1
|
Li Q, Zhang M, Liu K, Yuan M, Wang W, Xu D, Tian D, Wang X. Identification and characterization of neuropeptides in sea urchin Strongylocentrotus intermedius. Gen Comp Endocrinol 2025; 366:114716. [PMID: 40127741 DOI: 10.1016/j.ygcen.2025.114716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/25/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
Neuropeptides play essential roles in regulation of feeding, reproduction and behavior in echinoderms. But the neuropeptide function has not been explored extensively in sea urchins. The tube feet contain part of the peripheral nervous system in echinoids, comprising both neurosensory and neuromuscular components. In this study, we sequenced transcriptome of Strongylocentrotus intermedius tube feet and identified 26 neuropeptide precursor transcripts, including ANpeptide, bursicons, calcitonin, corazonin, gonadotropin-releasing hormone (GnRH), glycoprotein-type hormones (GPA & GPB), insulin-related peptides (dilp7 & octinsulin), luqin, NGFFFamide, prolactin-releasing peptide/short neuropeptide F (PrRP/sNPF), orexin, pedal peptides, SALMFamides, somatostatin/allatostatin-C (SS1 & SS2), thyrotropin-releasing hormone (TRH), and vasopressin-oxytocin. In addition, we further compared the expression levels of neuropeptide precursors between red and white tube feet, and found 3 neuropeptides (bursicon β, octinsulin and luqin) had higher expression in red tube feet, potentially related to pigmentation or other pigment-related functions. We also observed ultrastructure of tube feet by transmission electron microscopy (TEM) and found large amount of muscle fibers, nerve plexus and vesicles in tube feet. Neuropeptides might play roles in these structures of tube feet. Our study represents the first identification of neuropeptides in tube feet of S. intermedius, and will contribute to a complete understanding on the roles of various neuropeptides in sea urchin echinoderms.
Collapse
Affiliation(s)
- Qianqian Li
- Fisheries College, Ludong University, Yantai 264025, China
| | - Meiwei Zhang
- Fisheries College, Ludong University, Yantai 264025, China.
| | - Kun Liu
- Fisheries College, Ludong University, Yantai 264025, China
| | - Mengqiang Yuan
- Fisheries College, Ludong University, Yantai 264025, China
| | - Weizhong Wang
- Shandong Blue Ocean Technology Co., Ltd., Yantai 261413, China
| | - Dong Xu
- Shandong Blue Ocean Technology Co., Ltd., Yantai 261413, China
| | - Deyang Tian
- Laizhou LiYang Aquatic Development Co., Ltd., Yantai 261441, China
| | - Xiaotong Wang
- Fisheries College, Ludong University, Yantai 264025, China.
| |
Collapse
|
2
|
Paganos P, Wolff C, Voronov D, Swartz SZ. Molecular evidence for pre-chordate origins of ovarian cell types and neuroendocrine control of reproduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.644836. [PMID: 40196654 PMCID: PMC11974710 DOI: 10.1101/2025.03.24.644836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Sexual reproduction in animals requires the development of oocytes, or egg cells. This process, termed oogenesis, requires complex interactions amongst germline and somatic cell types in the ovary. How did these cell types and their signaling interactions evolve? Here we use the sea star Patiria miniata as a non-chordate deuterostome representative to define the ovarian cell type toolkit in echinoderms. Sea stars continuously produce millions of new oocytes throughout their lifespan, making them a practical system to understand the mechanisms that drive oogenesis from a biomedical and evolutionary perspective. We performed scRNA-seq combined with high-resolution 3D-imaging to reveal the ovarian cell types and their spatial organization. Our data support the presence of actively dividing oogonial stem cells and granulosa-like and theca-like cells, which display similarities and possible homology with their mammalian counterparts. Lastly, our data support the existence of an endocrine signaling system between oogonial stem cells and intrinsic ovarian neurons with striking similarities to the vertebrate hypothalamic-pituitary-gonadal axis. Overall, this study provides molecular evidence supporting the possible pre-chordate origins of conserved ovarian cell types, and the presence of an intrinsic neuroendocrine system which potentially controls oogenesis and predates the formation of the hypothalamic-pituitary-gonadal axis in vertebrates.
Collapse
Affiliation(s)
- Periklis Paganos
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts, 02543, United States of America
| | - Carsten Wolff
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts, 02543, United States of America
| | - Danila Voronov
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany
| | - S. Zachary Swartz
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts, 02543, United States of America
| |
Collapse
|
3
|
Pales Espinosa E, Farhat S, Allam B. In silico identification of neuropeptide genes encoded by the genome of Crassostrea virginica with a special emphasis on feeding-related genes. Comp Biochem Physiol A Mol Integr Physiol 2025; 301:111792. [PMID: 39694410 DOI: 10.1016/j.cbpa.2024.111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Suspension-feeding bivalves, including the oyster Crassostrea virginica, use mucosal lectins to capture food particles. For instance, oysters can increase the transcription of these molecules to enhance food uptake. However, the regulatory processes influencing food uptake remain unclear although likely involve neuropeptides. Information on the neuropeptidome of C. virginica is limited, hindering the comprehension of its physiology, including energy homeostasis. This study explored the genome of C. virginica to identify neuropeptide precursors in silico and compared these with orthologs from other mollusks. A special focus was given to genes with potential implication in feeding processes. qPCR was used to determine the main organs of transcription of feeding-related genes. To further probe the function of target neuropeptides, visceral ganglia extracts and synthetic NPF were injected into oysters to evaluate their impact on genes associated with feeding and energy homeostasis. A total of eighty-five neuropeptides genes were identified in C. virginica genome. About 50 % of these are suggested to play a role in feeding processes. qPCR analyses showed that visceral ganglia and digestive system are the main organs for the synthesis of feeding-related neuropeptides. Further, results showed that the transcription of several neuropeptide genes in the visceral ganglia, including NPF and insulin-like peptide, increased after starvation. Finally, the injection of visceral ganglia extracts and synthetic NPF increased the transcription of a mucosal lectin and a glycogen synthase, known to be involved in food capture and glucose storage. Overall, this study identifies key genes regulating oyster physiology, enhancing the understanding of the control of basic physiological mechanisms in C. virginica.
Collapse
Affiliation(s)
| | - Sarah Farhat
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA; Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, 75005 Paris, France
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| |
Collapse
|
4
|
Dai Y, Pan R, Pan Q, Wu X, Cai Z, Fu Y, Shi C, Sheng Y, Li J, Lin Z, Liu G, Zhu P, Li M, Li G, Zhou X. Single-cell profiling of the amphioxus digestive tract reveals conservation of endocrine cells in chordates. SCIENCE ADVANCES 2024; 10:eadq0702. [PMID: 39705360 DOI: 10.1126/sciadv.adq0702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/18/2024] [Indexed: 12/22/2024]
Abstract
Despite their pivotal role, the evolutionary origins of vertebrate digestive systems remain enigmatic. We explored the cellular characteristics of the amphioxus (Branchiostoma floridae) digestive tract, a model for the presumed primitive chordate digestive system, using bulk tissue companioned with single-cell RNA sequencing. Our findings reveal segmentation and a rich diversity of cell clusters, and we highlight the presence of epithelial-like, ciliated cells in the amphioxus midgut and describe three types of endocrine-like cells that secrete insulin-like, glucagon-like, and somatostatin-like peptides. Furthermore, Pdx, Ilp1, Ilp2, and Ilpr knockout amphioxus lines revealed that, in amphioxus, Pdx does not influence Ilp expression. We also unravel similarity between amphioxus Ilp1 and vertebrate insulin-like growth factor 1 (Igf1) in terms of predicted structure, effects on body growth and amino acid metabolism, and interactions with Igf-binding proteins. These findings indicate that the evolutionary alterations involving the regulatory influence of Pdx over insulin gene expression could have been instrumental in the development of the vertebrate digestive system.
Collapse
Affiliation(s)
- Yichen Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongrong Pan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Qi Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaotong Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Zexin Cai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Yongheng Fu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Chenggang Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Yuyu Sheng
- Becton Dickinson Medical Devices (Shanghai) Co. Ltd., Beijing 100000, China
| | - Jingjing Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Zhe Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Gaoming Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pingfen Zhu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
5
|
Xie S, Li X, Yang Y, Guo C, Zhang X, Zhu T, Luo J, Yang Z, Zhao W, Cui Y, Jiao L, Zhou Q, Tocher DR, Jin M. Effects of dietary isoleucine level on growth and expression of genes related to nutritional and physiological metabolism of swimming crab (Portunus trituberculatus). AQUACULTURE 2023; 574:739700. [DOI: 10.1016/j.aquaculture.2023.739700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Zheng Y, Cong X, Liu H, Wang Y, Storey KB, Chen M. Nervous System Development and Neuropeptides Characterization in Embryo and Larva: Insights from a Non-Chordate Deuterostome, the Sea Cucumber Apostichopus japonicus. BIOLOGY 2022; 11:1538. [PMID: 36290441 PMCID: PMC9598280 DOI: 10.3390/biology11101538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
Abstract
Here, we described the complex nervous system at five early developmental stages (blastula, gastrula, auricularia, doliolaria and pentactula) of a holothurian species with highly economic value, Apostichopus japonicus. The results revealed that the nervous system of embryos and larvae is mainly distributed in the anterior apical region, ciliary bands or rings, and the feeding and attachment organs, and that serotonergic immunoreactivity was not observed until the embryo developed into the late gastrula; these are evolutionarily conserved features of echinoderm, hemichordate and protostome larvae. Furthermore, based on available transcriptome data, we reported the neuropeptide precursors profile at different embryonic and larval developmental stages. This analysis showed that 40 neuropeptide precursors present in adult sea cucumbers were also identified at different developmental stages of embryos and larvae, and only four neuropeptide precursors (SWYG precursor 2, GYWKDLDNYVKAHKT precursor, Neuropeptide precursor 14-like precursor, GLRFAmprecursor-like precursor) predicted in adults were absent in embryos and larvae. Combining the quantitative expression of ten specific neuropeptide precursor genes (NPs) by qRT-PCR, we revealed the potential important roles of neuropeptides in embryo development, feeding and attachment in A. japonicus larvae. In conclusion, this work provides novel perspectives on the diverse physiological functions of neuropeptides and contributes to understanding the evolution of neuropeptidergic systems in echinoderm embryos and larvae.
Collapse
Affiliation(s)
- Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Xiao Cong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Huachen Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yixin Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Kenneth B. Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
7
|
Zhang X, Huang C, Yang Y, Li X, Guo C, Yang Z, Xie S, Luo J, Zhu T, Zhao W, Jin M, Zhou Q. Dietary Corn Starch Levels Regulated Insulin-Mediated Glycemic Responses and Glucose Homeostasis in Swimming Crab ( Portunus trituberculatus). AQUACULTURE NUTRITION 2022; 2022:2355274. [PMID: 36860440 PMCID: PMC9973156 DOI: 10.1155/2022/2355274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/14/2022] [Accepted: 08/23/2022] [Indexed: 06/18/2023]
Abstract
Carbohydrate is the cheapest source of energy among the three major nutrient groups, an appropriate amount of carbohydrates can reduce feed cost and improve growth performance, but carnivorous aquatic animals cannot effectively utilize carbohydrates. The objectives of the present study are aimed at exploring the effects of dietary corn starch levels on glucose loading capacity, insulin-mediated glycemic responses, and glucose homeostasis for Portunus trituberculatus. After two weeks of feeding trial, swimming crabs were starved and sampled at 0, 1, 2, 3, 4, 5, 6, 12, and 24 hours, respectively. The results indicated that crabs fed diet with 0% corn starch exhibited lower glucose concentration in hemolymph than those fed with the other diets, and glucose concentration in hemolymph remained low with the extension of sampling time. The glucose concentration in hemolymph of crabs fed with 6% and 12% corn starch diets reached the peak after 2 hours of feeding; however, the glucose concentration in hemolymph of crabs fed with 24% corn starch attained the highest value after 3 hours of feeding, and the hyperglycemia lasted for 3 hours and decreased rapidly after 6 hours of feeding. Enzyme activities in hemolymph related to glucose metabolism such as pyruvate kinase (PK), glucokinase (GK), and phosphoenolpyruvate carboxykinase (PEPCK) were significantly influenced by dietary corn starch levels and sampling time. Glycogen content in hepatopancreas of crabs fed with 6% and 12% corn starch first increased and then decreased; however, the glycogen content in hepatopancreas of crabs fed with 24% corn starch significantly increased with the prolongation of feeding time. In the 24% corn starch diet, insulin-like peptide (ILP) in hemolymph reached a peak after 1 hour of feeding and then significantly decreased, whereas crustacean hyperglycemia hormone (CHH) was not significantly influenced by dietary corn starch levels and sampling time. ATP content in hepatopancreas peaked at 1 h after feeding and then decreased significantly in different corn starch feeding groups, while the opposite trend was observed in NADH. The activities of mitochondrial respiratory chain complexes I, II, III, and V of crabs fed with different corn starch diets significantly increased first and then decreased. In addition, relative expressions of genes related to glycolysis, gluconeogenesis, glucose transport, glycogen synthesis, insulin signaling pathway, and energy metabolism were significantly affected by dietary corn starch levels and sampling time. In conclusion, the results of the present study reveal glucose metabolic responses were regulated by different corn starch levels at different time points and play an important role in clearing glucose through increased activity of insulin, glycolysis, and glycogenesis, along with gluconeogenesis suppression.
Collapse
Affiliation(s)
- Xiangsheng Zhang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chaokai Huang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yuhang Yang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xiangkai Li
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chen Guo
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Zheng Yang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Shichao Xie
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiaxiang Luo
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Wenli Zhao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
8
|
Paganos P, Ronchi P, Carl J, Mizzon G, Martinez P, Benvenuto G, Arnone MI. Integrating single cell transcriptomics and volume electron microscopy confirms the presence of pancreatic acinar-like cells in sea urchins. Front Cell Dev Biol 2022; 10:991664. [PMID: 36060803 PMCID: PMC9437490 DOI: 10.3389/fcell.2022.991664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023] Open
Abstract
The identity and function of a given cell type relies on the differential expression of gene batteries that promote diverse phenotypes and functional specificities. Therefore, the identification of the molecular and morphological fingerprints of cell types across taxa is essential for untangling their evolution. Here we use a multidisciplinary approach to identify the molecular and morphological features of an exocrine, pancreas-like cell type harbored within the sea urchin larval gut. Using single cell transcriptomics, we identify various cell populations with a pancreatic-like molecular fingerprint that are enriched within the S. purpuratus larva digestive tract. Among these, in the region where they reside, the midgut/stomach domain, we find that populations of exocrine pancreas-like cells have a unique regulatory wiring distinct from the rest the of the cell types of the same region. Furthermore, Serial Block-face scanning Electron Microscopy (SBEM) of the exocrine cells shows that this reported molecular diversity is associated to distinct morphological features that reflect the physiological and functional properties of this cell type. Therefore, we propose that these sea urchin exocrine cells are homologous to the well-known mammalian pancreatic acinar cells and thus we trace the origin of this particular cell type to the time of deuterostome diversification. Overall, our approach allows a thorough characterization of a complex cell type and shows how both the transcriptomic and morphological information contribute to disentangling the evolution of cell types and organs such as the pancreatic cells and pancreas.
Collapse
Affiliation(s)
| | - Paolo Ronchi
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jil Carl
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Giulia Mizzon
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Pedro Martinez
- Institut Català de Recerca i Estudis Avancats (ICREA), Barcelona, Spain,Genetics Department, University of Barcelona, Barcelona, Spain
| | | | - Maria Ina Arnone
- Stazione Zoologica Anton Dohrn (SZN), Naples, Italy,*Correspondence: Maria Ina Arnone,
| |
Collapse
|
9
|
Dai T, Zhang X, Li M, Tao X, Jin M, Sun P, Zhou Q, Jiao L. Dietary vitamin K 3 activates mitophagy, improves antioxidant capacity, immunity and affects glucose metabolism in Litopenaeus vannamei. Food Funct 2022; 13:6362-6372. [PMID: 35612417 DOI: 10.1039/d2fo00865c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An 8-week feeding experiment was conducted to appraise the influence of dietary vitamin K3 on the growth performance, antioxidant capacities, immune responses, mitophagy and glucose metabolism in Litopenaeus vannamei. Six diets containing graded dietary vitamin K3 (0.40(control), 9.97, 20.29, 39.06, 79.81 and 156.02 mg kg-1 of vitamin K3, respectively) levels were formulated. A total of 900 shrimp with 0.90 g initial weight were randomly assigned to six diets with three replications. Our results revealed that diets supplemented with 9.97-156.02 mg kg-1 vitamin K3 didn't affect the growth performance in L. vannamei. In general, compared with the control group, 39.06 mg kg-1 vitamin K3 group significantly increased (P < 0.05) the total antioxidative capacity, and the activities of catalase, glutathione, nitric oxide synthase, alkaline phosphatase and acid phosphatase in serum and hepatopancreas. 39.06 mg kg-1 vitamin K3 group significantly decreased (P < 0.05) the malondialdehyde in serum and hepatopancreas. The mRNA levels of antioxidant and immune related genes were increased synchronously (P < 0.05). In addition, 39.06 mg kg-1 vitamin K3 group increased glycogen content and levels of mitophagy (pink1, ampkα, parkin, lc3, atg13, atg12) genes. Expression levels of glucose transport related gene (glut1), glycolysis related genes (hk, pfk), glycogen synthesis related genes (gsk-3β, gys), insulin-like peptides (ILPs)/AKT/PI3K pathway related genes (insr, irsl, akt, pi3k, pdpk1) were increased in the hepatopancreas of 39.06 mg kg-1 vitamin K3 group. In conclusion, the present results indicated that although dietary supplementing vitamin K3 had no influence on the growth performance, 39.06 mg kg-1 vitamin K3 could activate ampkα/pink1/parkin mediated mitophagy, improve antioxidant capacity and immune response. Moreover, vitamin K3 could trigger ILPs/AKT/PI3K signaling pathways and influence glucose metabolism in L. vannamei. This finding would help to advance the field of vitamin K3 nutrition and guide the development of future crustacean feeds.
Collapse
Affiliation(s)
- Tianmeng Dai
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Xin Zhang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Ming Li
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Xinyue Tao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Peng Sun
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
10
|
Mitchell ML, Hossain MA, Lin F, Pinheiro-Junior EL, Peigneur S, Wai DCC, Delaine C, Blyth AJ, Forbes BE, Tytgat J, Wade JD, Norton RS. Identification, Synthesis, Conformation and Activity of an Insulin-like Peptide from a Sea Anemone. Biomolecules 2021; 11:1785. [PMID: 34944429 PMCID: PMC8698791 DOI: 10.3390/biom11121785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
The role of insulin and insulin-like peptides (ILPs) in vertebrate animals is well studied. Numerous ILPs are also found in invertebrates, although there is uncertainty as to the function and role of many of these peptides. We have identified transcripts with similarity to the insulin family in the tentacle transcriptomes of the sea anemone Oulactis sp. (Actiniaria: Actiniidae). The translated transcripts showed that these insulin-like peptides have highly conserved A- and B-chains among individuals of this species, as well as other Anthozoa. An Oulactis sp. ILP sequence (IlO1_i1) was synthesized using Fmoc solid-phase peptide synthesis of the individual chains, followed by regioselective disulfide bond formation of the intra-A and two interchain disulfide bonds. Bioactivity studies of IlO1_i1 were conducted on human insulin and insulin-like growth factor receptors, and on voltage-gated potassium, sodium, and calcium channels. IlO1_i1 did not bind to the insulin or insulin-like growth factor receptors, but showed weak activity against KV1.2, 1.3, 3.1, and 11.1 (hERG) channels, as well as NaV1.4 channels. Further functional studies are required to determine the role of this peptide in the sea anemone.
Collapse
Affiliation(s)
- Michela L. Mitchell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia;
- Sciences Department, Museum Victoria, G.P.O. Box 666, Melbourne, VIC 3001, Australia
- Biodiversity and Geosciences, Queensland Museum, P.O. Box 3000, South Brisbane, QLD 4101, Australia
| | - Mohammed Akhter Hossain
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia; (M.A.H.); (F.L.); (J.D.W.)
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Feng Lin
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia; (M.A.H.); (F.L.); (J.D.W.)
| | - Ernesto L. Pinheiro-Junior
- Toxicology and Pharmacology, University of Leuven, O&N 2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium; (E.L.P.-J.); (S.P.); (J.T.)
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, O&N 2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium; (E.L.P.-J.); (S.P.); (J.T.)
| | - Dorothy C. C. Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia;
| | - Carlie Delaine
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (C.D.); (A.J.B.); (B.E.F.)
| | - Andrew J. Blyth
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (C.D.); (A.J.B.); (B.E.F.)
| | - Briony E. Forbes
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (C.D.); (A.J.B.); (B.E.F.)
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, O&N 2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium; (E.L.P.-J.); (S.P.); (J.T.)
| | - John D. Wade
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia; (M.A.H.); (F.L.); (J.D.W.)
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia;
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
11
|
Paganos P, Voronov D, Musser JM, Arendt D, Arnone MI. Single-cell RNA sequencing of the Strongylocentrotus purpuratus larva reveals the blueprint of major cell types and nervous system of a non-chordate deuterostome. eLife 2021; 10:70416. [PMID: 34821556 PMCID: PMC8683087 DOI: 10.7554/elife.70416] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Identifying the molecular fingerprint of organismal cell types is key for understanding their function and evolution. Here, we use single-cell RNA sequencing (scRNA-seq) to survey the cell types of the sea urchin early pluteus larva, representing an important developmental transition from non-feeding to feeding larva. We identify 21 distinct cell clusters, representing cells of the digestive, skeletal, immune, and nervous systems. Further subclustering of these reveal a highly detailed portrait of cell diversity across the larva, including the identification of neuronal cell types. We then validate important gene regulatory networks driving sea urchin development and reveal new domains of activity within the larval body. Focusing on neurons that co-express Pdx-1 and Brn1/2/4, we identify an unprecedented number of genes shared by this population of neurons in sea urchin and vertebrate endocrine pancreatic cells. Using differential expression results from Pdx-1 knockdown experiments, we show that Pdx1 is necessary for the acquisition of the neuronal identity of these cells. We hypothesize that a network similar to the one orchestrated by Pdx1 in the sea urchin neurons was active in an ancestral cell type and then inherited by neuronal and pancreatic developmental lineages in sea urchins and vertebrates.
Collapse
Affiliation(s)
- Periklis Paganos
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Danila Voronov
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Jacob M Musser
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg, Germany
| | - Detlev Arendt
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg, Germany
| | - Maria Ina Arnone
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| |
Collapse
|
12
|
Veenstra JA. Ambulacrarian insulin-related peptides and their putative receptors suggest how insulin and similar peptides may have evolved from insulin-like growth factor. PeerJ 2021; 9:e11799. [PMID: 34316411 PMCID: PMC8286064 DOI: 10.7717/peerj.11799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/25/2021] [Indexed: 01/23/2023] Open
Abstract
Background Some insulin/IGF-related peptides (irps) stimulate a receptor tyrosine kinase (RTK) that transfers the extracellular hormonal signal into an intracellular response. Other irps, such as relaxin, do not use an RTK, but a G-protein coupled receptor (GPCR). This is unusual since evolutionarily related hormones typically either use the same or paralogous receptors. In arthropods three different irps, i.e. arthropod IGF, gonadulin and Drosophila insulin-like peptide 7 (dilp7), likely evolved from a gene triplication, as in several species genes encoding these three peptides are located next to one another on the same chromosomal fragment. These arthropod irps have homologs in vertebrates, suggesting that the initial gene triplication was perhaps already present in the last common ancestor of deuterostomes and protostomes. It would be interesting to know whether this is indeed so and how insulin might be related to this trio of irps. Methodology Genes encoding irps as well as their putative receptors were identified in genomes and transcriptomes from echinoderms and hemichordates. Results A similar triplet of genes coding for irps also occurs in some ambulacrarians. Two of these are orthologs of arthropod IGF and dilp7 and the third is likely a gonadulin ortholog. In echinoderms, two novel irps emerged, gonad stimulating substance (GSS) and multinsulin, likely from gene duplications of the IGF and dilp7-like genes respectively. The structures of GSS diverged considerably from IGF, which would suggest they use different receptors from IGF, but no novel irp receptors evolved. If IGF and GSS use different receptors, and the evolution of GSS from a gene duplication of IGF is not associated with the appearance of a novel receptor, while irps are known to use two different types of receptors, the ancestor of GSS and IGF might have acted on both types of receptors while one or both of its descendants act on only one. There are three ambulacrarian GPCRs that have amino acid sequences suggestive of being irp GPCRs, two of these are orthologs of the gonadulin and dilp7 receptors. This suggests that the third might be an IGF receptor, and that by deduction, GSS only acts on the RTK. The evolution of GSS from IGF may represent a pattern, where IGF gene duplications lead to novel genes coding for shorter peptides that activate an RTK. It is likely this is how insulin and the insect neuroendocrine irps evolved independently from IGF. Conclusion The local gene triplication described from arthropods that yielded three genes encoding irps was already present in the last common ancestor of protostomes and deuterostomes. It seems plausible that irps, such as those produced by neuroendocrine cells in the brain of insects and echinoderm GSS evolved independently from IGF and, thus, are not true orthologs, but the result of convergent evolution.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, Université de Bordeaux, Pessac, Gironde, France
| |
Collapse
|
13
|
Irwin DM. Evolution of the Insulin Gene: Changes in Gene Number, Sequence, and Processing. Front Endocrinol (Lausanne) 2021; 12:649255. [PMID: 33868177 PMCID: PMC8051583 DOI: 10.3389/fendo.2021.649255] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/01/2021] [Indexed: 02/05/2023] Open
Abstract
Insulin has not only made major contributions to the field of clinical medicine but has also played central roles in the advancement of fundamental molecular biology, including evolution. Insulin is essential for the health of vertebrate species, yet its function has been modified in species-specific manners. With the advent of genome sequencing, large numbers of insulin coding sequences have been identified in genomes of diverse vertebrates and have revealed unexpected changes in the numbers of genes within genomes and in their sequence that likely impact biological function. The presence of multiple insulin genes within a genome potentially allows specialization of an insulin gene. Discovery of changes in proteolytic processing suggests that the typical two-chain hormone structure is not necessary for all of inulin's biological activities.
Collapse
Affiliation(s)
- David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
- *Correspondence: David M. Irwin,
| |
Collapse
|
14
|
Perillo M, Paganos P, Spurrell M, Arnone MI, Wessel GM. Methodology for Whole Mount and Fluorescent RNA In Situ Hybridization in Echinoderms: Single, Double, and Beyond. Methods Mol Biol 2020; 2219:195-216. [PMID: 33074542 DOI: 10.1007/978-1-0716-0974-3_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Identifying the location of a specific RNA in a cell, tissue, or embryo is essential to understand its function. Here we use echinoderm embryos to demonstrate the power of fluorescence in situ RNA hybridizations to localize sites of specific RNA accumulation in whole mount embryo applications. We add to this technology the use of various probe-labeling technologies to colabel multiple RNAs in one application and we describe protocols for incorporating immunofluorescence approaches to maximize the information obtained in situ. We offer alternatives for these protocols and troubleshooting advice to identify steps in which the procedure may have failed. Overall, echinoderms are wonderfully suited for these technologies, and these protocols are applicable to a wide range of cells, tissues, and embryos.
Collapse
Affiliation(s)
- Margherita Perillo
- Department of Molecular and Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Periklis Paganos
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Maxwell Spurrell
- Department of Molecular and Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Maria I Arnone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Gary M Wessel
- Department of Molecular and Cellular Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
15
|
Lavergne A, Tarifeño-Saldivia E, Pirson J, Reuter AS, Flasse L, Manfroid I, Voz ML, Peers B. Pancreatic and intestinal endocrine cells in zebrafish share common transcriptomic signatures and regulatory programmes. BMC Biol 2020; 18:109. [PMID: 32867764 PMCID: PMC7457809 DOI: 10.1186/s12915-020-00840-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 08/04/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Endocrine cells of the zebrafish digestive system play an important role in regulating metabolism and include pancreatic endocrine cells (PECs) clustered in the islets of Langerhans and the enteroendocrine cells (EECs) scattered in the intestinal epithelium. Despite EECs and PECs are being located in distinct organs, their differentiation involves shared molecular mechanisms and transcription factors. However, their degree of relatedness remains unexplored. In this study, we investigated comprehensively the similarity of EECs and PECs by defining their transcriptomic landscape and comparing the regulatory programmes controlled by Pax6b, a key player in both EEC and PEC differentiations. RESULTS RNA sequencing was performed on EECs and PECs isolated from wild-type and pax6b mutant zebrafish. Data mining of wild-type zebrafish EEC data confirmed the expression of orthologues for most known mammalian EEC hormones, but also revealed the expression of three additional neuropeptide hormones (Proenkephalin-a, Calcitonin-a and Adcyap1a) not previously reported to be expressed by EECs in any species. Comparison of transcriptomes from EECs, PECs and other zebrafish tissues highlights a very close similarity between EECs and PECs, with more than 70% of genes being expressed in both endocrine cell types. Comparison of Pax6b-regulated genes in EECs and PECs revealed a significant overlap. pax6b loss-of-function does not affect the total number of EECs and PECs but instead disrupts the balance between endocrine cell subtypes, leading to an increase of ghrelin- and motilin-like-expressing cells in both the intestine and pancreas at the expense of other endocrine cells such as beta and delta cells in the pancreas and pyyb-expressing cells in the intestine. Finally, we show that the homeodomain of Pax6b is dispensable for its action in both EECs and PECs. CONCLUSION We have analysed the transcriptomic landscape of wild-type and pax6b mutant zebrafish EECs and PECs. Our study highlights the close relatedness of EECs and PECs at the transcriptomic and regulatory levels, supporting the hypothesis of a common phylogenetic origin and underscoring the potential implication of EECs in metabolic diseases such as type 2 diabetes.
Collapse
Affiliation(s)
- Arnaud Lavergne
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
| | - Estefania Tarifeño-Saldivia
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
- Present Address: Gene Expression and Regulation Laboratory, Department of Biochemistry and Molecular Biology, University of Concepción, Concepción, Chile
| | - Justine Pirson
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
| | - Anne-Sophie Reuter
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
| | - Lydie Flasse
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
| | - Isabelle Manfroid
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
| | - Marianne L. Voz
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
| | - Bernard Peers
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA, University of Liège, Avenue de l’Hôpital 1, B34, Sart Tilman, 4000 Liège, Belgium
| |
Collapse
|
16
|
Li F, Zhang S, Fu C, Li T, Cui X. Molecular and functional analysis of the insulin-like peptides gene in the oriental river prawn Macrobrachium nipponense. Gen Comp Endocrinol 2019; 280:209-214. [PMID: 31075271 DOI: 10.1016/j.ygcen.2019.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/25/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
Abstract
The insulin-like peptide (ILP) family is a group of evolutionarily conserved proteins that control body size and organ growth in metazoans. In the current study we describe, for the first time, the Mn-ILP gene in the oriental river prawn Macrobrachium nipponense. Full-length of the Mn-ILP cDNA was 1630 bp, encoding 174 amino acids. The deduced amino acid sequence of Mn-ILP had the typical features of ILP proteins, including two cleavage sites and six conserved cysteines. To define the function of Mn-ILP, the expression ofthe Mn-ILP gene in different growth stages of prawns of both sexes, in male prawns of different sizes, and in prawns at different stages of the molt cycle was analyzed by qRT-PCR. Mn-ILP expression was significantly higher 1) in the rapid growth stage than in the other stages of male prawns; 2) in the normal growth stage than in the gonad development stage of female prawns; 3) in big male prawns than in small male prawns; and 4) in the intermolt stage than in the other stages of the molt cycle in prawns of the same size. Further, silencing Mn-ILP expression by RNAi effectively slowed down the growth speed of M. nipponense. Thus, Mn-ILP appears to have an important role in the growth and development process of M. nipponense.
Collapse
Affiliation(s)
- Fajun Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, PR China; Jiasixie Agricultural School, Weifang University of Science and Technology, Shouguang 262700, PR China.
| | - Shiyong Zhang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, PR China
| | - Chunpeng Fu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, PR China; Jiasixie Agricultural School, Weifang University of Science and Technology, Shouguang 262700, PR China
| | - Tingting Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, PR China; Jiasixie Agricultural School, Weifang University of Science and Technology, Shouguang 262700, PR China
| | - Xinyu Cui
- Jiasixie Agricultural School, Weifang University of Science and Technology, Shouguang 262700, PR China
| |
Collapse
|
17
|
Annunziata R, Andrikou C, Perillo M, Cuomo C, Arnone MI. Development and evolution of gut structures: from molecules to function. Cell Tissue Res 2019; 377:445-458. [PMID: 31446445 DOI: 10.1007/s00441-019-03093-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022]
Abstract
The emergence of a specialized system for food digestion and nutrient absorption was a crucial innovation for multicellular organisms. Digestive systems with different levels of complexity evolved in different animals, with the endoderm-derived one-way gut of most bilaterians to be the prevailing and more specialized form. While the molecular events regulating the early phases of embryonic tissue specification have been deeply investigated in animals occupying different phylogenetic positions, the mechanisms underlying gut patterning and gut-associated structures differentiation are still mostly obscure. In this review, we describe the main discoveries in gut and gut-associated structures development in echinoderm larvae (mainly for sea urchin and, when available, for sea star) and compare them with existing information in vertebrates. An impressive degree of conservation emerges when comparing the transcription factor toolkits recruited for gut cells and tissue differentiation in animals as diverse as echinoderms and vertebrates, thus suggesting that their function emerged in the deuterostome ancestor.
Collapse
Affiliation(s)
- Rossella Annunziata
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa comunale, 80121, Naples, Italy
| | - Carmen Andrikou
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa comunale, 80121, Naples, Italy
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Margherita Perillo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa comunale, 80121, Naples, Italy
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting St, Providence, RI, 02912, USA
| | - Claudia Cuomo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa comunale, 80121, Naples, Italy
| | - Maria I Arnone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa comunale, 80121, Naples, Italy.
| |
Collapse
|
18
|
Chen M, Talarovicova A, Zheng Y, Storey KB, Elphick MR. Neuropeptide precursors and neuropeptides in the sea cucumber Apostichopus japonicus: a genomic, transcriptomic and proteomic analysis. Sci Rep 2019; 9:8829. [PMID: 31222106 PMCID: PMC6586643 DOI: 10.1038/s41598-019-45271-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
The sea cucumber Apostichopus japonicus is a foodstuff with very high economic value in China, Japan and other countries in south-east Asia. It is at the heart of a multibillion-dollar industry and to meet demand for this product, aquaculture methods and facilities have been established. However, there are challenges associated with optimization of reproduction, feeding and growth in non-natural environments. Therefore, we need to learn more about the biology of A. japonicus, including processes such as aestivation, evisceration, regeneration and albinism. One of the major classes of molecules that regulate physiology and behaviour in animals are neuropeptides, and a few bioactive peptides have already been identified in A. japonicus. To facilitate more comprehensive investigations of neuropeptide function in A. japonicus, here we have analysed genomic and transcriptomic sequence data and proteomic data to identify neuropeptide precursors and neuropeptides in this species. We identified 44 transcripts encoding neuropeptide precursors or putative neuropeptide precursors, and in some instances neuropeptides derived from these precursors were confirmed by mass spectrometry. Furthermore, analysis of genomic sequence data enabled identification of the location of neuropeptide precursor genes on genomic scaffolds and linkage groups (chromosomes) and determination of gene structure. Many of the precursors identified contain homologs of neuropeptides that have been identified in other bilaterian animals. Precursors of neuropeptides that have thus far only been identified in echinoderms were identified, including L- and F-type SALMFamides, AN peptides and others. Precursors of several peptides that act as modulators of neuromuscular activity in A. japonicus were also identified. The discovery of a large repertoire of neuropeptide precursors and neuropeptides provides a basis for experimental studies that investigate the physiological roles of neuropeptide signaling systems in A. japonicus. Looking ahead, some of these neuropeptides may have effects that could be harnessed to enable improvements in the aquaculture of this economically important species.
Collapse
Affiliation(s)
- Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR, China.
| | - Alzbeta Talarovicova
- School of Biological & Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR, China
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Maurice R Elphick
- School of Biological & Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
19
|
Perillo M, Paganos P, Mattiello T, Cocurullo M, Oliveri P, Arnone MI. New Neuronal Subtypes With a "Pre-Pancreatic" Signature in the Sea Urchin Stongylocentrotus purpuratus. Front Endocrinol (Lausanne) 2018; 9:650. [PMID: 30450080 PMCID: PMC6224346 DOI: 10.3389/fendo.2018.00650] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/16/2018] [Indexed: 11/24/2022] Open
Abstract
Neurons and pancreatic endocrine cells have a common physiology and express a similar toolkit of transcription factors during development. To explain these common features, it has been hypothesized that pancreatic cells most likely co-opted a pre-existing gene regulatory program from ancestral neurons. To test this idea, we looked for neurons with a "pre-pancreatic" program in an early-branched deuterostome, the sea urchin. Only vertebrates have a proper pancreas, however, our lab previously found that cells with a pancreatic-like signature are localized within the sea urchin embryonic gut. We also found that the pancreatic transcription factors Xlox/Pdx1 and Brn1/2/4 co-localize in a sub-population of ectodermal cells. Here, we find that the ectodermal SpLox+ SpBrn1/2/4 cells are specified as SpSoxC and SpPtf1a neuronal precursors that become the lateral ganglion and the apical organ neurons. Two of the SpLox+ SpBrn1/2/4 cells also express another pancreatic transcription factor, the LIM-homeodomain gene islet-1. Moreover, we find that SpLox neurons produce the neuropeptide SpANP2, and that SpLox regulates SpANP2 expression. Taken together, our data reveal that there is a subset of sea urchin larval neurons with a gene program that predated pancreatic cells. These findings suggest that pancreatic endocrine cells co-opted a regulatory signature from an ancestral neuron that was already present in an early-branched deuterostome.
Collapse
Affiliation(s)
| | | | - Teresa Mattiello
- Centre For Life's Origins and Evolution, University College London, London, United Kingdom
| | | | - Paola Oliveri
- Centre For Life's Origins and Evolution, University College London, London, United Kingdom
| | | |
Collapse
|
20
|
Chrudinová M, Žáková L, Marek A, Socha O, Buděšínský M, Hubálek M, Pícha J, Macháčková K, Jiráček J, Selicharová I. A versatile insulin analog with high potency for both insulin and insulin-like growth factor 1 receptors: Structural implications for receptor binding. J Biol Chem 2018; 293:16818-16829. [PMID: 30213860 PMCID: PMC6204900 DOI: 10.1074/jbc.ra118.004852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/05/2018] [Indexed: 12/02/2022] Open
Abstract
Insulin and insulin-like growth factor 1 (IGF-1) are closely related hormones involved in the regulation of metabolism and growth. They elicit their functions through activation of tyrosine kinase–type receptors: insulin receptors (IR-A and IR-B) and IGF-1 receptor (IGF-1R). Despite similarity in primary and three-dimensional structures, insulin and IGF-1 bind the noncognate receptor with substantially reduced affinity. We prepared [d-HisB24, GlyB31, TyrB32]-insulin, which binds all three receptors with high affinity (251 or 338% binding affinity to IR-A respectively to IR-B relative to insulin and 12.4% binding affinity to IGF-1R relative to IGF-1). We prepared other modified insulins with the aim of explaining the versatility of [d-HisB24, GlyB31, TyrB32]-insulin. Through structural, activity, and kinetic studies of these insulin analogs, we concluded that the ability of [d-HisB24, GlyB31, TyrB32]-insulin to stimulate all three receptors is provided by structural changes caused by a reversed chirality at the B24 combined with the extension of the C terminus of the B chain by two extra residues. We assume that the structural changes allow the directing of the B chain C terminus to some extra interactions with the receptors. These unusual interactions lead to a decrease of dissociation rate from the IR and conversely enable easier association with IGF-1R. All of the structural changes were made at the hormones' Site 1, which is thought to interact with the Site 1 of the receptors. The results of the study suggest that merely modifications of Site 1 of the hormone are sufficient to change the receptor specificity of insulin.
Collapse
Affiliation(s)
- Martina Chrudinová
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Lenka Žáková
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Aleš Marek
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Ondřej Socha
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Miloš Buděšínský
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Martin Hubálek
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Jan Pícha
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Kateřina Macháčková
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Jiří Jiráček
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Irena Selicharová
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
21
|
Wood NJ, Mattiello T, Rowe ML, Ward L, Perillo M, Arnone MI, Elphick MR, Oliveri P. Neuropeptidergic Systems in Pluteus Larvae of the Sea Urchin Strongylocentrotus purpuratus: Neurochemical Complexity in a "Simple" Nervous System. Front Endocrinol (Lausanne) 2018; 9:628. [PMID: 30410468 PMCID: PMC6209648 DOI: 10.3389/fendo.2018.00628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022] Open
Abstract
The nervous system of the free-living planktonic larvae of sea urchins is relatively "simple," but sufficiently complex to enable sensing of the environment and control of swimming and feeding behaviors. At the pluteus stage of development, the nervous system comprises a central ganglion of serotonergic neurons located in the apical organ and sensory and motor neurons associated with the ciliary band and the gut. Neuropeptides are key mediators of neuronal signaling in nervous systems but currently little is known about neuropeptidergic systems in sea urchin larvae. Analysis of the genome sequence of the sea urchin Strongylocentrotus purpuratus has enabled the identification of 38 genes encoding neuropeptide precursors (NP) in this species. Here we characterize for the first time the expression of nine of these NP genes in S. purpuratus larvae, providing a basis for a functional understanding of the neurochemical organization of the larval nervous system. In order to accomplish this we used single and double in situ hybridization, coupled with immunohistochemistry, to investigate NP gene expression in comparison with known markers (e.g., the neurotransmitter serotonin). Several sub-populations of cells that express one or more NP genes were identified, which are located in the apica organ, at the base of the arms, around the mouth, in the ciliary band and in the mid- and fore-gut. Furthermore, high levels of cell proliferation were observed in neurogenic territories, consistent with an increase in the number of neuropeptidergic cells at late larval stages. This study has revealed that the sea urchin larval nervous system is far more complex at a neurochemical level than was previously known. Our NP gene expression map provides the basis for future work, aimed at understanding the role of diverse neuropeptides in control of various aspects of embryonic and larval behavior.
Collapse
Affiliation(s)
- Natalie J. Wood
- Centre for Life's Origins and Evolution, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Teresa Mattiello
- Centre for Life's Origins and Evolution, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Matthew L. Rowe
- Centre for Life's Origins and Evolution, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Lizzy Ward
- Centre for Life's Origins and Evolution, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | | | | - Maurice R. Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Paola Oliveri
- Centre for Life's Origins and Evolution, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
22
|
Fadl AEA, Mahfouz ME, El-Gamal MMT, Heyland A. New biomarkers of post-settlement growth in the sea urchin Strongylocentrotus purpuratus. Heliyon 2017; 3:e00412. [PMID: 29034337 PMCID: PMC5635345 DOI: 10.1016/j.heliyon.2017.e00412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/24/2017] [Accepted: 09/15/2017] [Indexed: 11/29/2022] Open
Abstract
Some sea urchins, including the purple sea urchin Strongylocentrotus purpuratus, have been successfully used in aquaculture, but their slow growth and late reproduction are challenging to overcome when developing efficient aquaculture production techniques. S. purpuratus develops via an indirect life history that is characterized by a drastic settlement process at the end of a larval period that lasts for several weeks. During this transition, the bilateral larva is transformed into a pentaradial juvenile, which will start feeding and growing in the benthic habitat. Due to predation and other ecological factors, settlement is typically associated with high mortality rates in juvenile populations. Additionally, juveniles require several days to develop a functional mouth and digestive system. During this perimetamorphic period, juveniles use up larval resources until they are capable to digest adult food. Mechanisms underlying the onset of juvenile feeding and metabolism have implications for the recruitment of natural populations as well as aquaculture and are relatively poorly understood in S. purpuratus. The insulin/insulin-like growth factor signalling (IIS)/Target of Rapamycin (TOR) pathway (IIS/TOR) is well conserved among animal phyla and regulates physiological and developmental functions, such as growth, reproduction, aging and nutritional status. We analyzed the expression of FoxO, TOR, and ILPs in post-settlement juveniles in conjunction with their early growth trajectories. We also tested how pre-settlement starvation affected post-settlement expression of IIS. We found that FoxO provides a useful molecular marker in early juveniles as its expression is strongly correlated with juvenile growth. We also found that pre-settlement starvation affects juvenile growth trajectories as well as IIS. Our findings provide preliminary insights into the mechanisms underlying post-settlement growth and metabolism in S. purpuratus. They also have important implications for sea urchin aquaculture, as they show that pre-settlement nutrient environment significantly affects both early growth trajectories and gene expression. This information can be used to develop new biomarkers for juvenile health in sea urchin population ecology and aquaculture aquaculture.
Collapse
Affiliation(s)
- Alyaa Elsaid Abdelaziz Fadl
- Department of Integrative Biology, Faculty of Biological Science, University of Guelph, Guelph, Ontario, Canada.,Department of Zoology, Faculty of Science, University of Kafrelsheikh, Kafr Elsheikh, Egypt
| | - Magdy Elsayed Mahfouz
- Department of Zoology, Faculty of Science, University of Kafrelsheikh, Kafr Elsheikh, Egypt
| | | | - Andreas Heyland
- Department of Integrative Biology, Faculty of Biological Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
23
|
Steinmetz PRH, Aman A, Kraus JEM, Technau U. Gut-like ectodermal tissue in a sea anemone challenges germ layer homology. Nat Ecol Evol 2017; 1:1535-1542. [PMID: 29185520 DOI: 10.1038/s41559-017-0285-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 07/19/2017] [Indexed: 12/11/2022]
Abstract
Cnidarians (for example, sea anemones and jellyfish) develop from an outer ectodermal and inner endodermal germ layer, whereas bilaterians (for example, vertebrates and flies) additionally have a mesodermal layer as intermediate germ layer. Currently, cnidarian endoderm (that is, 'mesendoderm') is considered homologous to both bilaterian endoderm and mesoderm. Here we test this hypothesis by studying the fate of germ layers, the localization of gut cell types, and the expression of numerous 'endodermal' and 'mesodermal' transcription factor orthologues in the anthozoan sea anemone Nematostella vectensis. Surprisingly, we find that the developing pharyngeal ectoderm and its derivatives display a transcription-factor expression profile (foxA, hhex, islet, soxB1, hlxB9, tbx2/3, nkx6 and nkx2.2) and cell-type combination (exocrine and insulinergic) reminiscent of the developing bilaterian midgut, and, in particular, vertebrate pancreatic tissue. Endodermal derivatives, instead, display cell functions and transcription-factor profiles similar to bilaterian mesoderm derivatives (for example, somatic gonad and heart). Thus, our data supports an alternative model of germ layer homologies, where cnidarian pharyngeal ectoderm corresponds to bilaterian endoderm, and the cnidarian endoderm is homologous to bilaterian mesoderm.
Collapse
Affiliation(s)
- Patrick R H Steinmetz
- Department for Molecular Evolution and Development, Centre for Organismal Systems Biology, University of Vienna, Althanstraße 14, A-1090, Vienna, Austria. .,Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5006, Bergen, Norway.
| | - Andy Aman
- Department for Molecular Evolution and Development, Centre for Organismal Systems Biology, University of Vienna, Althanstraße 14, A-1090, Vienna, Austria.,Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Johanna E M Kraus
- Department for Molecular Evolution and Development, Centre for Organismal Systems Biology, University of Vienna, Althanstraße 14, A-1090, Vienna, Austria.,Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5006, Bergen, Norway
| | - Ulrich Technau
- Department for Molecular Evolution and Development, Centre for Organismal Systems Biology, University of Vienna, Althanstraße 14, A-1090, Vienna, Austria.
| |
Collapse
|
24
|
Mayorova TD, Tian S, Cai W, Semmens DC, Odekunle EA, Zandawala M, Badi Y, Rowe ML, Egertová M, Elphick MR. Localization of Neuropeptide Gene Expression in Larvae of an Echinoderm, the Starfish Asterias rubens. Front Neurosci 2016; 10:553. [PMID: 27990106 PMCID: PMC5130983 DOI: 10.3389/fnins.2016.00553] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/16/2016] [Indexed: 11/13/2022] Open
Abstract
Neuropeptides are an ancient class of neuronal signaling molecules that regulate a variety of physiological and behavioral processes in animals. The life cycle of many animals includes a larval stage(s) that precedes metamorphic transition to a reproductively active adult stage but, with the exception of Drosophila melanogaster and other insects, research on neuropeptide signaling has hitherto largely focused on adult animals. However, recent advances in genome/transcriptome sequencing have facilitated investigation of neuropeptide expression/function in the larvae of protostomian (e.g., the annelid Platynereis dumerilii) and deuterostomian (e.g., the urochordate Ciona intestinalis) invertebrates. Accordingly, here we report the first multi-gene investigation of larval neuropeptide precursor expression in a species belonging to the phylum Echinodermata-the starfish Asterias rubens. Whole-mount mRNA in situ hybridization was used to visualize in bipinnaria and brachiolaria stage larvae the expression of eight neuropeptide precursors: L-type SALMFamide (S1), F-type SALMFamide (S2), vasopressin/oxytocin-type, NGFFYamide, thyrotropin-releasing hormone-type, gonadotropin-releasing hormone-type, calcitonin-type and corticotropin-releasing hormone-type. Expression of only three of the precursors (S1, S2, NGFFYamide) was observed in bipinnaria larvae but by the brachiolaria stage expression of all eight precursors was detected. An evolutionarily conserved feature of larval nervous systems is the apical organ and in starfish larvae this comprises the bilaterally symmetrical lateral ganglia, but only the S1 and S2 precursors were found to be expressed in these ganglia. A prominent feature of brachiolaria larvae is the attachment complex, comprising the brachia and adhesive disk, which mediates larval attachment to a substratum prior to metamorphosis. Interestingly, all of the neuropeptide precursors examined here are expressed in the attachment complex, with distinctive patterns of expression suggesting potential roles for neuropeptides in the attachment process. Lastly, expression of several neuropeptide precursors is associated with ciliary bands, suggesting potential roles for the neuropeptides derived from these precursors in control of larval locomotion and/or feeding. In conclusion, our findings provide novel perspectives on the evolution and development of neuropeptide signaling systems and neuroanatomical insights into neuropeptide function in echinoderm larvae.
Collapse
Affiliation(s)
- Tatiana D Mayorova
- Department of Organismal Biology, School of Biological and Chemical Sciences, Queen Mary University of LondonLondon, UK; Laboratory of Developmental Neurobiology, Koltzov Institute of Developmental Biology of Russian Academy of SciencesMoscow, Russia
| | - Shi Tian
- Department of Organismal Biology, School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Weigang Cai
- Department of Organismal Biology, School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Dean C Semmens
- Department of Organismal Biology, School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Esther A Odekunle
- Department of Organismal Biology, School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Meet Zandawala
- Department of Organismal Biology, School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Yusef Badi
- Department of Organismal Biology, School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Matthew L Rowe
- Department of Organismal Biology, School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Michaela Egertová
- Department of Organismal Biology, School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Maurice R Elphick
- Department of Organismal Biology, School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| |
Collapse
|
25
|
Semmens DC, Mirabeau O, Moghul I, Pancholi MR, Wurm Y, Elphick MR. Transcriptomic identification of starfish neuropeptide precursors yields new insights into neuropeptide evolution. Open Biol 2016; 6:150224. [PMID: 26865025 PMCID: PMC4772807 DOI: 10.1098/rsob.150224] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neuropeptides are evolutionarily ancient mediators of neuronal signalling in nervous systems. With recent advances in genomics/transcriptomics, an increasingly wide range of species has become accessible for molecular analysis. The deuterostomian invertebrates are of particular interest in this regard because they occupy an ‘intermediate' position in animal phylogeny, bridging the gap between the well-studied model protostomian invertebrates (e.g. Drosophila melanogaster, Caenorhabditis elegans) and the vertebrates. Here we have identified 40 neuropeptide precursors in the starfish Asterias rubens, a deuterostomian invertebrate from the phylum Echinodermata. Importantly, these include kisspeptin-type and melanin-concentrating hormone-type precursors, which are the first to be discovered in a non-chordate species. Starfish tachykinin-type, somatostatin-type, pigment-dispersing factor-type and corticotropin-releasing hormone-type precursors are the first to be discovered in the echinoderm/ambulacrarian clade of the animal kingdom. Other precursors identified include vasopressin/oxytocin-type, gonadotropin-releasing hormone-type, thyrotropin-releasing hormone-type, calcitonin-type, cholecystokinin/gastrin-type, orexin-type, luqin-type, pedal peptide/orcokinin-type, glycoprotein hormone-type, bursicon-type, relaxin-type and insulin-like growth factor-type precursors. This is the most comprehensive identification of neuropeptide precursor proteins in an echinoderm to date, yielding new insights into the evolution of neuropeptide signalling systems. Furthermore, these data provide a basis for experimental analysis of neuropeptide function in the unique context of the decentralized, pentaradial echinoderm bauplan.
Collapse
Affiliation(s)
- Dean C Semmens
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Olivier Mirabeau
- Institut Curie, Genetics and Biology of Cancers Unit, INSERM U830, PSL Research University, Paris 75005, France
| | - Ismail Moghul
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Mahesh R Pancholi
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Yannick Wurm
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
26
|
Arnone MI, Andrikou C, Annunziata R. Echinoderm systems for gene regulatory studies in evolution and development. Curr Opin Genet Dev 2016; 39:129-137. [DOI: 10.1016/j.gde.2016.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/07/2016] [Accepted: 05/30/2016] [Indexed: 12/13/2022]
|
27
|
Perillo M, Wang YJ, Leach SD, Arnone MI. A pancreatic exocrine-like cell regulatory circuit operating in the upper stomach of the sea urchin Strongylocentrotus purpuratus larva. BMC Evol Biol 2016; 16:117. [PMID: 27230062 PMCID: PMC4880809 DOI: 10.1186/s12862-016-0686-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/12/2016] [Indexed: 12/22/2022] Open
Abstract
Background Digestive cells are present in all metazoans and provide the energy necessary for the whole organism. Pancreatic exocrine cells are a unique vertebrate cell type involved in extracellular digestion of a wide range of nutrients. Although the organization and regulation of this cell type is intensively studied in vertebrates, its evolutionary history is still unknown. In order to understand which are the elements that define the pancreatic exocrine phenotype, we have analyzed the expression of genes that contribute to specification and function of this cell-type in an early branching deuterostome, the sea urchin Strongylocentrotus purpuratus. Results We defined the spatial and temporal expression of sea urchin orthologs of pancreatic exocrine genes and described a unique population of cells clustered in the upper stomach of the sea urchin embryo where exocrine markers are co-expressed. We used a combination of perturbation analysis, drug and feeding experiments and found that in these cells of the sea urchin embryo gene expression and gene regulatory interactions resemble that of bona fide pancreatic exocrine cells. We show that the sea urchin Ptf1a, a key transcriptional activator of digestive enzymes in pancreatic exocrine cells, can substitute for its vertebrate ortholog in activating downstream genes. Conclusions Collectively, our study is the first to show with molecular tools that defining features of a vertebrate cell-type, the pancreatic exocrine cell, are shared by a non-vertebrate deuterostome. Our results indicate that the functional cell-type unit of the vertebrate pancreas may evolutionarily predate the emergence of the pancreas as a discrete organ. From an evolutionary perspective, these results encourage to further explore the homologs of other vertebrate cell-types in traditional or newly emerging deuterostome systems. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0686-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Margherita Perillo
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, 80121, Italy.,Present address: Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Yue Julia Wang
- Department of Surgery and the McKusick Nathans Institute for Genetic Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Steven D Leach
- Department of Surgery and the McKusick Nathans Institute for Genetic Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Maria Ina Arnone
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, 80121, Italy.
| |
Collapse
|
28
|
Lecroisey C, Le Pétillon Y, Escriva H, Lammert E, Laudet V. Identification, evolution and expression of an insulin-like peptide in the cephalochordate Branchiostoma lanceolatum. PLoS One 2015; 10:e0119461. [PMID: 25774519 PMCID: PMC4361685 DOI: 10.1371/journal.pone.0119461] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/16/2015] [Indexed: 01/24/2023] Open
Abstract
Insulin is one of the most studied proteins since it is central to the regulation of carbohydrate and fat metabolism in vertebrates and its expression and release are disturbed in diabetes, the most frequent human metabolic disease worldwide. However, the evolution of the function of the insulin protein family is still unclear. In this study, we present a phylogenetic and developmental analysis of the Insulin Like Peptide (ILP) in the cephalochordate amphioxus. We identified an ILP in the European amphioxus Branchiostoma lanceolatum that displays structural characteristics of both vertebrate insulin and Insulin-like Growth Factors (IGFs). Our phylogenetic analysis revealed that amphioxus ILP represents the sister group of both vertebrate insulin and IGF proteins. We also characterized both temporal and spatial expression of ILP in amphioxus. We show that ilp is highly expressed in endoderm and paraxial mesoderm during development, and mainly expressed in the gut of both the developing embryo and adult. We hypothesize that ILP has critical implications in both developmental processes and metabolism and could display IGF- and insulin-like functions in amphioxus supporting the idea of a common ancestral protein.
Collapse
Affiliation(s)
- Claire Lecroisey
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS, Université Lyon, Lyon, France
| | - Yann Le Pétillon
- CNRS, UMR 7232, BIOM, Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Hector Escriva
- CNRS, UMR 7232, BIOM, Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Vincent Laudet
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS, Université Lyon, Lyon, France
- * E-mail:
| |
Collapse
|