1
|
Gametogenic and steroidogenic action of kisspeptin-10 in the Asian catfish, Clarias batrachus: Putative underlying mechanistic cascade. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110642. [PMID: 34197962 DOI: 10.1016/j.cbpb.2021.110642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022]
Abstract
Unlike mammals, two kisspeptins genes encoding, kiss1 and kiss2 are detected in fishes with highly varied and contradictory difference in their reproductive activities. The present study was undertaken to examine the direct action of kisspeptin-10 and its role in gonadal activities in the gonadally quiescent Asian catfish using native mammalian kisspeptin decapeptide (KP-10) involving in vivo and in vitro approaches. The in vivo KP-10 treatment caused precocious onset of gametogenesis and its rapid progression, as was evident from the appearance of advanced stages of ovarian follicles in ovary, and advanced germ cells (spermatocytes/ spermatids) in the testis of the treated Clarias batrachus in comparison to the control gonads. It also elevated the steroid levels in gonads of the catfish in vivo and in vitro conditions. Simultaneously, it increased the expressions of key steroidogenic enzymes like 3β-HSD, 17β-HSD, and StAR protein, responsible for transfer of cholesterol from outer to inner membrane of the mitochondria of steroidogenic cells. Concurrently, it augmented the activities of 3β-HSD and 17β-HSD in the ovarian explants. The expressions of MAPK component (pERK1/2 and ERK1/2) were also up-regulated by KP-10 in gonadal explants. Thus, the data suggest that kisspeptin-10 stimulates gametogenesis by enhancing gonadal steroid production. The study also describes the putative mechanistic cascade of steroidogenic actions of kisspeptin-10 in the catfish so much so in teleost fish. The study also suggests that, kisspeptin may act locally to regulate gonadal activities in an autocrine/paracine manner, independent of known extra-gonadal factors in the catfish.
Collapse
|
2
|
Somoza GM, Mechaly AS, Trudeau VL. Kisspeptin and GnRH interactions in the reproductive brain of teleosts. Gen Comp Endocrinol 2020; 298:113568. [PMID: 32710898 DOI: 10.1016/j.ygcen.2020.113568] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 02/09/2023]
Abstract
It is well known that gonadotropin-releasing hormone (Gnrh) has a key role in reproduction by regulating the synthesis and release of gonadotropins from the anterior pituitary gland of all vertebrates. About 25 years ago, another neuropeptide, kisspeptin (Kiss1) was discovered as a metastasis suppressor of melanoma cell lines and then found to be essential for mammalian reproduction as a stimulator of hypothalamic Gnrh and regulator of puberty onset. Soon after, a kisspeptin receptor (kissr) was found in the teleost brain. Nowadays, it is known that in most teleosts the kisspeptin system is composed of two ligands, kiss1 and kiss2, and two receptors, kiss2r and kiss3r. Even though both kisspeptin peptides, Kiss1 and Kiss2, have been demonstrated to stimulate gonadotropin synthesis and secretion in different fish species, their actions appear not to be mediated by Gnrh neurons as in mammalian models. In zebrafish and medaka, at least, hypophysiotropic Gnrh neurons do not express Kiss receptors. Furthermore, kisspeptinergic nerve terminals reach luteinizing hormone cells in some fish species, suggesting a direct pituitary action. Recent studies in zebrafish and medaka with targeted mutations of kiss and/or kissr genes reproduce relatively normally. In zebrafish, single gnrh mutants and additionally those having the triple gnrh3 plus 2 kiss mutations can reproduce reasonably well. In these fish, other neuropeptides known to affect gonadotropin secretion were up regulated, suggesting that they may be involved in compensatory responses to maintain reproductive processes. In this context, the present review explores and presents different possibilities of interactions between Kiss, Gnrh and other neuropeptides known to affect reproduction in teleost fish. Our intention is to stimulate a broad discussion on the relative roles of kisspeptin and Gnrh in the control of teleost reproduction.
Collapse
Affiliation(s)
- Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires B7130IWA, Argentina.
| | - Alejandro S Mechaly
- Instituto de Investigaciones en Biodiversidad y Biotecnología (CONICET), Mar del Plata, Buenos Aires 7600, Argentina.
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
3
|
Amelkina O, Tanyapanyachon P, Thongphakdee A, Chatdarong K. Identification of feline Kiss1 and distribution of immunoreactive kisspeptin in the hypothalamus of the domestic cat. J Reprod Dev 2019; 65:335-343. [PMID: 31142694 PMCID: PMC6708855 DOI: 10.1262/jrd.2018-101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, the Kiss1 gene has been reported in a number of vertebrate species, and a substantial dataset has been acquired to demonstrate the critical role of
kisspeptins in the reproductive system; yet limited information is available for carnivores. In the present study, we identified and characterized feline Kiss1 by isolating
and cloning its full-length cDNA in the domestic cat hypothalamus and caracal testis, using the method of rapid amplification of cDNA ends. Additionally, we isolated and cloned the 3′ end of
Kiss1 cDNA, containing kisspeptin-10 (Kp10), from the ovaries of a clouded leopard and Siberian tiger. Nucleotide sequencing revealed that domestic cat
Kiss1 cDNA is of 711 base pairs and caracal Kiss1 cDNA is of 792 base pairs, both having an open reading frame of 450 base pairs, encoding a precursor
protein Kiss1 of 149 amino acids. The core sequence of the feline kisspeptin Kp10 was found to be identical in all species analyzed here and is highly conserved in other
vertebrate species. Using an anti-Kp10 antibody, we found the immunoreactive kisspeptin to be localized in the periventricular and infundibular nuclei of the cat hypothalamus. The results
show that kisspeptin is highly conserved among different feline families, and its immunoreactive distribution in the hypothalamus may indicate its physiological function in the domestic
cat.
Collapse
Affiliation(s)
- Olga Amelkina
- Research Unit of Obstetrics and Reproduction in Animals, Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330, Thailand.,Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20013, USA
| | - Prattana Tanyapanyachon
- Research Unit of Obstetrics and Reproduction in Animals, Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ampika Thongphakdee
- Wildlife Reproductive Innovation Center, Bureau of Conservation and Research, Zoological Park Organization under the Royal Patronage of H.M. the King, Bangkok, Thailand
| | - Kaywalee Chatdarong
- Research Unit of Obstetrics and Reproduction in Animals, Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Ohga H, Adachi H, Kitano H, Yamaguchi A, Matsuyama M. Kiss1 hexadecapeptide directly regulates gonadotropin-releasing hormone 1 in the scombroid fish, chub mackerel. Biol Reprod 2018; 96:376-388. [PMID: 28203796 DOI: 10.1095/biolreprod.116.142083] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 12/21/2016] [Accepted: 12/26/2016] [Indexed: 01/08/2023] Open
Abstract
Here we report that the Kiss1 hexadecapeptide (Kiss1-16) directly regulates the functional form of gonadotropin-releasing hormone (GnRH) in the preoptic area (POA) of a scombroid fish model. In this study, we analyzed the localization of two kisspeptin (kiss1 and kiss2) neurons and two kisspeptin receptors (kissr1 and kissr2) in the brain of adult chub mackerel using in situ hybridization to determine whether the kisspeptin receptors co-localize with GnRH1 neurons. The kiss1- and kiss2-expressing neurons were mainly localized in the nucleus recessus lateralis (NRL) and the nucleus of the posterior recess (NRP) in the hypothalamus. Kissr1 was present in the anterior POA and the habenular nucleus. Kissr2 was widely distributed, including in the POA, lateral tuberal nucleus, NRL, and NRP. Notably, GnRH1 was expressed in neurons in the POA, and these neurons co-expressed kissr1. In contrast, kissr2 was expressed abundantly in the vicinity of GnRH1 neurons, but their co-expression did not seem to occur. We also characterized the endogenous mature form of the Kiss1 peptide. An in vitro reporter gene assay clearly showed that Kiss1-16 (HQDMSSYNFNSFGLRY-NH2) was more potent at receptor activation than Kiss1 pentadecapeptide (Kiss1-15), which is the form of Kiss1 found in other fish species. This study strongly suggests that kisspeptin signaling, especially Kiss1 signaling, is important for regulating reproduction in scombroid fish.
Collapse
Affiliation(s)
- Hirofumi Ohga
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hayato Adachi
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hajime Kitano
- Fisheries Research Institute of Karatsu, Kyushu University, Saga, Japan
| | - Akihiko Yamaguchi
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Michiya Matsuyama
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Ohga H, Selvaraj S, Matsuyama M. The Roles of Kisspeptin System in the Reproductive Physiology of Fish With Special Reference to Chub Mackerel Studies as Main Axis. Front Endocrinol (Lausanne) 2018; 9:147. [PMID: 29670580 PMCID: PMC5894438 DOI: 10.3389/fendo.2018.00147] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/19/2018] [Indexed: 12/27/2022] Open
Abstract
Kisspeptin, a novel neuropeptide product of the Kiss1 gene, activates the G protein-coupled membrane receptor G protein-coupled receptor 54 (now termed Kiss1r). Over the last 15 years, the importance of the kisspeptin system has been the subject of much debate in the mammalian research field. At the heart of the debate is whether kisspeptin is an absolute upstream regulator of gonadotropin-releasing hormone secretion, as it has been proposed to be the master molecule in reproductive events and plays a special role not only during puberty but also in adulthood. The teleostean kisspeptin system was first documented in 2004. Although there have been a number of kisspeptin studies in various fish species, the role of kisspeptin in reproduction remains a subject of controversy and has not been widely recognized. There is an extensive literature on the physiological and endocrinological bases of gametogenesis in fish, largely derived from studying small, model fish species, and reports on non-model species are limited. The reason for this discrepancy is the technical difficulty inherent in developing rigorous experimental systems in many farmed fish species. We have already established methods for the full life-cycle breeding of a commercially important marine fish, the chub mackerel (cm), and are interested in understanding the reproductive function of kisspeptins from various perspectives. Based on a series of experiments clarifying the role of the brain-pituitary-gonad axis in modulating reproduction in cm, we theorize that the kisspeptin system plays an important role in the reproduction of this scombroid species. In this review article, we provide an overview of kisspeptin studies in cm, which substantially aids in elucidating the role of kisspeptins in fish reproduction.
Collapse
|
6
|
Ogawa S, Parhar IS. Biological Significance of Kisspeptin-Kiss 1 Receptor Signaling in the Habenula of Teleost Species. Front Endocrinol (Lausanne) 2018; 9:222. [PMID: 29867758 PMCID: PMC5949316 DOI: 10.3389/fendo.2018.00222] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/19/2018] [Indexed: 12/13/2022] Open
Abstract
Kisspeptin is a neuropeptide, encoded by kisspeptin 1 (KISS1)/Kiss1 gene, which primarily acts as the regulator of reproductive functions via its receptor, kisspeptin receptor (KissR) in vertebrates. In the brain, Kiss1 gene is mainly expressed in the hypothalamic region, but KissR gene is widely distributed throughout the brain, suggesting that kisspeptin-KissR system may be involved in not only reproductive, but also non-reproductive functions. In non-mammalian vertebrates, there are two or more kisspeptin and KissR types. The zebrafish (Danio rerio) possess two kisspeptin (Kiss1 and Kiss2) and their respective receptors [Kiss1 receptor (KissR1) and KissR2]. In the brain of zebrafish, while Kiss2 is expressed in the preoptic-hypothalamic area, Kiss1 is predominantly expressed in the habenula, an evolutionarily conserved epithalamic structure. Similarly, KissR1 is expressed only in the habenula, while KissR2 is widely distributed in the brain, suggesting that the two kisspeptin systems play specific roles in the brain. The habenular Kiss1 is involved in the modulation of the raphe nuclei and serotonin-related behaviors such as fear response in the zebrafish. This review summarizes the roles of multiple kisspeptin-KissR systems in reproductive and non-reproductive functions and neuronal mechanism, and debates the biological and evolutional significance of habenular kisspeptin-KissR systems in teleost species.
Collapse
|
7
|
Song H, Wang M, Wang Z, Liu J, Qi J, Zhang Q. Characterization of kiss2 and kissr2 genes and the regulation of kisspeptin on the HPG axis in Cynoglossus semilaevis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:731-753. [PMID: 28120214 DOI: 10.1007/s10695-016-0328-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
Reproduction allows organisms to produce offspring. Animals shift from immature juveniles into mature adults and become capable of sexual reproduction during puberty, which culminates in the first spermiation and sperm hydration or ovulation. Reproduction is closely related to the precise control of the hypothalamic-pituitary-gonadal (HPG) axis. Kisspeptin peptides are considered as the important regulator of HPG axis in mammalian. However, the current understanding of kisspeptin in flatfish is not comprehensive. In this study, we cloned and analyzed the kiss2 and kissr2 genes in Cynoglossus semilaevis. Interesting alternative splicing in the 5'-untranslated regions (UTR) of the Cskissr2 gene was found. The expression profiles of Cskiss2 and Cskissr2 showed relative high messenger RNA (mRNA) levels at the late gastrula stage during embryonic development, at total length = 40 mm during early gonadal differentiation, and in the brains and gonads of all investigated tissues. These results suggested that the kisspeptin system participated in embryogenesis and in the regulation of gonadal differentiation and development. Considering that the control and regulatory mechanisms of kisspeptin in the central reproductive axis are still unclear, we documented that the intramuscular injection of kisspeptin caused different sGnRH and cGnRH mRNA levels in a dose- and tissue-dependent manner. The mRNA expressions of FSH and LH were stimulated in the ovary and were inhibited in the testis under the kisspeptin treatments. These results provided foundations for understanding the roles of kisspeptin in the neuroendocrine system in fish. The manipulation of the kisspeptin system may provide new opportunities to control the gonadal development and even reproduction in fish.
Collapse
Affiliation(s)
- Huayu Song
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Mengxun Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Zhongkai Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
8
|
Rather MA, Bhat IA, Rathor PK, Gireesh-Babu P, Chaudhari A, Kumar SJ, Sharma R. In silico analysis and expression studies of kisspeptin gene in C. catla. J Biomol Struct Dyn 2016; 35:2485-2496. [DOI: 10.1080/07391102.2016.1222970] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Versova, Mumbai 400 061, India
| | - Irfan Ahmad Bhat
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Versova, Mumbai 400 061, India
| | - Pravesh Kumar Rathor
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Versova, Mumbai 400 061, India
| | - P Gireesh-Babu
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Versova, Mumbai 400 061, India
| | - Aparna Chaudhari
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Versova, Mumbai 400 061, India
| | - Sundaray Jeetendra Kumar
- Division of Fish Genetics and Biotechnology, Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Rupam Sharma
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Versova, Mumbai 400 061, India
| |
Collapse
|
9
|
Song H, Wang M, Wang Z, Yu H, Wang Z, Zhang Q. Identification and characterization of kiss2 and kissr2 homologs in Paralichthys olivaceus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1073-1092. [PMID: 26905261 DOI: 10.1007/s10695-016-0199-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/09/2016] [Indexed: 06/05/2023]
Abstract
The role of kisspeptin in puberty onset has been extensively investigated by neuroendocrinologists in the past decade. In the present study, we first cloned and analyzed Pokiss2 and Pokissr2 genes in Paralichthys olivaceus, a Pleuronectiformes fish. By 5'/3' rapid amplification of cDNA ends (RACE), the P. olivaceus kiss2 gene (Pokiss2) and two isoforms of the P. olivaceus kissr2 gene (Pokissr2) transcripts were cloned. During development, Pokissr2 was maternally inherited but Pokiss2 was not, and their expression reached maximum and minimum levels, respectively, when the gonads began to develop. Analysis of tissue distribution revealed that Pokiss2 and Pokissr2 transcripts were predominantly expressed in the brain and gonads, with expression levels in females higher than those in males. Moreover, Pokiss2 and Pokissr2 both showed significantly higher expression in brains and gonads during puberty. In situ hybridization of the ovary at pre-vitellogenesis stage and testis at spermatogonial proliferation stage revealed that both Pokiss2 and Pokissr2 were expressed in spermatocyte, oocytes, and some somatic cells. Our results also showed significantly stronger Pokiss2 expression in the area of the third ventricle of females than males and no Pokissr2 expression in this region in both sexes. These results lay a strong foundation for understanding the role of kisspeptin in neuroendocrine system in teleosts, in particular in Pleuronectiformes.
Collapse
Affiliation(s)
- Huayu Song
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Mengxun Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Zhongkai Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Zhigang Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
10
|
Fairgrieve MR, Shibata Y, Smith EK, Hayman ES, Luckenbach JA. Molecular characterization of the gonadal kisspeptin system: Cloning, tissue distribution, gene expression analysis and localization in sablefish (Anoplopoma fimbria). Gen Comp Endocrinol 2016; 225:212-223. [PMID: 26386183 DOI: 10.1016/j.ygcen.2015.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 07/02/2015] [Accepted: 07/21/2015] [Indexed: 10/23/2022]
Abstract
The kisspeptin system plays pivotal roles in the regulation of vertebrate reproduction. Classically, kisspeptin produced in the brain stimulates brain gonadotropin-releasing hormone signaling, which in turn activates the pituitary-gonad axis. Expression of the kisspeptin system has also been documented in peripheral tissues, including gonads of mammals and fishes. However, the fish gonadal kisspeptin system remained uncharacterized. Herein we report identification and characterization of four kisspeptin system mRNAs (kisspeptin 1 (kiss1), kiss2, and G protein-coupled receptor 54-1 (gpr54-1) and gpr54-2) in sablefish, Anoplopoma fimbria. Sablefish predicted protein sequences were highly similar to those of other marine teleosts, but less so to freshwater teleosts. Tissue distribution analyses revealed that all four kisspeptin-system transcripts were expressed in both brain and gonad. However, kiss2 was the predominant transcript in the gonads and the only transcript detected in ovulated eggs. Ontogenetic analysis of kiss2 expression in juvenile sablefish gonads demonstrated that levels were low during sex differentiation but increased with fish size and gonadal development. Dramatic increases in kiss2 mRNA occurred during primary oocyte growth, while levels remained relatively low in testes. In situ hybridization revealed that kiss2 mRNA was localized to cytoplasm of perinucleolus stage oocytes, suggesting it could play a local role in oogenesis or could be synthesized and stored within oocytes as maternal mRNA. This represents the first study to focus on the gonadal kisspeptin system in fishes and provides important tools for further investigation of both the gonadal and brain kisspeptin systems in sablefish.
Collapse
Affiliation(s)
- Marian R Fairgrieve
- Undergraduate Research Program, University of Washington, 171 Mary Gates Hall, Seattle, WA 98195-2803, USA
| | - Yasushi Shibata
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat St, Seattle, WA 98195-5020, USA
| | - Elizabeth K Smith
- Frank Orth and Associates, Under Contract to Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| | - Edward S Hayman
- Frank Orth and Associates, Under Contract to Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| | - J Adam Luckenbach
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd E, Seattle, WA 98112, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
11
|
Selvaraj S, Kitano H, Ohga H, Yamaguchi A, Matsuyama M. Expression changes of mRNAs encoding kisspeptins and their receptors and gonadotropin-releasing hormones during early development and gonadal sex differentiation periods in the brain of chub mackerel (Scomber japonicus). Gen Comp Endocrinol 2015; 222:20-32. [PMID: 25304825 DOI: 10.1016/j.ygcen.2014.09.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 01/15/2023]
Abstract
In recent years, brain kisspeptin system has been shown to be involved in diverse reproductive function, including sexual differentiation in vertebrates. Our previous reports demonstrated that the chub mackerel (Scomber japonicus) brain expresses two kisspeptin (kiss1, kiss2), two kisspeptin receptor (kissr1, kissr2) and three gonadotropin-releasing hormone (gnrh1, gnrh2, gnrh3) genes. In the present study, using quantitative real-time PCR (qRT-PCR) assays, we analysed expression changes of these genes during early development (0-30dphs) and gonadal sex differentiation periods (37-60dphs). Absolute expression level of kiss-kissr-gnrh in the whole head was higher between 0 and 15dphs, in comparison to later developmental periods. Histological analyses revealed presence of sexually differentiated males and females with testicular and ovarian features at 37, 45, and 60dphs. In both males and females, kiss2, kissr1, and kissr2 levels were higher at 37dph, in comparison to 45 and 60dphs, with kiss1 showing no significant differences. Levels of all three gnrh mRNAs were higher at 45dph, in comparison to 60dph. Changes in the expression level of kiss-kissr-gnrh mRNAs in different brain regions of sexually differentiated males and females indicated differences in their regional distribution. These results suggest possible involvement of Kiss-KissR-GnRH systems during early development and gonadal sex differentiation in the chub mackerel.
Collapse
Affiliation(s)
- Sethu Selvaraj
- Laboratory of Marine Biology, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Hajime Kitano
- Fisheries Research Institute of Karatsu, Department of Joint Research, Faculty of Agriculture, Kyushu University, Saga 847-0132, Japan
| | - Hirofumi Ohga
- Laboratory of Marine Biology, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Akihiko Yamaguchi
- Laboratory of Marine Biology, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Michiya Matsuyama
- Laboratory of Marine Biology, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan.
| |
Collapse
|