF takes place in the telencephalon and is restricted to a time period during larval development, characterised by the absence of glucocortoid receptor (GR) expression in the telencephalic Dm region in these larvae. Finally, the stress response to 24 h confinement was compared between saltwater adapted and freshwater adapted juveniles (age 77 dph). Confinement stress (24 h) affected cortisol and CRF content (ANOVA: P < 0.001, P < 0.008, respectively), but not ACTH content. Interactions were observed between salinity and confinement regarding cortisol and alpha-MSH contents (ANOVA: P < 0.02), but not regarding CRF and ACTH contents. The increase in cortisol levels induced by confinement was remarkably high in freshwater adapted larvae (five times higher than in saltwater adapted larvae). Regarding the cortisol response it is concluded that during and after the period of mouth breeding tilapia larvae respond to capture stress in a similar fashion (onset and height) as adults. Previously, we reported that the initial plasma cortisol response to capture stress in adult tilapia occurred independently from changes in plasma ACTH levels. The current finding that also brain CRF contents do not alter during the initial cortisol response in larvae further indicates that the initial cortisol response in this species may be regulated independently from CRF and ACTH.
Collapse
Affiliation(s)
- Peter P L M Pepels
- Department of Animal Physiology, Faculty of Sciences, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.
| | | |
Collapse
|