1
|
Tseng PW, Lin CJ, Tsao YH, Kuo WL, Chen HC, Dufour S, Wu GC, Chang CF. The effect of gonadal hormones on the gene expression of brain-pituitary in protandrous black porgy, Acanthopagrus schlegelii. Gen Comp Endocrinol 2024; 351:114482. [PMID: 38432348 DOI: 10.1016/j.ygcen.2024.114482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/03/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
In black porgy (Acanthopagrus schlegelii), the brain-pituitary-testis (Gnrh-Gths-Dmrt1) axis plays a vital role in male fate determination and maintenance, and then inhibiting female development in further (puberty). However, the feedback of gonadal hormones on regulating brain signaling remains unclear. In this study, we conducted short-term sex steroid treatment and surgery of gonadectomy to evaluate the feedback regulation between the gonads and the brain. The qPCR results show that male phase had the highest gths transcripts; treatment with estradiol-17β (E2) or 17α-methyltestosterone (MT) resulted in the increased pituitary lhb transcripts. After surgery, apart from gnrh1, there is no difference in brain signaling genes between gonadectomy and sham fish. In the diencephalon/mesencephalon transcriptome, de novo assembly generated 283,528 unigenes; however, only 443 (0.16%) genes showed differentially expressed between sham and gonadectomy fish. In the present study, we found that exogenous sex steroids affect the gths transcription; this feedback control is related to the gonadal stage. Furthermore, gonadectomy may not affect gene expression of brain signaling (Gnrh-Gths axis). Our results support the communication between ovotestis and brain signaling (Gnrh-Gths-testicular Dmrt1) for the male fate.
Collapse
Affiliation(s)
- Peng-Wei Tseng
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 115, Taiwan
| | - Chien-Ju Lin
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Yuan-Han Tsao
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Wei-Lun Kuo
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Hsin-Chih Chen
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Sylvie Dufour
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan; Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, Sorbonne Université, CNRS, IRD, Paris, France
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| |
Collapse
|
2
|
Lyu L, Yao Y, Xie S, Wang X, Wen H, Li Y, Li J, Zuo C, Yan S, Dong J, Qi X. Mating behaviors in ovoviviparous black rockfish ( Sebastes schlegelii): molecular function of prostaglandin E2 as both a hormone and pheromone. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:15-30. [PMID: 38433961 PMCID: PMC10902245 DOI: 10.1007/s42995-023-00214-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/08/2023] [Indexed: 03/05/2024]
Abstract
Prostaglandins (PGs) are profound hormones in teleost sexual behavior, especially in mating. PGs act as pheromones that affect the olfactory sensory neurons of males, inducing the initiation of a series of mating behaviors. However, the molecular mechanism by which PGs trigger mating behavior in ovoviviparous teleosts is still unclear. In the present study, we employed the ovoviviparous black rockfish (Sebastes schlegelii), an economically important marine species whose reproductive production is limited by incomplete fertilization, as a model species. The results showed that when the dose of PGE2 was higher than 10 nmol/L, a significant (P < 0.05) increase in mating behaviors was observed. Dual-fluorescence in situ hybridization indicated that PGE2 could fire specific neurons in different brain regions and receptor cells in the olfactory sac. After combining with specific neurons in the central nervous system (CNS), a series of genes related to reproduction are activated. The intracerebroventricular administration of PGE2 significantly increased lhb levels (P < 0.05) in both sexes. Moreover, steroidogenesis in gonads was also affected, inducing an increase (P < 0.05) in E2 levels in males and T levels in females. PGE2 levels were also increased significantly (P < 0.05) in both sexes. The present study revealed that PGE2 can activate mating behavior in black rockfish in both hormone and pheromone pathways, leading to variations in sex steroid levels and activation of reproductive behaviors. Our results provide not only novel insight into the onset of mating behaviors in ovoviviparous teleosts but also solutions for the incomplete fertilization caused by natural mating in cage aquaculture. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00214-w.
Collapse
Affiliation(s)
- Likang Lyu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Yijia Yao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Songyang Xie
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Xiaojie Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Haishen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Jianshuang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Chenpeng Zuo
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Shaojing Yan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Jingyi Dong
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
3
|
Roosta Z, Falahatkar B, Sajjadi M, Paknejad H, Mandiki SNM, Kestemont P. Comparative study on accuracy of mucosal estradiol-17β, testosterone and 11-ketotestosterone, for maturity, and cutaneous vitellogenin gene expression in goldfish (Carassius auratus). JOURNAL OF FISH BIOLOGY 2022; 100:532-542. [PMID: 34822181 DOI: 10.1111/jfb.14963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Providing a non-invasive procedure to track fish maturity remains a priority in broodstocks' management. In the present study, the main goal was to assess reproduction status by measuring sex steroids and vitellogenin (VTG) in the skin mucosa, as a non-invasive method. For this purpose, the present study compared the levels of estradiol-17β (E2 ), testosterone (T), 11-ketotestosterone (11-KT), VTG and calcium (Ca) in skin mucosa and blood plasma of goldfish (Carassius auratus). Skin mucosal and blood samples were collected, as well as gonad tissues, from goldfish, as a seasonal spawner. Histological analysis confirmed the gender and maturity status from females' ovaries (as primary-growth, cortical-alveoli, initial and late-vitellogenesis) and males' testes (as spermatogenesis and spermiation). Furthermore, vitellogenin (vtg) expression was observed in skin, liver and gonads. The results indicate that mucosal E2 concentrations were significantly higher during initial and late vitellogenesis than the other stages. Mucosal 11-KT concentrations significantly increased at spermiation (P < 0.05). E2 /T and 11-KT/E2 ratios significantly increased at early vitellogenesis and spermatogenesis, respectively (P < 0.05). Females' mucosal VTG levels were significantly fluctuated according to the maturity stage. Ca showed a similar trend, but Ca was more accurate for sex identification than the VTG. Although mucus showed high levels of VTG, ovarian vtg expression was strongest while liver and skin had the similar results. These results show that measuring the mucosal androgens could be considered as an accurate, non-invasive method to monitor fish maturity.
Collapse
Affiliation(s)
- Zahra Roosta
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
| | - Bahram Falahatkar
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
- Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran
| | - Mirmasoud Sajjadi
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
| | - Hamed Paknejad
- Department of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Syaghalirwa N M Mandiki
- Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology, University of Namur, Namur, Belgium
| | - Patrick Kestemont
- Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology, University of Namur, Namur, Belgium
| |
Collapse
|
4
|
Sorensen PW, Levesque HM. Hormonal Prostaglandin F2α Mediates Behavioral Responsiveness to a Species-Specific Multi-component Male Hormonal Sex Pheromone in a Female Fish. Integr Comp Biol 2021; 61:193-204. [PMID: 33956973 DOI: 10.1093/icb/icab061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although hormonally-derived female sex pheromones have been well described in approximately a dozen species of teleost fish, only a few male sex pheromones have been characterized and the neuroendocrine underpinnings of behavioral responsiveness to them is not understood. Herein, we describe a study that addresses this question using the goldfish, Carassius auratus, an important model species of how hormones drive behavior in egg-laying teleost fishes. Our study had four components. First, we examined behavioral responsiveness of female goldfish and found that when injected with prostaglandin F2α (PGF2α), a treatment that drives female sexual receptivity, and found that they became strongly and uniquely attracted to the odor of conspecific mature males, while non-PGF2α-treated goldfish did not discern males from females. Next, we characterized the complexity and specificity of the male pheromone by examining the responsiveness of PGF2α-treated females to the odor of either mature male conspecifics or male common carp odor, as well as their nonpolar and polar fractions. We found that the odor of male goldfish was more attractive than that of male common carp, and that its activity was attributable to both its nonpolar and polar fractions with the later conveying information on species-identity. Third, we hypothesized that androstenedione (AD), a 19-carbon sex steroid produced by all male fish might be the nonpolar fraction and tested whether PGF2α-treated goldfish were attracted to either AD alone or as part of a mixture in conspecific water. We found that while AD was inactive on its own, it became highly attractive when added to previously unattractive female conspecific water. Lastly, in a test of whether nonhormonal conspecific odor might determine species-specificity, we added AD to water of three species of fish and found that while AD made goldfish water strongly attractive, its effects on other species holding water were small. We conclude that circulating PGF2α produced at the time of ovulation induces behavioral sensitivity to a male sex pheromone in female goldfish and that this male pheromone is comprised of AD and a mixture of body metabolites. Because PGF2α commonly mediates ovulation and female sexual behavior in egg-laying fishes, and AD is universally produced by male fishes as a precursor to testosterone, we suggest that these two hormones may have similar roles mediating male-female behavior and communication in many species of fish.
Collapse
Affiliation(s)
- Peter W Sorensen
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Haude M Levesque
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
5
|
Tenugu S, Pranoty A, Mamta SK, Senthilkumaran B. Development and organisation of gonadal steroidogenesis in bony fishes - A review. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2020.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Chen J, Peng C, Huang J, Shi H, Xiao L, Tang L, Lin H, Li S, Zhang Y. Physical interactions facilitate sex change in the protogynous orange-spotted grouper, Epinephelus coioides. JOURNAL OF FISH BIOLOGY 2021; 98:1308-1320. [PMID: 33377528 DOI: 10.1111/jfb.14663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Sex change in teleost fishes is commonly regulated by social factors. In species that exhibit protogynous sex change, such as the orange-spotted grouper Epinephelus coioides, when the dominant males are removed from the social group, the most dominant female initiates sex change. The aim of this study was to determine the regulatory mechanisms of socially controlled sex change in E. coioides. We investigated the seasonal variation in social behaviours and sex change throughout the reproductive cycle of E. coioides, and defined the behaviour pattern of this fish during the establishment of a dominance hierarchy. The social behaviours and sex change in this fish were affected by season, and only occurred during the prebreeding season and breeding season. Therefore, a series of sensory isolation experiments was conducted during the breeding season to determine the role of physical, visual and olfactory cues in mediating socially controlled sex change. The results demonstrated that physical interactions between individuals in the social groups were crucial for the initiation and completion of sex change, whereas visual and olfactory cues alone were insufficient in stimulating sex change in dominant females. In addition, we propose that the steroid hormones 11-ketotestosterone and cortisol are involved in regulating the initiation of socially controlled sex change.
Collapse
Affiliation(s)
- Jiaxing Chen
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Cheng Peng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Jingjun Huang
- College of Life Sciences, Southwest Forestry University, Kunming, China
| | - Herong Shi
- Marine Fisheries Development Center of Guangdong Province, Huizhou, China
| | - Ling Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lin Tang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shuisheng Li
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yong Zhang
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Marine Fisheries Development Center of Guangdong Province, Huizhou, China
| |
Collapse
|
7
|
Ogawa S, Pfaff DW, Parhar IS. Fish as a model in social neuroscience: conservation and diversity in the social brain network. Biol Rev Camb Philos Soc 2021; 96:999-1020. [PMID: 33559323 DOI: 10.1111/brv.12689] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Mechanisms for fish social behaviours involve a social brain network (SBN) which is evolutionarily conserved among vertebrates. However, considerable diversity is observed in the actual behaviour patterns amongst nearly 30000 fish species. The huge variation found in socio-sexual behaviours and strategies is likely generated by a morphologically and genetically well-conserved small forebrain system. Hence, teleost fish provide a useful model to study the fundamental mechanisms underlying social brain functions. Herein we review the foundations underlying fish social behaviours including sensory, hormonal, molecular and neuroanatomical features. Gonadotropin-releasing hormone neurons clearly play important roles, but the participation of vasotocin and isotocin is also highlighted. Genetic investigations of developing fish brain have revealed the molecular complexity of neural development of the SBN. In addition to straightforward social behaviours such as sex and aggression, new experiments have revealed higher order and unique phenomena such as social eavesdropping and social buffering in fish. Finally, observations interpreted as 'collective cognition' in fish can likely be explained by careful observation of sensory determinants and analyses using the dynamics of quantitative scaling. Understanding of the functions of the SBN in fish provide clues for understanding the origin and evolution of higher social functions in vertebrates.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| | - Donald W Pfaff
- Laboratory of Neurobiology and Behavior, Rockefeller University, New York, NY, 10065, U.S.A
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| |
Collapse
|
8
|
Lee SLJ, Horsfield JA, Black MA, Rutherford K, Gemmell NJ. Identification of sex differences in zebrafish (Danio rerio) brains during early sexual differentiation and masculinization using 17α-methyltestoterone. Biol Reprod 2019; 99:446-460. [PMID: 29272338 DOI: 10.1093/biolre/iox175] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/18/2017] [Indexed: 12/26/2022] Open
Abstract
Sexual behavior in teleost fish is highly plastic. It can be attributed to the relatively few sex differences found in adult brain transcriptomes. Environmental and hormonal factors can influence sex-specific behavior. Androgen treatment stimulates behavioral masculinization. Sex dimorphic gene expression in developing teleost brains and the molecular basis for androgen-induced behavioral masculinization are poorly understood. In this study, juvenile zebrafish (Danio rerio) were treated with 100 ng/L of 17 alpha-methyltestosterone (MT) during sexual development from 20 days post fertilization to 40 days and 60 days post fertilization. We compared brain gene expression patterns in MT-treated zebrafish with control males and females using RNA-Seq to shed light on the dynamic changes in brain gene expression during sexual development and how androgens affect brain gene expression leading to behavior masculinization. We found modest differences in gene expression between juvenile male and female zebrafish brains. Brain aromatase (cyp19a1b), prostaglandin 3a synthase (ptges3a), and prostaglandin reductase 1 (ptgr1) were among the genes with sexually dimorphic expression patterns. MT treatment significantly altered gene expression relative to both male and female brains. Fewer differences were found among MT-treated brains and male brains compared to female brains, particularly at 60 dpf. MT treatment upregulated the expression of hydroxysteroid 11-beta dehydrogenase 2 (hsd11b2), deiodinase, iodothyronine, type II (dio2), and gonadotrophin releasing hormones (GnRH) 2 and 3 (gnrh2 and gnrh3) suggesting local synthesis of 11-ketotestosterone, triiodothyronine, and GnRHs in zebrafish brains which are influenced by androgens. Androgen, estrogen, prostaglandin, thyroid hormone, and GnRH signaling pathways likely interact to modulate teleost sexual behavior.
Collapse
Affiliation(s)
- Stephanie L J Lee
- Department of Anatomy, University of Otago, Dunedin, Otago, New Zealand
| | - Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, Otago, New Zealand
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, Otago, New Zealand
| | - Kim Rutherford
- Department of Anatomy, University of Otago, Dunedin, Otago, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, Otago, New Zealand
| |
Collapse
|
9
|
Narita Y, Tsutiya A, Nakano Y, Ashitomi M, Sato K, Hosono K, Kaneko T, Chen RD, Lee JR, Tseng YC, Hwang PP, Ohtani-Kaneko R. Androgen induced cellular proliferation, neurogenesis, and generation of GnRH3 neurons in the brain of mature female Mozambique tilapia. Sci Rep 2018; 8:16855. [PMID: 30442908 PMCID: PMC6237963 DOI: 10.1038/s41598-018-35303-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/05/2018] [Indexed: 01/24/2023] Open
Abstract
The neuroplastic mechanisms in the fish brain that underlie sex reversal remain unknown. Gonadotropin-releasing hormone 3 (GnRH3) neurons control male reproductive behaviours in Mozambique tilapia and show sexual dimorphism, with males having a greater number of GnRH3 neurons. Treatment with androgens such as 11-ketotestosterone (KT), but not 17β-estradiol, increases the number of GnRH3 neurons in mature females to a level similar to that observed in mature males. Compared with oestrogen, the effect of androgen on neurogenesis remains less clear. The present study examined the effects of 11-KT, a non-aromatizable androgen, on cellular proliferation, neurogenesis, generation of GnRH3 neurons and expression of cell cycle-related genes in mature females. The number of proliferating cell nuclear antigen-positive cells was increased by 11-KT. Simultaneous injection of bromodeoxyuridine and 11-KT significantly increased the number of newly-generated (newly-proliferated) neurons, but did not affect radial glial cells, and also resulted in newly-generated GnRH3 neurons. Transcriptome analysis showed that 11-KT modulates the expression of genes related to the cell cycle process. These findings suggest that tilapia could serve as a good animal model to elucidate the effects of androgen on adult neurogenesis and the mechanisms for sex reversal in the fish brain.
Collapse
Affiliation(s)
- Yasuto Narita
- Department of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan
| | - Atsuhiro Tsutiya
- Department of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan
| | - Yui Nakano
- Department of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan
| | - Moe Ashitomi
- Department of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan
| | - Kenjiro Sato
- Department of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan
| | - Kohei Hosono
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Toyoji Kaneko
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Ruo-Dong Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei City, Taiwan, Republic of China
| | - Jay-Ron Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei City, Taiwan, Republic of China
| | - Yung-Che Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei City, Taiwan, Republic of China
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei City, Taiwan, Republic of China
| | - Ritsuko Ohtani-Kaneko
- Department of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan.
| |
Collapse
|
10
|
Takahashi T, Hagiwara A, Ogiwara K. Prostaglandins in teleost ovulation: A review of the roles with a view to comparison with prostaglandins in mammalian ovulation. Mol Cell Endocrinol 2018; 461:236-247. [PMID: 28919301 DOI: 10.1016/j.mce.2017.09.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/01/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022]
Abstract
Prostaglandins are well known to be central regulators of vertebrate ovulation. Studies addressing the role of prostaglandins in mammalian ovulation have established that they are involved in the processes of oocyte maturation and cumulus oocyte complex expansion. In contrast, despite the first indication of the role of prostaglandins in teleost ovulation appearing 40 years ago, the mechanistic background of their role has long been unknown. However, studies conducted on medaka over the past decade have provided valuable information. Emerging evidence indicates an indispensable role of prostaglandin E2 and its receptor subtype Ptger4b in the process of follicle rupture. In this review, we summarize studies addressing the role of prostaglandins in teleost ovulation and describe recent advances. To help understand differences from and similarities to ovulation in mammalian species, the findings on the roles of prostaglandins in mammalian ovulation are discussed in parallel.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Akane Hagiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
11
|
Ghosal R, Sorensen PW. Male-typical courtship, spawning behavior, and olfactory sensitivity are induced to different extents by androgens in the goldfish suggesting they are controlled by different neuroendocrine mechanisms. Gen Comp Endocrinol 2016; 232:160-73. [PMID: 27131392 DOI: 10.1016/j.ygcen.2016.04.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 01/22/2023]
Abstract
Male-typical reproductive behaviors vary greatly between different species of fishes with androgens playing a variety of roles that appear especially important in the gonochorist cypriniform fishes. The goldfish is an important model for the cypriniformes and while it is clear that male goldfish are fully feminized by prostaglandin F2α(PGF2α), it is not clear whether females will exhibit normal levels of male-typical reproductive behaviors as well as olfactory function when treated with androgens. To answer this question, we exposed sexually-regressed adult female goldfish to several types of androgen and monitored their tendencies to court (inspect females) and mate (spawn, or attempt to release gametes) while monitoring their olfactory sensitivity until changes in these attributes were maximized. Untreated adult males (intact) were included to determine the extent of masculinization. Treatments included the natural androgens, 11-ketotestosterone and testosterone (KT and T), administered via capsules (KT+T-implanted fish); the artificial androgen, methyltestosterone (MT), administered via capsules (MT-C); and MT administered in the fishes' water (MT-B). Male-typical olfactory sensitivity to a pheromone (15keto-PGF2α) increased in all androgen-treated groups and by week 6 was fully equivalent to that of males. Male-typical courtship behavior increased in all androgen-treated groups although slowly, and only MT-B females came to exhibit levels equivalent to those of males after 18weeks. In contrast, male-typical mating activity increased only slightly, with MT-B females reaching levels one-third that of males after 30weeks. We conclude that while androgens fully masculinize olfactory sensitivity and courtship behavior in goldfish, mating behavior is controlled by a different neuroendocrine mechanism(s) that has yet to be fully elucidated.
Collapse
Affiliation(s)
- Ratna Ghosal
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN 55108, USA.
| | - Peter W Sorensen
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
12
|
Pradhan A, Olsson PE. Zebrafish sexual behavior: role of sex steroid hormones and prostaglandins. Behav Brain Funct 2015; 11:23. [PMID: 26385780 PMCID: PMC4575480 DOI: 10.1186/s12993-015-0068-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 06/25/2015] [Indexed: 12/11/2022] Open
Abstract
Background Mating behavior differ between sexes and involves gonadal hormones and possibly sexually dimorphic gene expression in the brain. Sex steroids and prostaglandin E2 (PGE2) have been shown to regulate mammalian sexual behavior. The present study was aimed at determining whether exposure to sex steroids and prostaglandins could alter zebrafish sexual mating behavior. Methods Mating behavior and successful spawning was recorded following exposure to 17β-estradiol (E2), 11-ketotestosterone (11-KT), prostaglandin D2 (PGD2) and PGE2 via the water. qRT-PCR was used to analyze transcript levels in the forebrain, midbrain, and hindbrain of male and female zebrafish and compared to animals exposed to E2 via the water. Results Exposure of zebrafish to sex hormones resulted in alterations in behavior and spawning when male fish were exposed to E2 and female fish were exposed to 11-KT. Exposure to PGD2, and PGE2 did not alter mating behavior or spawning success. Determination of gene expression patterns of selected genes from three brain regions using qRT-PCR analysis demonstrated that the three brain regions differed in gene expression pattern and that there were differences between the sexes. In addition, E2 exposure also resulted in altered gene transcription profiles of several genes. Conclusions Exposure to sex hormones, but not prostaglandins altered mating behavior in zebrafish. The expression patterns of the studied genes indicate that there are large regional and gender-based differences in gene expression and that E2 treatment alter the gene expression pattern in all regions of the brain. Electronic supplementary material The online version of this article (doi:10.1186/s12993-015-0068-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, 701 82, Örebro, Sweden
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, 701 82, Örebro, Sweden.
| |
Collapse
|
13
|
Lin CJ, Fan-Chiang YC, Dufour S, Chang CF. Activation of brain steroidogenesis and neurogenesis during the gonadal differentiation in protandrous black porgy, Acanthopagrus schlegelii. Dev Neurobiol 2015; 76:121-36. [PMID: 25980979 DOI: 10.1002/dneu.22303] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/09/2015] [Accepted: 05/07/2015] [Indexed: 02/05/2023]
Abstract
The early brain development, at the time of gonadal differentiation was investigated using a protandrous teleost, black porgy. This natural model of monosex juvenile fish avoids the potential complexity of sexual dimorphism. Brain neurogenesis was evaluated by histological analyses of the diencephalon, at the time of testicular differentiation (in fish between 90 and 150 days after hatching). Increases in the number of both Nissl-stained total brain cells, and Pcna-immunostained proliferative brain cells were observed in specific area of the diencephalon, such as ventromedialis thalami and posterior preoptic area, revealing brain cell proliferation. qPCR analyses showed significantly higher expression of the radial glial cell marker blbp and neuron marker bdnf. Strong immunohistochemical staining of Blbp and extended cellular projections were observed. A peak expression of aromatase (cyp19a1b), as well as an increase in estradiol (E2 ) content were also detected in the early brain. These data demonstrate that during gonadal differentiation, the early brain exhibits increased E2 synthesis, cell proliferation, and neurogenesis. To investigate the role of E2 in early brain, undifferentiated fish were treated with E2 or aromatase inhibitor (AI). E2 treatment upregulated brain cyp19a1b and blbp expression, and enhanced brain cell proliferation. Conversely, AI reduced brain cell proliferation. Castration experiment did not influence the brain gene expression patterns and the brain cell number. Our data clearly support E2 biosynthesis in the early brain, and that brain E2 induces neurogenesis. These peak activity patterns in the early brain occur at the time of gonad differentiation but are independent of the gonads.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Yi-Chun Fan-Chiang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Sylvie Dufour
- Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208/IRD 207/UPMC/UCBN, Muséum National D'histoire Naturelle, Paris, France
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| |
Collapse
|
14
|
Kawaguchi Y, Nagaoka A, Kitami A, Mitsuhashi T, Hayakawa Y, Kobayashi M. Gender-typical olfactory regulation of sexual behavior in goldfish. Front Neurosci 2014; 8:91. [PMID: 24817840 PMCID: PMC4012221 DOI: 10.3389/fnins.2014.00091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 04/09/2014] [Indexed: 11/13/2022] Open
Abstract
It is known that olfaction is essential for the occurrence of sexual behavior in male goldfish. Sex pheromones from ovulatory females elicit male sexual behavior, chasing, and sperm releasing act. In female goldfish, ovarian prostaglandin F2α (PGF) elicits female sexual behavior, egg releasing act. It has been considered that olfaction does not affect sexual behavior in female goldfish. In the present study, we re-examined the involvement of olfaction in sexual behavior of female goldfish. Olfaction was blocked in male and female goldfish by two methods: nasal occlusion (NO) which blocks the reception of olfactants, and olfactory tract section (OTX) which blocks transmission of olfactory information from the olfactory bulb to the telencephalon. Sexual behavior of goldfish was induced by administration of PGF to females, an established method for inducing goldfish sexual behavior in both sexes. Sexual behavior in males was suppressed by NO and OTX as previously reported because of lack of pheromone stimulation. In females, NO suppressed sexual behavior but OTX did not affect the occurrence of sexual behavior. Females treated with both NO and OTX performed sexual behavior normally. These results indicate that olfaction is essential in female goldfish to perform sexual behavior as in males but in a different manner. The lack of olfaction in males causes lack of pheromonal stimulation, resulting in no behavior elicited. Whereas the results of female experiments suggest that lack of olfaction in females causes strong inhibition of sexual behavior mediated by the olfactory pathway. Olfactory tract section is considered to block the pathway and remove this inhibition, resulting in the resumption of the behavior. By subtract sectioning of the olfactory tract, it was found that this inhibition was mediated by the medial olfactory tracts, not the lateral olfactory tracts. Thus, it is concluded that goldfish has gender-typical olfactory regulation for sexual behavior.
Collapse
Affiliation(s)
- Yutaro Kawaguchi
- Department of Life Science, International Christian University Mitaka, Tokyo, Japan
| | - Akira Nagaoka
- Department of Life Science, International Christian University Mitaka, Tokyo, Japan
| | - Asana Kitami
- Department of Life Science, International Christian University Mitaka, Tokyo, Japan
| | - Tomomi Mitsuhashi
- Department of Life Science, International Christian University Mitaka, Tokyo, Japan
| | - Youichi Hayakawa
- Department of Life Science, International Christian University Mitaka, Tokyo, Japan
| | - Makito Kobayashi
- Department of Life Science, International Christian University Mitaka, Tokyo, Japan
| |
Collapse
|