1
|
Forner-Piquer I, Fakriadis I, Mylonas CC, Piscitelli F, Di Marzo V, Maradonna F, Calduch-Giner J, Pérez-Sánchez J, Carnevali O. Effects of Dietary Bisphenol A on the Reproductive Function of Gilthead Sea Bream ( Sparus aurata) Testes. Int J Mol Sci 2019; 20:ijms20205003. [PMID: 31658598 PMCID: PMC6835794 DOI: 10.3390/ijms20205003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 12/14/2022] Open
Abstract
Bisphenol A (BPA), a known endocrine disrupting chemical (EDC), was administered by diet to gilthead sea bream (Sparus aurata) in order to study its effects on the endocannabinoid system (ECS) and gonadal steroidogenesis. 2-year-old male gilthead sea bream were fed with two different concentrations of BPA (LOW at 4 and HIGH at 4000 µg/kg body weight for 21 days during the reproductive season. Exposure to 4000 µg BPA/kg bw/day (BPA HIGH) reduced sperm motility and altered the straight-line velocity (VSL) and linearity (LIN). Effects on steroidogenesis were evident, with testosterone (T) being up-regulated by both treatments and 11-ketotestosterone (11-KT) down-regulated by BPA HIGH. Plasma levels of 17β-estradiol (E2) were not affected. The Gonadosomatic Index (GSI) increased in the BPA HIGH group. Interestingly, the levels of endocannabinoids and endocannabinoid-like compounds were significantly reduced after both treatments. Unpredictably, a few changes were noticed in the expression of genes coding for ECS enzymes, while the receptors were up-regulated depending on the BPA dose. Reproductive markers in testis (leptin receptor (lepr), estrogen receptors (era, erb), progesterone receptors (pr) and the gonadotropin releasing hormone receptor (gnrhr)) were up-regulated. BPA induced the up-regulation of the hepatic genes involved in oogenesis (vitellogenin (vtg) and zona pellucida 1 (zp1)).
Collapse
Affiliation(s)
- Isabel Forner-Piquer
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Ioannis Fakriadis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, Heraklion, 71003 Crete, Greece.
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, Heraklion, 71003 Crete, Greece.
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 80078 Pozzuoli, Italy.
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 80078 Pozzuoli, Italy.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Quebec City, QC G1V 0A6, Canada.
| | - Francesca Maradonna
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Josep Calduch-Giner
- Nutrigenomics and Fish Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain.
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain.
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
2
|
Forner-Piquer I, Mylonas CC, Fakriadis I, Papadaki M, Piscitelli F, Di Marzo V, Calduch-Giner J, Pérez-Sánchez J, Carnevali O. Effects of diisononyl phthalate (DiNP) on the endocannabinoid and reproductive systems of male gilthead sea bream (Sparus aurata) during the spawning season. Arch Toxicol 2019; 93:727-741. [PMID: 30600365 DOI: 10.1007/s00204-018-2378-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/13/2018] [Indexed: 01/26/2023]
Abstract
Diisononyl phthalate (DiNP) is a plasticizer used to improve plastic performance in a large variety of items which has been reported as an endocrine-disrupting chemical (EDC) in several organisms. The endocannabinoid system (ECS) is a cellular signaling system, whose functionality is tightly involved with reproductive function. The aim of the present study was the assessment of the effects of DiNP on the gonadal ECS and on the reproductive function of male gilthead sea bream Sparus aurata, an important marine aquacultured species in Europe, during the reproductive season. Fish were fed for 21 days with two diets contaminated with different nominal concentrations of DiNP (DiNP LOW at 15 µg DiNP kg-1 bw day-1 and DiNP HIGH at 1500 µg DiNP kg-1 bw day-1), based on the tolerable daily intake (TDI) ruled by the European Food Safety Authority for humans. The transcription of several genes related to the ECS was affected by the DiNP. Specifically, DiNP reduced the levels of endocannabinoids and endocannabinoid-like mediators, concomitant with the increase of fatty acid amide hydrolase (FAAH) activity. At the histological level, DiNP LOW induced the highest occurrence of individuals with regressed testes. Steroidogenesis was affected significantly, since plasma 11-ketotestosterone (11-KT), the main active androgen in fish, was significantly decreased by the DiNP HIGH treatment, while plasma 17β-estradiol (E2) levels were raised, associated with an increase of the gonadosomatic index (GSI). Additionally, the level of testosterone (T) was significantly increased in the DiNP LOW group, however, the same DiNP concentration reduced the levels of 17,20β-dihydroxy-4-pregnen-3-one (17,20β-P). The production of sperm was in general not affected, since spermiation index, sperm density, survival and the duration of forward motility did not exhibit any changes compared to controls. However, computer-assisted sperm analysis (CASA) showed that DiNP reduced the percentage of motile cells. The results clearly suggest a negative effect of DiNP via the diet on the male endocrine system of gilthead sea bream during the reproductive season.
Collapse
Affiliation(s)
- Isabel Forner-Piquer
- Dipartimento Scienze Della Vita e dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Ioannis Fakriadis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Maria Papadaki
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale Delle Ricerche, Via Campi Flegrei, 80078, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale Delle Ricerche, Via Campi Flegrei, 80078, Pozzuoli, Italy.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Josep Calduch-Giner
- Nutrigenomics and Fish Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595, Ribera de Cabanes, Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595, Ribera de Cabanes, Castellón, Spain
| | - Oliana Carnevali
- Dipartimento Scienze Della Vita e dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
3
|
Forner-Piquer I, Santangeli S, Maradonna F, Rabbito A, Piscitelli F, Habibi HR, Di Marzo V, Carnevali O. Disruption of the gonadal endocannabinoid system in zebrafish exposed to diisononyl phthalate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:1-8. [PMID: 29793103 DOI: 10.1016/j.envpol.2018.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/06/2018] [Accepted: 05/02/2018] [Indexed: 05/22/2023]
Abstract
DiNP (Di-isononyl phthalate) has been recently introduced as DEHP (Bis (2-ethylhexyl) phthalate) substitute and due to its chemical properties, DiNP is commonly used in a large variety of plastic items. The endocannabinoid system (ECS) is a lipid signaling system involved in a plethora of physiological pathways including the control of the reproductive and metabolic processes. In this study, the effects of DiNP on the ECS of zebrafish (male and female) gonads were analyzed. Adult zebrafish were chronically exposed for 21 days via water to 3 environmentally relevant concentrations of DiNP (42 μg/L; 4.2 μg/L; 0.42 μg/L). In females, the Gonadosomatic Index (GSI) and the number of fertilized eggs were reduced by the lowest concentration of DiNP tested. The levels of two endocannabinoids, Anandamide (AEA) and 2-Arachidonoylglycerol (2-AG), were not affected, while a reduction of the N-oleoyl-ethanolamine (OEA) level was observed. Transcriptional changes were reported in relation to genes coding for the ECS receptors and the enzymes involved in the ECS pathway. DiNP exposure in males reduced the GSI as well as changed the levels of endocannabinoids. Moreover, DiNP treatment induced significative changes in the genes coding for the ECS receptors and enzymes, and significantly increased the activity of the fatty acid amide hydrolase (FAAH). In summary, in zebrafish, exposure to environmentally relevant concentrations of DiNP disrupted the ECS and affected reproduction in a gender specific manner.
Collapse
Affiliation(s)
- Isabel Forner-Piquer
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Stefania Santangeli
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Francesca Maradonna
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy; INBB, Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136, Rome, Italy
| | - Alessandro Rabbito
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 80078, Pozzuoli, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 80078, Pozzuoli, Italy
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 80078, Pozzuoli, Italy
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy; INBB, Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136, Rome, Italy.
| |
Collapse
|
4
|
Bovolin P, Cottone E, Pomatto V, Fasano S, Pierantoni R, Cobellis G, Meccariello R. Endocannabinoids are Involved in Male Vertebrate Reproduction: Regulatory Mechanisms at Central and Gonadal Level. Front Endocrinol (Lausanne) 2014; 5:54. [PMID: 24782832 PMCID: PMC3995072 DOI: 10.3389/fendo.2014.00054] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/31/2014] [Indexed: 12/12/2022] Open
Abstract
Endocannabinoids (eCBs) are natural lipids regulating a large array of physiological functions and behaviors in vertebrates. The eCB system is highly conserved in evolution and comprises several specific receptors (type-1 and type-2 cannabinoid receptors), their endogenous ligands (e.g., anandamide and 2-arachidonoylglycerol), and a number of biosynthetic and degradative enzymes. In the last few years, eCBs have been described as critical signals in the control of male and female reproduction at multiple levels: centrally, by targeting hypothalamic gonadotropin-releasing-hormone-secreting neurons and pituitary, and locally, with direct effects on the gonads. These functions are supported by the extensive localization of cannabinoid receptors and eCB metabolic enzymes at different levels of the hypothalamic-pituitary-gonadal axis in mammals, as well as bonyfish and amphibians. In vivo and in vitro studies indicate that eCBs centrally regulate gonadal functions by modulating the gonadotropin-releasing hormone-gonadotropin-steroid network through direct and indirect mechanisms. Several proofs of local eCB regulation have been found in the testis and male genital tracts, since eCBs control Sertoli and Leydig cells activity, germ cell progression, as well as the acquisition of sperm functions. A comparative approach usually is a key step in the study of physiological events leading to the building of a general model. Thus, in this review, we summarize the action of eCBs at different levels of the male reproductive axis, with special emphasis, where appropriate, on data from non-mammalian vertebrates.
Collapse
Affiliation(s)
- Patrizia Bovolin
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- Neuroscience Institute of Turin, University of Turin, Turin, Italy
- *Correspondence: Patrizia Bovolin, Department of Life Sciences and Systems Biology, University of Turin, via Accademia Albertina 13, 10123 Turin, Italy e-mail:
| | - Erika Cottone
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Valentina Pomatto
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Naples, Italy
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Naples, Italy
| | - Gilda Cobellis
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Naples, Italy
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, Naples, Italy
| |
Collapse
|
5
|
Meccariello R, Battista N, Bradshaw HB, Wang H. Updates in reproduction coming from the endocannabinoid system. Int J Endocrinol 2014; 2014:412354. [PMID: 24550985 PMCID: PMC3914453 DOI: 10.1155/2014/412354] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/20/2013] [Accepted: 12/04/2013] [Indexed: 12/26/2022] Open
Abstract
The endocannabinoid system (ECS) is an evolutionarily conserved master system deeply involved in the central and local control of reproductive functions in both sexes. The tone of these lipid mediators-deeply modulated by the activity of biosynthetic and hydrolyzing machineries-regulates reproductive functions from gonadotropin discharge and steroid biosynthesis to the formation of high quality gametes and successful pregnancy. This review provides an overview on ECS and reproduction and focuses on the insights in the regulation of endocannabinoid production by steroids, in the regulation of male reproductive activity, and in placentation and parturition. Taken all together, evidences emerge that the activity of the ECS is crucial for procreation and may represent a target for the therapeutic exploitation of infertility.
Collapse
Affiliation(s)
- Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, via Medina 40, 80133 Napoli, Italy
- *Rosaria Meccariello:
| | - Natalia Battista
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- European Center for Brain Research (CERC), Santa Lucia Foundation, 00143 Rome, Italy
| | - Heather B. Bradshaw
- Department of Psychological and Brain Sciences, The Kinsey Institute for Research in Sex, Gender, and Reproduction, Indiana University, Bloomington, IN 47405, USA
| | - Haibin Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Cottone E, Pomatto V, Bovolin P. Role of the endocannabinoid system in the central regulation of nonmammalian vertebrate reproduction. Int J Endocrinol 2013; 2013:941237. [PMID: 24101926 PMCID: PMC3786540 DOI: 10.1155/2013/941237] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/12/2013] [Indexed: 12/20/2022] Open
Abstract
The endocannabinoid system (ECS) has a well-documented pivotal role in the control of mammalian reproductive functions, by acting at multiple levels, that is, central (CNS) and local (gonads) levels. Since studies performed in animal models other than mammals might provide further insight into the biology of these signalling molecules, in the present paper we review the comparative data pointing toward the endocannabinoid involvement in the reproductive control of non-mammalian vertebrates, focussing in particular on the central regulation of teleost and amphibian reproduction. The morphofunctional distribution of brain cannabinoid receptors will be discussed in relation to other crucial signalling molecules involved in the control of reproductive functions, such as GnRH, dopamine, aromatase, and pituitary gonadotropins.
Collapse
Affiliation(s)
- Erika Cottone
- Department of Life Science and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
- *Erika Cottone:
| | - Valentina Pomatto
- Department of Life Science and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Patrizia Bovolin
- Department of Life Science and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| |
Collapse
|
7
|
Chianese R, Chioccarelli T, Cacciola G, Ciaramella V, Fasano S, Pierantoni R, Meccariello R, Cobellis G. The contribution of lower vertebrate animal models in human reproduction research. Gen Comp Endocrinol 2011; 171:17-27. [PMID: 21192939 DOI: 10.1016/j.ygcen.2010.12.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/11/2010] [Accepted: 12/16/2010] [Indexed: 01/16/2023]
Abstract
Many advances have been carried out on the estrogens, GnRH and endocannabinoid system that have impact in the reproductive field. Indeed, estrogens, the generally accepted female hormones, have performed an unsuspected role in male sexual functions thanks to studies on non-mammalian vertebrates. Similarly, these animal models have provided important contributions to the identification of several GnRH ligand and receptor variants and their possible involvement in sexual behavior and gonadal function regulation. Moreover, the use of non-mammalian animal models has contributed to a better comprehension about the endocannabinoid system action in several mammalian reproductive events. We wish to highlight here how non-mammalian vertebrate animal model research contributes to advancements with implications on human health as well as providing a phylogenetic perspective on the evolution of reproductive systems in vertebrates.
Collapse
Affiliation(s)
- Rosanna Chianese
- Dipartimento di Medicina Sperimentale, Seconda Università degli Studi di Napoli, via Costantinopoli 16, 80138 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Palermo FA, Ruggeri B, Mosconi G, Virgili M, Polzonetti-Magni AM. Partial cloning of CB1 cDNA and CB1 mRNA changes in stress responses in the Solea solea. Mol Cell Endocrinol 2008; 286:S52-9. [PMID: 18336994 DOI: 10.1016/j.mce.2008.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 01/22/2008] [Accepted: 01/23/2008] [Indexed: 11/24/2022]
Abstract
Endogenous cannabinoids, through the CB1 receptor, are involved in the control of several functions including stress responses. The aim of this study was to investigate the presence of cannabinoid receptor CB1 in the sole ovary by partial cloning of brain CB1 cDNA; in a stress paradigm of disturbance by handling, which consisted in catching, netting and hand-sorting, changes of CB1 mRNA were related with those of proopiomelanocortin (POMC) mRNA; the trend and timing of stress responses and adaptation were monitored by measuring plasma cortisol levels. We characterized two forms of CB1-like receptor, termed CB1A and CB1B. The two sole CB1 (both 799bp) share 76% identity in their cDNAs, and the deduced amino acid sequences are 80% identical. The handling stress induced a sustained increase in plasma cortisol levels 1h after the handling began and decreased to low levels 12h after initiation of handling, showing the same trend of ovarian POMC mRNA expression. In addition, while CB1A mRNA did not show any significant changes during handling stress, significantly lower levels of CB1B mRNA were found in stressed fish 1h after the beginning of handling, with CB1 expression increased 24h after stress induction, both in the ovary and brain. It can be concluded that endocannabinoid system is involved in the modulation of adaptive responses to environmental conditions.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cloning, Molecular
- DNA, Complementary/genetics
- Female
- Flatfishes/genetics
- Gene Expression Regulation
- Hydrocortisone/blood
- Molecular Sequence Data
- Ovary/metabolism
- Pro-Opiomelanocortin/genetics
- Pro-Opiomelanocortin/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Cannabinoid, CB1/chemistry
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- F A Palermo
- Dipartimento di Scienze Morfologiche e Biochimiche Comparate, Università degli Studi di Camerino, via Gentile III da Varano, 62032 Camerino (MC), Italy
| | | | | | | | | |
Collapse
|
9
|
Cottone E, Guastalla A, Mackie K, Franzoni MF. Endocannabinoids affect the reproductive functions in teleosts and amphibians. Mol Cell Endocrinol 2008; 286:S41-5. [PMID: 18343023 DOI: 10.1016/j.mce.2008.01.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 01/28/2008] [Accepted: 01/28/2008] [Indexed: 01/31/2023]
Abstract
Following the discovery in the brain of the bonyfish Fugu rubripes of two genes encoding for type 1 cannabinoid receptors (CB1A and CB1B), investigations on the phylogeny of these receptors have indicated that the cannabinergic system is highly conserved. Among the multiple functions modulated by cannabinoids/endocannabinoids through the CB1 receptors one of the more investigated is the mammalian reproduction. Therefore, since studies performed in animal models other than mammals might provide further insight into the biology of these signalling molecules, the major aim of the present paper was to review the comparative data pointing toward the endocannabinoid involvement in the reproductive control of non-mammalian vertebrates, namely bonyfish and amphibians. The expression and distribution of CB1 receptors were investigated in the CNS and gonads of two teleosts, Pelvicachromis pulcher and Carassius auratus as well as in the anuran amphibians Xenopus laevis and Rana esculenta. In general the large diffusion of neurons targeted by cannabinoids in both fish and amphibian forebrain indicate endocannabinoids as pivotal local messengers in several neural circuits involved in either sensory integrative activities, like the olfactory processes (in amphibians) and food response (in bonyfish), or neuroendocrine machinery (in both). By using immunohistochemistry for CB1 and GnRH-I, the codistribution of the two signalling molecules was found in the fish basal telencephalon and preoptic area, which are key centers for gonadotropic regulation in all vertebrates. A similar topographical codistribution was observed also in the septum of the telencephalon in Rana esculenta and Xenopus laevis. Interestingly, the double standard immunofluorescence on the same brain section, aided with a laser confocal microscope, showed that in anurans a subset of GnRH-I neurons exhibited also the CB1 immunostaining. The fact that CB1-LI-IR was found indeed in the FSH gonadotrophs of the Xenopus pituitary gland and CB1 receptors together with the fatty acid amide hydrolase, the degradative enzyme of the endocannabinoid anandamide, were demonstrated in both bonyfish and frog gonads, strongly suggests that endocannabinoids are involved in central and peripheral gonadotropic functions of teleosts and amphibians.
Collapse
Affiliation(s)
- E Cottone
- Dipartimento di Biologia Animale e dell'Uomo, Laboratorio di Anatomia Comparata, Università degli Studi di Torino, Via Accademia Albertina 13, I-10123 Torino, Italy
| | | | | | | |
Collapse
|