1
|
Rivera A, Bracho-Rincón D, Miller MW. Localization of Cholecystokinin/Sulfakinin Neuropeptides in Biomphalaria glabrata, an Intermediate Host for Schistosomiasis. J Comp Neurol 2025; 533:e70016. [PMID: 39825709 PMCID: PMC11841659 DOI: 10.1002/cne.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025]
Abstract
Snails belonging to the genus Biomphalaria serve as obligatory intermediate hosts for the trematode Schistosoma mansoni, the causative agent for the most widespread form of schistosomiasis. The simpler nervous systems of gastropod molluscs, such as Biomphalaria, provide advantageous models for investigating neural responses to infection at the cellular and network levels. The present study examined neuropeptides related to cholecystokinin (CCK), a major multifunctional regulator of central nervous system (CNS) function in mammals. A neural transcriptome generated from the CNS of Biomphalaria alexandrina included a transcript encoding two CCK-related peptides, designated Balex-CCK1 (pEGEWSYDY(SO 3 H)GLGGGRF-NH2) and Balex-CCK2 (NYGDY(SO 3 H)GIGGGRF-NH2). Peptide expression was examined in Biomphalaria glabrata at the mRNA level using the hybridization chain reaction (HCR) protocol and at the protein level using an antibody against Balex-CCK1. Expression was detected in 60-70 neurons distributed throughout the CNS, as well as in profuse fiber systems connecting the ganglia and projecting to the periphery. CCK-like immunoreactive (CCKli) fibers were also observed on organs associated with the cardiorespiratory (nephridium, mantle, gill) and male reproductive systems. A comparison of mRNA and peptide localization suggested that CCK expression could be regulated at the level of translation. A potential role of these peptides in mediating responses to infection by larval schistosomes is discussed.
Collapse
Affiliation(s)
- Alana Rivera
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus San Juan, Puerto Rico
| | - Dina Bracho-Rincón
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus San Juan, Puerto Rico
| | - Mark W. Miller
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus San Juan, Puerto Rico
- Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus San Juan, Puerto Rico
| |
Collapse
|
2
|
Li Z, Peng M, Félix RC, Cardoso JCR, Power DM. Neuropeptides regulate shell growth in the Mediterranean mussel (Mytilus galloprovincialis). Int J Biol Macromol 2024; 281:136500. [PMID: 39419152 DOI: 10.1016/j.ijbiomac.2024.136500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
In bivalves, which are molluscs enclosed in a biomineralized shell, a diversity of neuropeptide precursors has been described but their involvement in shell growth has been largely neglected. Here, using a symmetric marine bivalve, the Mediterranean mussel (Mytilus galloprovincialis), we uncover a role for the neuroendocrine system and neuropeptides in shell production. We demonstrate that the mantle is rich in neuropeptide precursors and that a complex network of neuropeptide-secreting fibres innervates the mantle edge a region highly involved in shell growth. We show that shell damage and shell repair significantly modify neuropeptide gene expression in the mantle edge and the nervous ganglia (cerebropleural ganglia, CPG). When the CPG nerve commissure was severed, shell production was impaired after shell damage, and modified neuropeptide gene expression, the spatial organization of nerve fibres in the ganglia and mantle and biomineralization enzyme activity in the mantle edge. Injection of CALCIa and CALCIIa peptides rescued the impaired shell repair phenotype providing further support for their role in biomineralization. We propose that the regulatory mechanisms identified are likely to be conserved across bivalves and other shelled molluscs since they all share a similar nervous system, a common mantle biomineralization toolbox, and shell structure.
Collapse
Affiliation(s)
- Zhi Li
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maoxiao Peng
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Rute C Félix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
3
|
Taniguchi S, Nakayama S, Iguchi R, Sasakura Y, Satake H, Wada S, Suzuki N, Ogasawara M, Sekiguchi T. Distribution of cionin, a cholecystokinin/gastrin family peptide, and its receptor in the central nervous system of Ciona intestinalis type A. Sci Rep 2024; 14:6277. [PMID: 38491056 PMCID: PMC10942981 DOI: 10.1038/s41598-024-55908-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
The cholecystokinin (CCK)/gastrin family peptides are involved in regulation of feeding and digestion in vertebrates. In the ascidian Ciona intestinalis type A (Ciona robusta), cionin, a CCK/gastrin family peptide, has been identified. Cionin is expressed exclusively in the central nervous system (CNS). In contrast, cionin receptor expression has been detected in the CNS, digestive tract, and ovary. Although cionin has been reported to be involved in ovulation, its physiological function in the CNS remains to be investigated. To elucidate its neural function, in the present study, we analyzed the expression of cionin and cionin receptors in the CNS. Cionin was expressed mainly in neurons residing in the anterior region of the cerebral ganglion. In contrast, the gene expressin of the cionin receptor gene CioR1, was detected in the middle part of the cerebral ganglion and showed a similar expression pattern to that of VACHT, a cholinergic neuron marker gene. Moreover, CioR1 was found to be expressed in cholinergic neurons. Consequently, these results suggest that cionin interacts with cholinergic neurons as a neurotransmitter or neuromodulator via CioR1. This study provides insights into a biological role of a CCK/gastrin family peptide in the CNS of ascidians.
Collapse
Affiliation(s)
- Shiho Taniguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-Cho, Ishikawa, 927-0553, Japan
| | - Satoshi Nakayama
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, 263-8522, Japan
| | - Rin Iguchi
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, 263-8522, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Seikacho, Kyoto, 619-0284, Japan
| | - Shuichi Wada
- Department of Animal Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-Cho, Ishikawa, 927-0553, Japan
| | - Michio Ogasawara
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, 263-8522, Japan
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-Cho, Ishikawa, 927-0553, Japan.
| |
Collapse
|
4
|
The potential role of the cholecystokinin system in declarative memory. Neurochem Int 2023; 162:105440. [PMID: 36375634 DOI: 10.1016/j.neuint.2022.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/24/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
As one of the most abundant neuropeptides in the central nervous system, cholecystokinin (CCK) has been suggested to be associated with higher brain functions, including learning and memory. In this review, we examined the potential role of the CCK system in declarative memory. First, we summarized behavioral studies that provide evidence for an important role of CCK in two forms of declarative memory-fear memory and spatial memory. Subsequently, we examined the electrophysiological studies that support the diverse roles of CCK-2 receptor activation in neocortical and hippocampal synaptic plasticity, and discussed the potential mechanisms that may be involved. Last but not least, we discussed whether the reported CCK-mediated synaptic plasticity can explain the strong influence of the CCK signaling system in neocortex and hippocampus dependent declarative memory. The available research supports the role of CCK-mediated synaptic plasticity in neocortex dependent declarative memory acquisition, but further study on the association between CCK-mediated synaptic plasticity and neocortex dependent declarative memory consolidation and retrieval is necessary. Although a direct link between CCK-mediated synaptic plasticity and hippocampus dependent declarative memory is missing, noticeable evidence from morphological, behavioral, and electrophysiological studies encourages further investigation regarding the potential role of CCK-dependent synaptic plasticity in hippocampus dependent declarative memory.
Collapse
|
5
|
Liu B, Fu D, Ning H, Tang M, Chen H. Identification and functional characterization of the sulfakinin and sulfakinin receptor in the Chinese white pine beetle Dendroctonus armandi. Front Physiol 2022; 13:927890. [PMID: 36035480 PMCID: PMC9417412 DOI: 10.3389/fphys.2022.927890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/04/2022] [Indexed: 01/29/2023] Open
Abstract
The sulfakinin (SK) is an important signal molecule. As a neuromodulator, it mediates a variety of behavioral processes and physiological functions in invertebrates through the interaction with G-protein-coupled receptors (GPCRs). However, there is no report on the functional role of SK in the Chinese white pine beetle, Dendroctonus armandi. We have cloned and characterized SK and SKR genes in the D. armandi and carried out bioinformatics predictions on the basis of the deduced amino acid sequences, which are very similar to those from Dendroctonus ponderosa. The expression levels of the two genes were different between male and female adults, and there were significant changes in different developmental stages, tissues, and between starvation and following re-feeding states. Additionally, RNA-interference (RNAi) using double-stranded RNA to knock down SK and SKR reduced the transcription levels of the target genes and increased their body weight. In parallel, injection of SK caused a significant reduction in body weight and increase in mortality of D. armandi and also led to an increase in trehalose and a decrease in glycogen and free fatty acid. The results show that the SK signal pathway plays a positive and significant role in feeding regulation and provides a potential molecular target for the control of this pest.
Collapse
Affiliation(s)
- Bin Liu
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Danyang Fu
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Hang Ning
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Ming Tang
- College of Forestry, Northwest A&F University, Xianyang, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- *Correspondence: Ming Tang, ; Hui Chen,
| | - Hui Chen
- College of Forestry, Northwest A&F University, Xianyang, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- *Correspondence: Ming Tang, ; Hui Chen,
| |
Collapse
|
6
|
He CF, Li XF, Jiang GZ, Zhang L, Sun M, Ge YP, Chen WL, Liu WB. Feed types affect the growth, nutrient utilization, digestive capabilities, and endocrine functions of Megalobrama amblycephala: a comparative study between pelleted and extruded feed. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1025-1038. [PMID: 35802285 DOI: 10.1007/s10695-022-01085-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Nowadays, both pelleted feed (PF) and extruded feed (EF) have been widely adopted in the aquaculture industry. However, limited information is available comparing their utilization efficiencies and meanwhile interpreting the underlying mechanisms. This study aimed to compare the utilization efficiencies of both PF and EF by blunt snout bream (Megalobrama amblycephala) based on growth performance, digestive capacities, and endocrine functions. Two feeds with identical formulas were prepared and named PF and EF. Fish were randomly distributed into two groups, including one that fed the PF continuously, and one that offered the EF continuously. The whole feeding trail lasted 8 weeks. The results showed that the protein efficiency (PER), retention of nitrogen and energy (NRE and ERE), viscera index (VSI), apparent digestibility of dry matter, protein, carbohydrate, and gross energy, whole-body crude protein and energy contents, intestinal enzymatic activities of protease, amylase, and Na+,K+-ATPase, intestinal villi length, crypt depth, muscular layer thickness, and the transcriptions of leptin (LEP) and cholecystokinin (CCK) of the EF group were all significantly higher than those of the PF group, while the opposite was true for feed intake and feed conversion ratio. These findings suggested that compared with PF, EF could improve the feed utilization and nutrient retention of blunt snout bream by enhancing the intestinal digestive and absorptive functions but reduce the feed intake through the stimulation of both LEP and CCK.
Collapse
Affiliation(s)
- Chao-Fan He
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang RoadJiangsu Province, Nanjing, 210095, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang RoadJiangsu Province, Nanjing, 210095, People's Republic of China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang RoadJiangsu Province, Nanjing, 210095, People's Republic of China
| | - Ling Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang RoadJiangsu Province, Nanjing, 210095, People's Republic of China
| | - Miao Sun
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang RoadJiangsu Province, Nanjing, 210095, People's Republic of China
| | - Ya-Ping Ge
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang RoadJiangsu Province, Nanjing, 210095, People's Republic of China
| | - Wei-Liang Chen
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang RoadJiangsu Province, Nanjing, 210095, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang RoadJiangsu Province, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
7
|
Nässel DR, Wu SF. Cholecystokinin/sulfakinin peptide signaling: conserved roles at the intersection between feeding, mating and aggression. Cell Mol Life Sci 2022; 79:188. [PMID: 35286508 PMCID: PMC8921109 DOI: 10.1007/s00018-022-04214-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/27/2022]
Abstract
Neuropeptides are the most diverse messenger molecules in metazoans and are involved in regulation of daily physiology and a wide array of behaviors. Some neuropeptides and their cognate receptors are structurally and functionally well conserved over evolution in bilaterian animals. Among these are peptides related to gastrin and cholecystokinin (CCK). In mammals, CCK is produced by intestinal endocrine cells and brain neurons, and regulates gall bladder contractions, pancreatic enzyme secretion, gut functions, satiety and food intake. Additionally, CCK plays important roles in neuromodulation in several brain circuits that regulate reward, anxiety, aggression and sexual behavior. In invertebrates, CCK-type peptides (sulfakinins, SKs) are, with a few exceptions, produced by brain neurons only. Common among invertebrates is that SKs mediate satiety and regulate food ingestion by a variety of mechanisms. Also regulation of secretion of digestive enzymes has been reported. Studies of the genetically tractable fly Drosophila have advanced our understanding of SK signaling mechanisms in regulation of satiety and feeding, but also in gustatory sensitivity, locomotor activity, aggression and reproductive behavior. A set of eight SK-expressing brain neurons plays important roles in regulation of these competing behaviors. In males, they integrate internal state and external stimuli to diminish sex drive and increase aggression. The same neurons also diminish sugar gustation, induce satiety and reduce feeding. Although several functional roles of CCK/SK signaling appear conserved between Drosophila and mammals, available data suggest that the underlying mechanisms differ.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden.
| | - Shun-Fan Wu
- College of Plant Protection/Laboratory of Bio-Interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
8
|
Gomes AS, Lygre E, Harboe T, Zimmermann F, Jordal AEO, Hamre K, Rønnestad I. The role of cholecystokinin and peptide YY in feed intake in Atlantic halibut (Hippoglossus hippoglossus) larvae. Neuropeptides 2022; 91:102202. [PMID: 34741845 DOI: 10.1016/j.npep.2021.102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
Control of appetite and feed intake in fish larvae are still largely unexplored. Two of the key players in controlling vertebrate's feed intake are cholecystokinin (CCK) and peptide YY (PYY). Here we investigated the mRNA expression of pyy, cck and cck receptors (cckr) in the brain (head) and gut of Atlantic halibut larvae in response to three consecutive meals. We used Artemia nauplii cysts that are commonly ingested by halibut larvae when present as inert feed, and three water-soluble extracts as attractants to stimulate appetite. Cyst intake was not affected by the use of attractants and overall ingestion rate was low. Differences in mRNA expression of cck and pyy were observed between the halibut larvae that had eaten and those that had not despite readily available feed (cysts), supporting that mechanisms for control of feed intake are at least partly functional. All genes analysed were present in the brain and gut, however the different expression profiles between paralogues suggest potential divergent functions. In the gut, cck2 and pyyb mRNA expression was significantly higher in the larvae that ate cysts compared to larvae that decided to not eat, indicating that these genes play a satiety function in the halibut larvae similar to the general vertebrate scheme. However, cck2, cck2r1, and pyy mRNA expression in the brain were lower in the fed-filled larvae group compared to larvae before eating, which contrasts with the presumable anorectic function of these genes. Further research is required to fully evaluate how PYY and CCK affect the feeding biology in halibut larvae, contributing to formulate inert diets that can stimulate appetite and feed intake.
Collapse
Affiliation(s)
- Ana S Gomes
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| | - Endre Lygre
- Department of Biological Sciences, University of Bergen, Bergen, Norway; Institute of Marine Research, Austevoll, Norway; Sogn Aqua AS, Bjordal, Norway
| | | | | | | | | | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Chen Y, Wu X, Lai J, Liu Y, Song M, Li F, Gong Q. Molecular characterization and tissue distribution of cholecystokinin and its receptor in Yangtze sturgeon (Acipenser dabryanus) and their response to different feeding conditions. Comp Biochem Physiol A Mol Integr Physiol 2021; 265:111129. [PMID: 34942371 DOI: 10.1016/j.cbpa.2021.111129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022]
Abstract
Yangtze sturgeon (Acipenser dabryanus) is a species endemic to Yangtze River drainage in China and is listed as a critically endangered species on the IUCN Red List. In the present study, cholecystokinin (CCK), one of the most important neuroregulatory digestive genes, and its receptor (CCKr) were identified from the full-length transcriptome analysis of A. dabryanus. The deduced amino acid sequences of CCK and CCKr from A. dabryanus showed structural features common to those in other vertebrates. Gene expression profile analysis showed that CCK and CCKr were universally expressed in different tissues, and both had the highest expression in the brain. Starvation and refeeding significantly regulated the expression levels of CCK and CCKr in the brain, suggesting that CCK and CCKr were involved in feed intake regulation in A. dabryanus as in mammals. In addition, the expression levels of CCK and CCKr under different feeding frequencies were studied. Compared with the control group (fed two times a day), the expression levels of CCK and CCKr in the intestine and brain did not change significantly in the other groups after 8 weeks of rearing, indicating that the feeding frequency might not influence the appetite of A. dabryanus. The present work provides a basis for further investigation into the regulation of feeding in A. dabryanus.
Collapse
Affiliation(s)
- Yeyu Chen
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Xiaoyun Wu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Jiansheng Lai
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Ya Liu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Mingjiang Song
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Feiyang Li
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Quan Gong
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China.
| |
Collapse
|
10
|
Cui T, Wang J, Hu Z, Chen X. Expression of gastrin and cholecystokinin B receptor in Lateolabrax maculatus. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Tinoco AB, Barreiro-Iglesias A, Yañez Guerra LA, Delroisse J, Zhang Y, Gunner EF, Zampronio CG, Jones AM, Egertová M, Elphick MR. Ancient role of sulfakinin/cholecystokinin-type signalling in inhibitory regulation of feeding processes revealed in an echinoderm. eLife 2021; 10:e65667. [PMID: 34488941 PMCID: PMC8428848 DOI: 10.7554/elife.65667] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 08/18/2021] [Indexed: 01/04/2023] Open
Abstract
Sulfakinin (SK)/cholecystokinin (CCK)-type neuropeptides regulate feeding and digestion in protostomes (e.g. insects) and chordates. Here, we characterised SK/CCK-type signalling for the first time in a non-chordate deuterostome - the starfish Asterias rubens (phylum Echinodermata). In this species, two neuropeptides (ArSK/CCK1, ArSK/CCK2) derived from the precursor protein ArSK/CCKP act as ligands for an SK/CCK-type receptor (ArSK/CCKR) and these peptides/proteins are expressed in the nervous system, digestive system, tube feet, and body wall. Furthermore, ArSK/CCK1 and ArSK/CCK2 cause dose-dependent contraction of cardiac stomach, tube foot, and apical muscle preparations in vitro, and injection of these neuropeptides in vivo triggers cardiac stomach retraction and inhibition of the onset of feeding in A. rubens. Thus, an evolutionarily ancient role of SK/CCK-type neuropeptides as inhibitory regulators of feeding-related processes in the Bilateria has been conserved in the unusual and unique context of the extra-oral feeding behaviour and pentaradial body plan of an echinoderm.
Collapse
Affiliation(s)
- Ana B Tinoco
- Queen Mary University of London, School of Biological & Behavioural SciencesLondonUnited Kingdom
| | - Antón Barreiro-Iglesias
- Queen Mary University of London, School of Biological & Behavioural SciencesLondonUnited Kingdom
| | | | - Jérôme Delroisse
- Queen Mary University of London, School of Biological & Behavioural SciencesLondonUnited Kingdom
| | - Ya Zhang
- Queen Mary University of London, School of Biological & Behavioural SciencesLondonUnited Kingdom
| | - Elizabeth F Gunner
- Queen Mary University of London, School of Biological & Behavioural SciencesLondonUnited Kingdom
| | - Cleidiane G Zampronio
- School of Life Sciences and Proteomics, Research Technology Platform, University of WarwickCoventryUnited Kingdom
| | - Alexandra M Jones
- School of Life Sciences and Proteomics, Research Technology Platform, University of WarwickCoventryUnited Kingdom
| | - Michaela Egertová
- Queen Mary University of London, School of Biological & Behavioural SciencesLondonUnited Kingdom
| | - Maurice R Elphick
- Queen Mary University of London, School of Biological & Behavioural SciencesLondonUnited Kingdom
| |
Collapse
|
12
|
Słocińska M, Chowański S, Marciniak P. Identification of sulfakinin receptors (SKR) in Tenebrio molitor beetle and the influence of sulfakinins on carbohydrates metabolism. J Comp Physiol B 2020; 190:669-679. [PMID: 32749519 PMCID: PMC7441086 DOI: 10.1007/s00360-020-01300-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/03/2020] [Accepted: 07/19/2020] [Indexed: 11/24/2022]
Abstract
Sulfakinins (SKs) are pleiotropic neuropeptides commonly found in insects, structurally and functionally homologous to the mammalian gastrin/cholecystokinin (CCK) neuropeptides. SKs together with sulfakinin receptors (SKRs) are involved in sulfakinin signaling responsible for variety of biological functions, including food intake or fatty acid metabolism. In the present study, we determined the distribution of SKRs in Tenebrio molitor larvae and characterized the impact of nonsulfated and sulfated SKs on carbohydrates and insulin-like peptides (ILPs) level in beetle hemolymph. Our results indicate the presence of both sulfakinin receptors, SKR1 and SKR2, in the nervous system of T. molitor. The distribution of SKR2 in peripheral tissues was more widespread than SKR1, and their transcripts have been found in fat body, gut and hemolymph. This is also the first evidence for SKRs presence in insect hemocytes indicating immunotropic activity of SKs. Moreover, in the present study, we have demonstrated that SKs regulate ILPs and carbohydrates level in insect hemolymph, and that sulfation is not crucial for peptides activity. Our study confirms the role of SKs in maintaining energy homeostasis in beetles.
Collapse
Affiliation(s)
- M Słocińska
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland.
| | - S Chowański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - P Marciniak
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| |
Collapse
|
13
|
Cao Q, Yu Q, Liu Y, Chen Z, Li L. Signature-Ion-Triggered Mass Spectrometry Approach Enabled Discovery of N- and O-Linked Glycosylated Neuropeptides in the Crustacean Nervous System. J Proteome Res 2020; 19:634-643. [PMID: 31875397 DOI: 10.1021/acs.jproteome.9b00525] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Crustaceans are commonly used model organisms to study neuromodulation. Despite numerous reported crustacean neuropeptide families and their functions, there has been no report on neuropeptide glycosylation. This is in part due to a lack of sensitive methods that enable deciphering this intricate low-abundance post-translational modification, even though glycosylation has been shown to play an important role in neuromodulation. Here, we describe the discovery of glycosylated neuropeptides with an enrichment-free approach, taking advantage of signature oxonium ions produced in higher-energy collision dissociation (HCD) MS/MS spectra. The detection of the oxonium ions in the HCD scans suggests glycan attachment to peptides, allowing electron-transfer/higher-energy collision dissociation (EThcD) to be performed to selectively elucidate structural information of glycosylated neuropeptides that are buried in nonglycosylated peptides. Overall, 4 N-linked and 14 O-linked glycosylated neuropeptides have been identified for the first time in the crustacean nervous system. In addition, 91 novel putative neuropeptides have been discovered based on the collected HCD scans. This hybrid approach, coupling a shotgun method for neuropeptide discovery and targeted strategy for glycosylation characterization, enables the first report on glycosylated neuropeptides in crustaceans and the discovery of additional neuropeptides simultaneously. The elucidation of novel glycosylated neuropeptides sheds light on the crustacean peptidome and offers novel insights into future neuropeptide functional studies.
Collapse
Affiliation(s)
- Qinjingwen Cao
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Qing Yu
- School of Pharmacy , University of Wisconsin-Madison , 777 Highland Avenue , Madison , Wisconsin 53705 , United States
| | - Yang Liu
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Zhengwei Chen
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Lingjun Li
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States.,School of Pharmacy , University of Wisconsin-Madison , 777 Highland Avenue , Madison , Wisconsin 53705 , United States
| |
Collapse
|
14
|
Slocinska M, Kuczer M, Gołębiowski M. Sulfakinin Signalling Influences Fatty Acid Levels and Composition in Tenebrio Molitor Beetle. Protein Pept Lett 2019; 26:949-958. [PMID: 31518216 DOI: 10.2174/0929866526666190913142115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Sulfakinins are arthropod neuropeptides that are structurally and functionally similar to vertebrate gastrin-cholecystokinin. Sulfakinins with sulfated tyrosine (sSK) or nonsulfated tyrosine (nSK) in the C-terminated heptapeptide XY(SO3H)GHMRFamide display different biological functions, including myotropic activity, inhibition of food intake, stimulation of digestive enzymes and regulation of carbohydrate and lipid content. OBJECTIVE To reveal the mechanisms by which sulfakinin signalling modulates lipid homeostasis, we analysed the changes in the level and composition of fatty acids and organic compounds in the fat body and haemolymph of Tenebrio molitor larvae after nSK and sSK treatment. METHODS Fatty acids in fat body and haemolymph of insects were analysed using Gas Chromatography - Mass Spectrometry (GC-MS). RESULTS The direction of the changes observed for major fatty acids, 18:1 and 18:2, and the less abundant fatty acids, 16:0, 18:0, 16:1 and 14:0, was the same for unsaturated (UFAs) and saturated (SFAs) fatty acids, and elevated after nSK application in both analysed tissues. However, the action of sSK in fat body tissue evoked distinct effects and induced either significant decreases in individual fatty acids or UFAs and SFAs. Administration of nSK and sSK significantly increased the level of total organic compounds in the haemolymph, contrary to the effect of sSK in fat body, where the level of total organic compounds decreased, although changes differ between individual chemicals. CONCLUSION Sulfakinins are engaged in the precise modulation of fatty acid levels and composition, but their action depends on the presence of sulfate group on the tyrosyl residue of the peptide what determines the different roles of these peptides in insect physiology.
Collapse
Affiliation(s)
| | - Mariola Kuczer
- Faculty of Chemistry, University of Wroclaw, Wroclaw, Poland
| | - Marek Gołębiowski
- Faculty of Chemistry, University of Gdańsk, ul Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
15
|
Chen M, Talarovicova A, Zheng Y, Storey KB, Elphick MR. Neuropeptide precursors and neuropeptides in the sea cucumber Apostichopus japonicus: a genomic, transcriptomic and proteomic analysis. Sci Rep 2019; 9:8829. [PMID: 31222106 PMCID: PMC6586643 DOI: 10.1038/s41598-019-45271-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
The sea cucumber Apostichopus japonicus is a foodstuff with very high economic value in China, Japan and other countries in south-east Asia. It is at the heart of a multibillion-dollar industry and to meet demand for this product, aquaculture methods and facilities have been established. However, there are challenges associated with optimization of reproduction, feeding and growth in non-natural environments. Therefore, we need to learn more about the biology of A. japonicus, including processes such as aestivation, evisceration, regeneration and albinism. One of the major classes of molecules that regulate physiology and behaviour in animals are neuropeptides, and a few bioactive peptides have already been identified in A. japonicus. To facilitate more comprehensive investigations of neuropeptide function in A. japonicus, here we have analysed genomic and transcriptomic sequence data and proteomic data to identify neuropeptide precursors and neuropeptides in this species. We identified 44 transcripts encoding neuropeptide precursors or putative neuropeptide precursors, and in some instances neuropeptides derived from these precursors were confirmed by mass spectrometry. Furthermore, analysis of genomic sequence data enabled identification of the location of neuropeptide precursor genes on genomic scaffolds and linkage groups (chromosomes) and determination of gene structure. Many of the precursors identified contain homologs of neuropeptides that have been identified in other bilaterian animals. Precursors of neuropeptides that have thus far only been identified in echinoderms were identified, including L- and F-type SALMFamides, AN peptides and others. Precursors of several peptides that act as modulators of neuromuscular activity in A. japonicus were also identified. The discovery of a large repertoire of neuropeptide precursors and neuropeptides provides a basis for experimental studies that investigate the physiological roles of neuropeptide signaling systems in A. japonicus. Looking ahead, some of these neuropeptides may have effects that could be harnessed to enable improvements in the aquaculture of this economically important species.
Collapse
Affiliation(s)
- Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR, China.
| | - Alzbeta Talarovicova
- School of Biological & Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR, China
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Maurice R Elphick
- School of Biological & Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
16
|
Schwartz J, Dubos MP, Pasquier J, Zatylny-Gaudin C, Favrel P. Emergence of a cholecystokinin/sulfakinin signalling system in Lophotrochozoa. Sci Rep 2018; 8:16424. [PMID: 30401878 PMCID: PMC6219549 DOI: 10.1038/s41598-018-34700-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022] Open
Abstract
Chordate gastrin/cholecystokinin (G/CCK) and ecdysozoan sulfakinin (SK) signalling systems represent divergent evolutionary scenarios of a common ancestral signalling system. The present article investigates for the first time the evolution of the CCK/SK signalling system in a member of the Lophotrochozoa, the second clade of protostome animals. We identified two G protein-coupled receptors (GPCR) in the oyster Crassostrea gigas (Mollusca), phylogenetically related to chordate CCK receptors (CCKR) and to ecdysozoan sulfakinin receptors (SKR). These receptors, Cragi-CCKR1 and Cragi-CCKR2, were characterised functionally using a cell-based assay. We identified di- and mono-sulphated forms of oyster Cragi-CCK1 (pEGAWDY(SO3H)DY(SO3H)GLGGGRF-NH2) as the potent endogenous agonists for these receptors. The Cragi-CCK genes were expressed in the visceral ganglia of the nervous system. The Cragi-CCKR1 gene was expressed in a variety of tissues, while Cragi-CCKR2 gene expression was more restricted to nervous tissues. An in vitro bioassay revealed that different forms of Cragi-CCK1 decreased the frequency of the spontaneous contractions of oyster hindgut. Expression analyses in oysters with contrasted nutritional statuses or in the course of their reproductive cycle highlighted the plausible role of Cragi-CCK signalling in the regulation of feeding and its possible involvement in the coordination of nutrition and energy storage in the gonad. This study confirms the early origin of the CCK/SK signalling system from the common bilaterian ancestor and delivers new insights into its structural and functional evolution in the lophotrochozoan lineage.
Collapse
Affiliation(s)
- Julie Schwartz
- Normandie Université, UNICAEN, Sorbonne Universités, MNHN, UPMC, UA, CNRS 7208, IRD 207, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), CS14032, 14032, Caen, Cedex 5, France
| | - Marie-Pierre Dubos
- Normandie Université, UNICAEN, Sorbonne Universités, MNHN, UPMC, UA, CNRS 7208, IRD 207, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), CS14032, 14032, Caen, Cedex 5, France
| | - Jérémy Pasquier
- Normandie Université, UNICAEN, Sorbonne Universités, MNHN, UPMC, UA, CNRS 7208, IRD 207, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), CS14032, 14032, Caen, Cedex 5, France
| | - Céline Zatylny-Gaudin
- Normandie Université, UNICAEN, Sorbonne Universités, MNHN, UPMC, UA, CNRS 7208, IRD 207, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), CS14032, 14032, Caen, Cedex 5, France
| | - Pascal Favrel
- Normandie Université, UNICAEN, Sorbonne Universités, MNHN, UPMC, UA, CNRS 7208, IRD 207, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), CS14032, 14032, Caen, Cedex 5, France.
| |
Collapse
|
17
|
Reid AMA, Dunn IC. Gastrointestinal distribution of chicken gastrin-cholecystokinin family transcript expression and response to short-term nutritive state. Gen Comp Endocrinol 2018; 255:64-70. [PMID: 29061367 PMCID: PMC5693036 DOI: 10.1016/j.ygcen.2017.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/20/2022]
Abstract
The related peptide hormones cholecystokinin (CCK) and gastrin are conserved throughout vertebrate clades and implicated in energy homeostasis. CCK is generally accepted as a satiety hormone in poultry, but the role of gastrin remains poorly studied. Functional dissection of these ligands is required to characterise the molecular control of growth & satiety in the domestic chicken, for which there is an increasingly pressing mandate. There are limited descriptions of physiological distributions for the two genes in birds, and these are mostly reliant on immunohistochemistry which can prove problematic due to the shared structure of the targets. Therefore, we have defined the tissue distributions of CCK and gastrin in the chicken, focussing on the gastrointestinal tract, by using transcript-dependent techniques to improve reliability by increasing specificity. Though considerably more highly expressed in the brain, gastrointestinal CCK transcripts were dispersed throughout the small intestine and particularly around the proximal ileum. Gastrin expression was strictly limited to the gastric antrum region of the intestinal tract, albeit very highly expressed. We demonstrate that CCK mRNA expression does not respond as expected for a short-term satiety hormone, and that the short-term response of gastrin expression is paradoxical compared to its role in mammals. These results partially corroborate previous peptide distribution studies and initiate exploration of the nutrient-responsive roles of these hormones in avian energy balance.
Collapse
Affiliation(s)
- Angus M A Reid
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland EH25 9RG, UK.
| | - Ian C Dunn
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland EH25 9RG, UK
| |
Collapse
|
18
|
Baldascino E, Di Cristina G, Tedesco P, Hobbs C, Shaw TJ, Ponte G, Andrews PLR. The Gastric Ganglion of Octopus vulgaris: Preliminary Characterization of Gene- and Putative Neurochemical-Complexity, and the Effect of Aggregata octopiana Digestive Tract Infection on Gene Expression. Front Physiol 2017; 8:1001. [PMID: 29326594 PMCID: PMC5736919 DOI: 10.3389/fphys.2017.01001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/20/2017] [Indexed: 12/19/2022] Open
Abstract
The gastric ganglion is the largest visceral ganglion in cephalopods. It is connected to the brain and is implicated in regulation of digestive tract functions. Here we have investigated the neurochemical complexity (through in silico gene expression analysis and immunohistochemistry) of the gastric ganglion in Octopus vulgaris and tested whether the expression of a selected number of genes was influenced by the magnitude of digestive tract parasitic infection by Aggregata octopiana. Novel evidence was obtained for putative peptide and non-peptide neurotransmitters in the gastric ganglion: cephalotocin, corticotrophin releasing factor, FMRFamide, gamma amino butyric acid, 5-hydroxytryptamine, molluscan insulin-related peptide 3, peptide PRQFV-amide, and tachykinin-related peptide. Receptors for cholecystokininA and cholecystokininB, and orexin2 were also identified in this context for the first time. We report evidence for acetylcholine, dopamine, noradrenaline, octopamine, small cardioactive peptide related peptide, and receptors for cephalotocin and octopressin, confirming previous publications. The effects of Aggregata observed here extend those previously described by showing effects on the gastric ganglion; in animals with a higher level of infection, genes implicated in inflammation (NFκB, fascin, serpinB10 and the toll-like 3 receptor) increased their relative expression, but TNF-α gene expression was lower as was expression of other genes implicated in oxidative stress (i.e., superoxide dismutase, peroxiredoxin 6, and glutathione peroxidase). Elevated Aggregata levels in the octopuses corresponded to an increase in the expression of the cholecystokininA receptor and the small cardioactive peptide-related peptide. In contrast, we observed decreased relative expression of cephalotocin, dopamine β-hydroxylase, peptide PRQFV-amide, and tachykinin-related peptide genes. A discussion is provided on (i) potential roles of the various molecules in food intake regulation and digestive tract motility control and (ii) the difference in relative gene expression in the gastric ganglion in octopus with relatively high and low parasitic loads and the similarities to changes in the enteric innervation of mammals with digestive tract parasites. Our results provide additional data to the described neurochemical complexity of O. vulgaris gastric ganglion.
Collapse
Affiliation(s)
- Elena Baldascino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Giulia Di Cristina
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Perla Tedesco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Carl Hobbs
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Tanya J. Shaw
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
- Association for Cephalopod Research - CephRes, Napoli, Italy
| | - Paul L. R. Andrews
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
- Association for Cephalopod Research - CephRes, Napoli, Italy
| |
Collapse
|
19
|
Jiang HN, Li Y, Cui ZJ. Photodynamic Physiology-Photonanomanipulations in Cellular Physiology with Protein Photosensitizers. Front Physiol 2017; 8:191. [PMID: 28421000 PMCID: PMC5378799 DOI: 10.3389/fphys.2017.00191] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/14/2017] [Indexed: 02/05/2023] Open
Abstract
Singlet oxygen generated in a type II photodynamic action, due to its limited lifetime (1 μs) and reactive distance (<10 nm), could regulate live cell function nanoscopically. The genetically-encoded protein photosensitizers (engineered fluorescent proteins such as KillerRed, TagRFP, and flavin-binding proteins such as miniSOG, Pp2FbFPL30M) could be expressed in a cell type- and/or subcellular organelle-specific manner for targeted protein photo-oxidative activation/desensitization. The newly emerged active illumination technique provides an additional level of specificity. Typical examples of photodynamic activation include permanent activation of G protein-coupled receptor CCK1 and photodynamic activation of ionic channel TRPA1. Protein photosensitizers have been used to photodynamically modulate major cellular functions (such as neurotransmitter release and gene transcription) and animal behavior. Protein photosensitizers are increasingly used in photon-driven nanomanipulation in cell physiology research.
Collapse
Affiliation(s)
| | | | - Zong Jie Cui
- College of Life Science, Institute of Cell Biology, Beijing Normal UniversityBeijing, China
| |
Collapse
|
20
|
Kozyrev N, Coolen LM. Activation of galanin and cholecystokinin receptors in the lumbosacral spinal cord is required for ejaculation in male rats. Eur J Neurosci 2017; 45:846-858. [DOI: 10.1111/ejn.13515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 01/23/2023]
Affiliation(s)
- Natalie Kozyrev
- Department of Anatomy and Cell Biology; Western University; London ON Canada
- Department of Physiology; University of Michigan; Ann Arbor MI USA
| | - Lique M. Coolen
- Department of Anatomy and Cell Biology; Western University; London ON Canada
- Department of Physiology; University of Michigan; Ann Arbor MI USA
- Department of Neurobiology and Anatomical Sciences; University of Mississippi Medical Center; Jackson MS USA
- Department of Physiology and Biophysics; University of Mississippi Medical Center; 2500 North State Street Jackson MS 39216 USA
| |
Collapse
|
21
|
Leander M, Heimonen J, Brocke T, Rasmussen M, Bass C, Palmer G, Egle J, Mispelon M, Berry K, Nichols R. The 5-amino acid N-terminal extension of non-sulfated drosulfakinin II is a unique target to generate novel agonists. Peptides 2016; 83:49-56. [PMID: 27397853 DOI: 10.1016/j.peptides.2016.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/13/2016] [Accepted: 07/07/2016] [Indexed: 10/21/2022]
Abstract
The ability to design agonists that target peptide signaling is a strategy to delineate underlying mechanisms and influence biology. A sequence that uniquely characterizes a peptide provides a distinct site to generate novel agonists. Drosophila melanogaster sulfakinin encodes non-sulfated drosulfakinin I (nsDSK I; FDDYGHMRF-NH2) and nsDSK II (GGDDQFDDYGHMRF-NH2). Drosulfakinin is typical of sulfakinin precursors, which are conserved throughout invertebrates. Non-sulfated DSK II is structurally related to DSK I, however, it contains a unique 5-residue N-terminal extension; drosulfakinins signal through G-protein coupled receptors, DSK-R1 and DSK-R2. Drosulfakinin II distinctly influences adult and larval gut motility and larval locomotion; yet, its structure-activity relationship was unreported. We hypothesized substitution of an N-terminal extension residue may alter nsDSK II activity. By targeting the extension we identified, not unexpectedly, analogs mimicking nsDSK II, yet, surprisingly, we also discovered novel agonists with increased (super) and opposite (protean) effects. We determined [A3] nsDSK II increased larval gut contractility rather than, like nsDSK II, decrease it. [N4] nsDSK II impacted larval locomotion, although nsDSK II was inactive. In adult gut, [A1] nsDSK II, [A2] nsDSKII, and [A3] nsDSK II mimicked nsDSK II, and [A4] nsDSK II and [A5] nsDSK II were more potent; [N3] nsDSK II and [N4] nsDSK II mimicked nsDSK II. This study reports nsDSK II signals through DSK-R2 to influence gut motility and locomotion, identifying a novel role for the N-terminal extension in sulfakinin biology and receptor activation; it also led to the discovery of nsDSK II structural analogs that act as super and protean agonists.
Collapse
Affiliation(s)
- M Leander
- Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - J Heimonen
- Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - T Brocke
- Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - M Rasmussen
- Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - C Bass
- Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - G Palmer
- Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - J Egle
- Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - M Mispelon
- Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - K Berry
- Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - R Nichols
- Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
22
|
Xu C, Li XF, Tian HY, Jiang GZ, Liu WB. Feeding rates affect growth, intestinal digestive and absorptive capabilities and endocrine functions of juvenile blunt snout bream Megalobrama amblycephala. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:689-700. [PMID: 26597852 DOI: 10.1007/s10695-015-0169-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 11/16/2015] [Indexed: 05/20/2023]
Abstract
This study aimed to investigate the optimal feeding rate for juvenile blunt snout bream (average initial weight 23.74 ± 0.09 g) based on the results on growth performance, intestinal digestive and absorptive capabilities and endocrine functions. A total of 840 fish were randomly distributed into 24 cages and fed a commercial feed at six feeding rates ranging from 2.0 to 7.0% body weight (BW)/day. The results indicated that weight gain rate increased significantly (P < 0.05) as feeding rates increased from 2.0 to 5.0% BW/day, but decreased with the further increasing feeding rates (P > 0.05). Protein efficiency ratio and nitrogen and energy retention all showed a similar trend. However, feed conversion ratio increased significantly (P < 0.05) with increasing feeding rates. Feeding rates have little effects (P > 0.05) on whole-body moisture, ash and protein contents, but significantly (P < 0.05) affect both lipid and energy contents with the highest values both observed in fish fed 4.0% BW/day. In addition, moderate ration sizes (2.0-4.0% BW/day) resulted in the enhanced activities of intestinal enzymes, including lipase, protease, Na(+), K(+)-ATPase, alkaline phosphatase and creatine kinase. Furthermore, the mRNA levels of growth hormone, insulin-like growth factors-I, growth hormone receptor and neuropeptide all increased significantly (P < 0.05) as feeding rates increased from 2.0 to 5.0% and 6.0% BW/day, but decreased significantly (P < 0.05) with the further increase in feeding rates, whereas both leptin and cholecystokinin expressions showed an opposite trend. Based on the broken-line regression analysis of SGR against feeding rates, the optimal feeding rate for juvenile blunt snout bream was estimated to be 4.57% BW/day.
Collapse
Affiliation(s)
- Chao Xu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
- Wuxi Fisheries College, Nanjing Agricultural University, No. 69 Xuejiali, Nanquan, Binhu District, Wuxi, 214182, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Hong-Yan Tian
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW This review summarizes the past year's literature regarding the neuroendocrine and intracellular regulation of gastric acid secretion, discussing both basic and clinical aspects. RECENT FINDINGS Gastric acid facilitates the digestion of protein as well as the absorption of iron, calcium, vitamin B12, and certain medications. High acidity kills ingested microorganisms and limits bacterial overgrowth, enteric infection, and possibly spontaneous bacterial peritonitis. The main stimulants of acid secretion are gastrin, released from antral gastrin cells; histamine, released from oxyntic enterochromaffin-like cells; and acetylcholine, released from antral and oxyntic intramural neurons. Ghrelin and coffee also stimulate acid secretion whereas somatostatin, cholecystokinin, glucagon-like peptide-1, and atrial natriuretic peptide inhibit acid secretion. Although 95% of parietal cells are contained within the oxyntic mucosa (fundus and body), 50% of human antral glands contain parietal cells. Proton pump inhibitors are considered well tolerated drugs, but concerns have been raised regarding dysbiosis, atrophic gastritis, hypergastrinemia, hypomagnesemia, and enteritis/colitis. SUMMARY Our understanding of the functional anatomy and physiology of gastric secretion continues to advance. Such knowledge is crucial for improved management of acid-peptic disorders, prevention and management of neoplasia, and the development of novel medications.
Collapse
|
24
|
Tinoco A, Valenciano A, Gómez-Boronat M, Blanco A, Nisembaum L, De Pedro N, Delgado M. Two cholecystokinin receptor subtypes are identified in goldfish, being the CCKAR involved in the regulation of intestinal motility. Comp Biochem Physiol A Mol Integr Physiol 2015; 187:193-201. [DOI: 10.1016/j.cbpa.2015.05.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/28/2015] [Accepted: 05/31/2015] [Indexed: 12/17/2022]
|
25
|
Staljanssens D, Rico CA, Park M, Van Camp J, Yu N, Huber T, Sakmar TP, Smagghe G. Development of a CCK1R-membrane nanoparticle as a fish-out tool for bioactive peptides. Peptides 2015; 68:219-27. [PMID: 25451329 DOI: 10.1016/j.peptides.2014.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 11/22/2022]
Abstract
The cholecystokinin receptor type 1 (CCK1R) is a G protein-coupled receptor (GPCR) that is involved in several biological processes including the regulation of the secretion of digestive enzymes. The peptide hormone cholecystokinin (CCK) binds to CCK1R, which is an important pharmacological target for several diseases, including obesity. Interestingly, nutritional dietary peptides also appear to activate CCK1R, and may play a role in CCK1R signaling in the gut. In this study, a novel technique to screen for CCK1R ligands based on affinity-selection is described. Functional expressed CCK1R is reconstituted into membrane nanoparticles called NABBs (nanoscale apo-lipoprotein bound bilayers). NABBs are native-like bilayer membrane systems for incorporation of GPCRs. CCK1R-NABBs were characterized using a fluorescently labeled CCK analog and can be used as a cutting-edge technology to screen for CCK1R ligands using affinity-selection mass spectrometry.
Collapse
Affiliation(s)
- Dorien Staljanssens
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Carlos A Rico
- Laboratory of Chemical Biology & Signal Transduction, The Rockefeller University, New York, NY 10065, USA
| | - Minyoung Park
- Laboratory of Chemical Biology & Signal Transduction, The Rockefeller University, New York, NY 10065, USA
| | - John Van Camp
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Na Yu
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Thomas Huber
- Laboratory of Chemical Biology & Signal Transduction, The Rockefeller University, New York, NY 10065, USA
| | - Thomas P Sakmar
- Laboratory of Chemical Biology & Signal Transduction, The Rockefeller University, New York, NY 10065, USA; Center for Alzheimer Research, Division for Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, SE-141 57 Huddinge, Sweden
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| |
Collapse
|
26
|
Nässel DR, Williams MJ. Cholecystokinin-Like Peptide (DSK) in Drosophila, Not Only for Satiety Signaling. Front Endocrinol (Lausanne) 2014; 5:219. [PMID: 25566191 PMCID: PMC4270250 DOI: 10.3389/fendo.2014.00219] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/01/2014] [Indexed: 01/07/2023] Open
Abstract
Cholecystokinin (CCK) signaling appears well conserved over evolution. In Drosophila, the CCK-like sulfakinins (DSKs) regulate aspects of gut function, satiety and food ingestion, hyperactivity and aggression, as well as escape-related locomotion and synaptic plasticity during neuromuscular junction development. Activity in the DSK-producing neurons is regulated by octopamine. We discuss mechanisms behind CCK function in satiety, aggression, and locomotion in some detail and highlight similarities to mammalian CCK signaling.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
- *Correspondence:
| | - Michael J. Williams
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|