1
|
Sahoo P, Sarkar D, Sharma S, Verma A, Naik SK, Prashar V, Parkash J, Singh SK. Knockdown of type 2 orexin receptor in adult mouse testis potentiates testosterone production and germ cell proliferation. Mol Cell Endocrinol 2024; 592:112312. [PMID: 38866320 DOI: 10.1016/j.mce.2024.112312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Orexins (OXs) are neuropeptides which regulate various physiological processes. OXs exist in two different forms, mainly orexin A (OXA) and orexin B (OXB) and their effects are mediated via OX1R and OX2R. Presence of OXB and OX2R in mouse testis is also reported. However, the role of OXB/OX2R in the male gonad remains unexplored. Herein we investigated the role of OXB/OX2R system in testicular physiology under in vivo and ex vivo conditions. Adult mice were given a single dose of bilateral intratesticular injection of siRNA targeting OX2R and were sacrificed 96 h post-injection. OX2R-knockdown potentiated serum and intratesticular testosterone levels with up-regulation in the expressions of major steroidogenic proteins. Germ cell proliferation also increased in siRNA-treated mice. Results of the ex vivo experiment also supported the findings of the in vivo study. In conclusion, OX2R may regulate testosterone production and thereby control the fine-tuning between steroidogenesis and germ cell dynamics.
Collapse
Affiliation(s)
- Pratikshya Sahoo
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, 151401, India
| | - Debarshi Sarkar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, 151401, India.
| | - Shubhangi Sharma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, 151401, India
| | - Arpit Verma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, 151401, India
| | - Suraj Kumar Naik
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, 151401, India
| | - Vikash Prashar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, 151401, India
| | - Jyoti Parkash
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, 151401, India
| | - Shio Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
2
|
Yadav A, Singh SK, Sarkar D. Localization and expression of Orexin B (OXB) and its type 2 receptor (OX2R) in mouse testis during postnatal development. Peptides 2023; 164:170979. [PMID: 36841281 DOI: 10.1016/j.peptides.2023.170979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/04/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023]
Abstract
The orexins (OXs) were first reported in hypothalamus of rat, and they play an important role in diverse physiological actions. The OXs consist of orexin A (OXA) and orexin B (OXB) peptides and their actions are mediated via two G-protein-coupled receptors, orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R), respectively. Presence of OXA and OX1R has been also reported in peripheral organs like reproductive tissues. These findings, therefore, highlight a possible role of OXs and their receptors in male reproductive health. Though, expression and localization of OXB and OX2R in the testis and their role in spermatogenesis are not finally clarified. Herein, we elucidated the localization and the patterns of expression of OXB and OX2R in Parkes mice testes during postnatal development. Results suggest that the precursor prepro-orexin (PPO), OXB and OX2R are expressed at the transcript and protein levels in mouse testis throughout the postnatal development. Immunostaining further showed the localization of OXB and OX2R both in interstitium and tubular compartments of the testis. On 7 day postpartum (7 dpp), only spermatogonia showed immunoreactivity of OXB and OX2R, while at 14, 28, 42 and 90 dpp, immunolocalization of OXB and OX2R were noted in the seminiferous tubules, especially in leptotene, pachytene spermatocytes, round and elongating spermatids, and in Leydig cells and Sertoli cells. The immunoreactivity of OXB and OX2R appeared to be stage-specific in adult mouse testis. The results suggest the expression of OXB and OX2R in mouse testis and their possible regulatory role in spermatogenesis and steroidogenesis.
Collapse
Affiliation(s)
- Anupam Yadav
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Shio Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Debarshi Sarkar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India.
| |
Collapse
|
3
|
Yadav K, Yadav A, Rajpoot A, Mishra RK. Postnatal ontogeny of Neuromedin S and its receptors NMUR1 and NMUR2 expression in mouse testis. Peptides 2023; 159:170899. [PMID: 36336170 DOI: 10.1016/j.peptides.2022.170899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Neuromedin S (NMS) is a well-known anorexigenic neuropeptide. Despite some reports of the presence of its transcript and precursor protein in testis, the expression and localization of NMS and its receptors during the postnatal development of mammalian testis remains elusive. We investigated the expression patterns and testicular localization of NMS and its receptors NMUR1 and NMUR2, during 5, 10, 20, 30, and 90 days of postnatal development, using real time PCR, immunoblot analysis and immunohistochemistry in mice. NMS and its receptors are present at all age groups at transcript level in mouse testis. At the protein level, NMS and NMUR2 are present in all age groups, whereas NMUR1 is present primarily in 30- and 90-day testis. Immunolocalization study showed that NMS and NMUR2 are expressed in spermatogonia, spermatocytes, Sertoli cells, and Leydig cells, in contrast to NMUR1 which is expressed exclusively in the Leydig cells of 30- and 90-day testis. The results also confirm the intranuclear localization of NMS in spermatogonia and spermatocytes. Although NMS-NMUR2 is expressed in Sertoli cells at all stages of the spermatogenic cycle, they showed a stage-specific expression pattern in spermatogonia and primary spermatocytes. In conclusion, NMS and its receptors NMUR1 and NMUR2 are expressed in the testis and may regulate spermatogenesis, possibly by modulating steroidogenesis and Sertoli cell function in the testis.
Collapse
Affiliation(s)
- Kiran Yadav
- Male Reproductive Physiology lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anupam Yadav
- Male Reproductive Physiology lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Arti Rajpoot
- Male Reproductive Physiology lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Raghav Kumar Mishra
- Male Reproductive Physiology lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
4
|
Squillacioti C, Pelagalli A, Assisi L, Costagliola A, Van Nassauw L, Mirabella N, Liguori G. Does Orexin B-Binding Receptor 2 for Orexins Regulate Testicular and Epididymal Functions in Normal and Cryptorchid Dogs? Front Vet Sci 2022; 9:880022. [PMID: 35903144 PMCID: PMC9323089 DOI: 10.3389/fvets.2022.880022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/21/2022] [Indexed: 11/15/2022] Open
Abstract
Orexins A (OXA) and B (OXB) and the receptors 1 (OX1R) and 2 (OX2R) for orexins are hypothalamic peptides found in several mammalian organs and participated to the control of a wide assortment of physiological and pathological functions. The distribution of OXA and OX1R has been extensively studied in the male gonad of mammals. Here, we examined the expression and localization of OXB and OX2R as well as their possible involvement in the regulation of testicular and epididymal functions, in healthy and cryptorchid dogs, employing some techniques such as immunohistochemistry, Western blotting, and real-time RT-PCR. In vitro tests were also carried out for evaluating the steroidogenic effect of OXB. OXB and OX2R were expressed in spermatocytes, spermatids, and Leydig cells in normal testis. Their localization was restricted to Sertoli and Leydig cells in cryptorchid conditions. OXB was found to be localized in all tracts of both normal and cryptorchid epididymis, whereas OX2R was found only in the caput. Because the small molecular weight of the peptides OXA and OXB, the expression of their precursor prepro-orexin (PPO), OX1R, and OX2R proteins and mRNAs were investigated by means of Western blot and real-time RT-PCR analyses, respectively, in all tested groups of. In particular, the mRNA level expression of all three genes was higher in cryptorchid dogs than in normal ones. In vitro tests demonstrated that OXB-by binding OX2R-is not involved in testicular steroidogenic processes. Therefore, the findings of this study might be the basis for further functional and molecular studies addressing the possible biochemical effects of OXB and OX2R in normal and pathological conditions of the male reproductive system.
Collapse
Affiliation(s)
- Caterina Squillacioti
- Laboratory of Anatomy, Department of Veterinary Medicine and Animal Productions, University of Napoli Federico II, Naples, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Napoli Federico II, Naples, Italy
- Institute of Biostructures and Bioimages (IBB), National Research Council (CNR), Naples, Italy
| | - Loredana Assisi
- Department of Biology, University of Napoli Federico II, Naples, Italy
| | - Anna Costagliola
- Laboratory of Anatomy, Department of Veterinary Medicine and Animal Productions, University of Napoli Federico II, Naples, Italy
| | - Luc Van Nassauw
- Laboratory of Human Anatomy and Embryology, Department ASTARC, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Nicola Mirabella
- Laboratory of Anatomy, Department of Veterinary Medicine and Animal Productions, University of Napoli Federico II, Naples, Italy
| | - Giovanna Liguori
- Laboratory of Anatomy, Department of Veterinary Medicine and Animal Productions, University of Napoli Federico II, Naples, Italy
- Department of Prevention, ASL FG, Foggia, Italy
| |
Collapse
|
5
|
Patel SK, Singh SK. Role of pyroglutamylated RFamide peptide43 in germ cell dynamics in mice testes in relation to energy metabolism. Biochimie 2020; 175:146-158. [PMID: 32504656 DOI: 10.1016/j.biochi.2020.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/14/2020] [Accepted: 05/29/2020] [Indexed: 12/31/2022]
Abstract
QRFP is a neuropeptide that regulates glucose homeostasis and increases insulin sensitivity in tissues. We have previously shown that QRFP and its receptor (GPR103) are predominantly expressed in germ cells and Sertoli cells, respectively, in mice testes. In the present study, we report that QRFP caused an increase in PCNA and a decrease in p27Kip1 expressions in the testis under both in vivo and ex vivo conditions. Besides, via an in vivo study, cell cycle analysis by FACS showed an increase in 2C cells and a decrease in 1C cells. QRFP also induced expression of GDNF and phosphorylation of Akt and ERK-1/2. Together these results suggest that QRFP has a proliferative effect on germ cells in mice testes, since it caused a proportional increase in the mitotic activity and the number of spermatogonial cells. Further, observations of increased expressions of STAT-3 and Neurog3 in treated mice suggest that QRFP treatment regulates priming of undifferentiated spermatogonia to undergo differentiation, while a decrease in c-Kit expression indicate that spermatogonia at this time point are in an undifferentiated state. In addition, QRFP administration also caused an increase in intratesticular levels of glucose and lactate, and in LDH activity accompanied by increased expressions of GLUT-3 and LDH-C in the testis. Also, the phosphorylation of IR-β and expressions of p-Akt and p-mTOR were increased under ex vivo conditions in testicular tissue. In conclusion, our findings suggest that QRFP treatment caused proliferation of germ cells independently from the hypothalamic-pituitary axis via regulation of testicular energy metabolism.
Collapse
Affiliation(s)
- Shishir Kumar Patel
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shio Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
6
|
Assisi L, Pelagalli A, Squillacioti C, Liguori G, Annunziata C, Mirabella N. Orexin A-Mediated Modulation of Reproductive Activities in Testis of Normal and Cryptorchid Dogs: Possible Model for Studying Relationships Between Energy Metabolism and Reproductive Control. Front Endocrinol (Lausanne) 2019; 10:816. [PMID: 31824429 PMCID: PMC6882921 DOI: 10.3389/fendo.2019.00816] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022] Open
Abstract
Orexin A (OxA) is a neuropeptide produced in the lateral hypothalamus that performs pleiotropic functions in different tissues, including involvement in energy homeostasis and reproductive neuroendocrine functions. The role of OxA is particularly important given the well-studied relationships between physiological mechanisms controlling energy balance and reproduction. The enzyme P450 aromatase (ARO) helps convert androgens to estrogens and has roles in steroidogenesis, spermatogenesis, and energy metabolism in several organs. The goal of this study was thus to investigate the role of OxA in ARO activity and the effects of this regulation on reproductive homeostasis in male gonads from healthy and cryptorchid dogs. The cryptorchidism is a specific condition characterized by altered reproductive and metabolic activities, the latter of which emerge from impaired glycolysis. OxA helps to stimulate testosterone (T) synthesis in the dog testis. We aimed to investigate OxA-mediated modulation of 17β-estradiol (17β-E) synthesis, ARO expression and metabolic indicators in testis of normal and cryptorchid dogs. Our results indicate putative effects of OxA on estrogen biosynthesis and ARO activity based on western blotting analysis and immunohistochemistry for ARO detection and in vitro tests. OxA triggered decrease in estrogen production and ARO activity inhibition; reduced ARO activity thus prevented the conversion of T to estrogens and increasing OxA-mediated synthesis of T. Furthermore, we characterized some metabolic and oxidative modulations in normal and cryptorchid dog's testis. The steroidogenic regulation by OxA and its modulation of ARO activity led us to hypothesize that OxA is a potential therapeutic target in pathological conditions associated with steroidogenic alterations and OxA possible involvement in metabolic processes in the male gonad.
Collapse
Affiliation(s)
- Loredana Assisi
- Department of Biological Sciences, University of Naples Federico II, Naples, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
- Institute of Biostructures and Bioimages, National Research Council, Naples, Italy
| | - Caterina Squillacioti
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Giovanna Liguori
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Chiara Annunziata
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Nicola Mirabella
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| |
Collapse
|
7
|
Joshi D, Sarkar D, Singh SK. The hypothalamic neuropeptide orexin A- a possible regulator in glucose homeostasis and germ cell kinetics in adult mice testes. Biochimie 2018; 152:94-109. [PMID: 29964087 DOI: 10.1016/j.biochi.2018.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022]
Abstract
Orexin A (OXA), a hypothalamic neuropeptide, regulates food intake, sleep-wake cycle and energy balance by binding to its receptor (OX1R). Apart from brain, OXA and OX1R are also present in peripheral organs including reproductive tissues. Mammalian reproduction depends on uptake and proper utilization of glucose in the testes. This study, therefore, examined role of OXA/OX1R system in regulation of glucose homeostasis in adult mouse testis under in vivo and ex vivo conditions. Binding of OXA to OX1R was blocked using an OX1R antagonist, SB-334867. Mice were given a single bilateral intratesticular injection of the antagonist at doses of 4 and 12μg/mouse and sacrificed 24 h post-injection. In order to understand the direct role of OXA in testes of adult mice, an ex vivo experiment was performed where binding of OXA to OX1R in the testis was blocked by using the same OX1R antagonist. The antagonist treatment affected testicular glucose and lactate concentration with concomitant down-regulation in the expression of glucose transporters 3 and 8. A decreased activity in lactate dehydrogenase enzyme and imbalance between germ cell survival and proliferation were also noted in testes in treated mice. The results of ex vivo study supported the results obtained from in vivo study. The findings thus suggest involvement of OXA/OX1R system in regulation of testicular glucose homeostasis and germ cell kinetics in adult mice.
Collapse
Affiliation(s)
- Deepanshu Joshi
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Debarshi Sarkar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shio Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
8
|
Liguori G, Pelagalli A, Assisi L, Squillacioti C, Costagliola A, Mirabella N. Effects of orexins on 17β-estradiol synthesis and P450 aromatase modulation in the testis of alpaca (Vicugna pacos). Anim Reprod Sci 2018; 192:313-320. [PMID: 29622348 DOI: 10.1016/j.anireprosci.2018.03.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/14/2018] [Accepted: 03/28/2018] [Indexed: 12/22/2022]
Abstract
The steroidogenic enzyme P450 aromatase (ARO) has a key role in the conversion of testosterone (T) into estrogens (E), expressed as 17β-estradiol. The presence and localization of this key enzyme have not been described before in the South American camelid alpaca (Vicugna pacos). In our previous studies of the expression and biological effects of orexin A (OxA) and OxB on the alpaca testis demonstrated that OxA, via its specific receptor 1 (OX1R), stimulated T synthesis. In order to extend these findings, we presently explored the presence and localization of ARO in the alpaca male gonad, and the possible correlation between ARO and the orexinergic complex. Western blotting and immunohistochemistry demonstrated the presence of ARO in tissue homogenates and its localization in the tubular and interstitial compartments of the alpaca testis, respectively. The addition of OxA to fresh testicular slices decreased the 17β-estradiol E levels. This effect was annulled by the sequential addition of the selective OX1R antagonist, SB-408124. OxB incubation did not have any effect on the biosynthesis of E. Furthermore, the OxA-mediated down-regulation of E secretion could be ascribed to ARO inhibition by exogenous OxA, as indicated by measurement of ARO activity in tissue slices incubated with OxA. Overall, our findings suggest that locally secreted OxA interacting with OX1R could indirectly inhibit ARO activity, disabling the conversion of T to E, and consequently lowering E biosynthesis and increasing the production of T in mammalian testis.
Collapse
Affiliation(s)
- Giovanna Liguori
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Via Delpino 1, 80137, Naples, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy; Institute of Biostructures and Bioimages, National Research Council, Via De Amicis 95, 80131 Naples, Italy
| | - Loredana Assisi
- Department of Biology, University of Naples "Federico II", Via Mezzocannone 6, 80134 Naples, Italy.
| | - Caterina Squillacioti
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Via Delpino 1, 80137, Naples, Italy
| | - Anna Costagliola
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Via Delpino 1, 80137, Naples, Italy
| | - Nicola Mirabella
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Via Delpino 1, 80137, Naples, Italy
| |
Collapse
|
9
|
Liguori G, Tafuri S, Miyoshi C, Yanagisawa M, Squillacioti C, De Pasquale V, Mirabella N, Vittoria A, Costagliola A. Localization of orexin B and orexin-2 receptor in the rat epididymis. Acta Histochem 2018; 120:292-297. [PMID: 29496265 DOI: 10.1016/j.acthis.2018.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/30/2022]
Abstract
The peptides orexin A (OXA) and orexin B (OXB) derived from the proteolytic cleavage of a common precursor molecule, prepro-orexin, were originally described in the rat hypothalamus. Successively, they have been found in many other brain regions as well as in peripheral organs of mammals and other less evolved animals. The widespread localization of orexins accounts for the multiple activities that they exert in the body, including the regulation of energy homeostasis, feeding, metabolism, sleep and arousal, stress, addiction, and cardiovascular and endocrine functions. Both OXA and OXB peptides bind to two G-coupled receptors, orexin-1 (OX1R) and orexin-2 (OX2R) receptor, though with different binding affinity. Altered expression/activity of orexins and their receptors has been associated with a large number of human diseases. Though at present evidence highlighted a role for orexins and cognate receptors in mammalian reproduction, their central and/or local effects on gonadal functions remain poorly known. Here, we investigated the localization of OXB and OX2R in the rat epididymis. Immunohistochemical staining of sections from caput, corpus and cauda segments of the organ showed intense signals for both OXB and OX2R in the principal cells of the lining epithelium, while no staining was detected in the other cell types. Negative results were obtained from immunohistochemical analysis of hypothalamic and testicular tissues from OX2R knock-out mice (OX2R-/-) and OX1R/OX2R double knock-out (OX1R-/-; OX2R-/-) mice, thus demonstrating the specificity of the rabbit polyclonal anti-OX2R antibody used in our study. On contrary, the same antibody clearly showed the presence of OX2R in sections from hypothalamus and testis of normal mice and rats which are well known to express the receptor. Thus, our results provide the first definite evidence for the immunohistochemical localization of OXB and OX2R in the principal cells of rat epididymis.
Collapse
|
10
|
Liguori G, Squillacioti C, Assisi L, Pelagalli A, Vittoria A, Costagliola A, Mirabella N. Potential role of orexin A binding the receptor 1 for orexins in normal and cryptorchid dogs. BMC Vet Res 2018; 14:55. [PMID: 29482574 PMCID: PMC5828418 DOI: 10.1186/s12917-018-1375-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/15/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cryptorchidism is one of the most common birth disorders of the male reproductive system identified in dogs and other mammals. This condition is characterised by the absence of one (unilateral) or both (bilateral) gonads from the scrotum. The peptides orexin A (OxA) and B (OxB) were obtained by post-transcriptional proteolytic cleavage of a precursor molecule, called prepro-orexin. These substances bind two types of G-coupled receptors called receptor 1 (OX1R) and 2 (OX2R) for orexins. OX1R is specific to OxA while OX2R binds the two peptides with equal affinity. Orexins modulate a great variety of body functions, such as the reproductive mechanism. The purpose of the present research was to study the presence of OxA and its receptor 1 and their possible involvement in the canine testis under healthy and pathological conditions. METHODS This study was performed using adult male normal dogs and male dogs affected by unilateral cryptorchidism. Tissue samples were collected from testes and were divided into three groups: normal, contralateral and cryptic. The samples were used for immunohistochemistry, Western blot and in vitro tests for testosterone evaluation in normal and pathological conditions. RESULTS OxA-immunoreactivity (IR) was described in interstitial Leydig cells of the normal gonad, and Leydig, Sertoli cells and gonocytes in the cryptic gonad. In the normal testis, OX1R-IR was described in Leydig cells, in pachytene and second spermatocytes and in immature and mature spermatids throughout the stages of the germ developing cycle of the male gonad. In the cryptic testis OX1R-IR was distributed in Leydig and Sertoli cells. The presence of prepro-orexin and OX1R was demonstrated by Western blot analysis. The incubation of fresh testis slices with OxA caused the stimulation of testosterone synthesis in the normal and cryptic gonad while the steroidogenic OxA-induced effect was cancelled by adding the selective OX1R antagonist SB-408124. CONCLUSIONS These results led us to hypothesise that OxA binding OX1R might be involved in the modulation of spermatogenesis and steroidogenesis in canine testis in healthy and pathological conditions.
Collapse
Affiliation(s)
- Giovanna Liguori
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Via Delpino 1, 80137 Naples, Italy
| | - Caterina Squillacioti
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Via Delpino 1, 80137 Naples, Italy
| | - Loredana Assisi
- Department of Biology, University of Naples “Federico II”, Via Mezzocannone 6, 80134 Naples, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
- Institute of Biostructures and Bioimages, National Research Council, Via De Amicis 95, 80131 Naples, Italy
| | - Alfredo Vittoria
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Via Delpino 1, 80137 Naples, Italy
| | - Anna Costagliola
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Via Delpino 1, 80137 Naples, Italy
| | - Nicola Mirabella
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Via Delpino 1, 80137 Naples, Italy
| |
Collapse
|
11
|
Joshi D, Singh SK. The neuropeptide orexin A - search for its possible role in regulation of steroidogenesis in adult mice testes. Andrology 2018; 6:465-477. [DOI: 10.1111/andr.12475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 11/27/2022]
Affiliation(s)
- D. Joshi
- Department of Zoology; Institute of Science; Banaras Hindu University; Varanasi India
| | - S. K. Singh
- Department of Zoology; Institute of Science; Banaras Hindu University; Varanasi India
| |
Collapse
|
12
|
Sarkar D, Singh SK. Effect of neonatal hypothyroidism on prepubertal mouse testis in relation to thyroid hormone receptor alpha 1 (THRα1). Gen Comp Endocrinol 2017; 251:109-120. [PMID: 27519547 DOI: 10.1016/j.ygcen.2016.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/30/2016] [Accepted: 08/01/2016] [Indexed: 11/16/2022]
Abstract
Thyroid hormones (THs) are important for growth and development of many tissues, and altered thyroid status affects various organs and systems. Testis also is considered as a thyroid hormone responsive organ. Though THs play an important role in regulation of testicular steroidogenesis and spermatogenesis, the exact mechanism of this regulation remains poorly understood. The present study, therefore, is designed to examine the effect of neonatal hypothyroidism on prepubertal Parkes (P) strain mice testis in relation to thyroid hormone receptor alpha 1 (THRα1). Hypothyroidism was induced by administration of 6-propyl-2-thiouracil (PTU) in mother's drinking water from birth to day 28; on postnatal day (PND) 21 only pups, and on PND 28, both pups and lactating dams were euthanized. Serum T3 and T4 were markedly reduced in pups at PND 28 and in lactating mothers, while serum and intra-testicular testosterone levels were considerably decreased in pups of both age groups. Further, serum and intra-testicular levels of estrogen were significantly increased in hypothyroid mice at PND 28 with concomitant increase in CYP19 expression. Histologically, marked changes were noticed in testes of PTU-treated mice; immunohistochemical and western blot analyses of testes in treated mice also revealed marked decrease in the expression of THRα1 at both age groups. Semiquantitative RT-PCR and western blot analyses also showed reductions in both testicular mRNA and protein levels of SF-1, StAR, CYP11A1 and 3β-HSD in these mice. In conclusion, our results suggest that neonatal hypothyroidism alters localization and expression of THRα1 and impairs testicular steroidogenesis by down-regulating the expression SF-1, thereby affecting spermatogenesis in prepubertal mice.
Collapse
Affiliation(s)
- Debarshi Sarkar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Shio Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
13
|
Decreased expression of orexin 1 receptor in adult mice testes during alloxan-induced diabetes mellitus perturbs testicular steroidogenesis and glucose homeostasis. Biochem Biophys Res Commun 2017; 490:1346-1354. [DOI: 10.1016/j.bbrc.2017.07.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/05/2017] [Indexed: 01/02/2023]
|
14
|
Joshi D, Singh SK. Localization and expression of Orexin A and its receptor in mouse testis during different stages of postnatal development. Gen Comp Endocrinol 2017; 241:50-56. [PMID: 27174745 DOI: 10.1016/j.ygcen.2016.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/29/2016] [Accepted: 05/06/2016] [Indexed: 11/25/2022]
Abstract
Orexin A (OXA), a hypothalamic neuropeptide, is involved in regulation of various biological functions and its actions are mediated through G-protein-coupled receptor, OX1R. This neuropeptide has emerged as a central neuroendocrine modulator of reproductive functions. Both OXA and OX1R have been shown to be expressed in peripheral organs such as gastrointestinal and genital tracts. In the present study, localization and expression of OXA and OX1R in mouse testis during different stages of postnatal development have been investigated. Immunohistochemical results demonstrated localization of OXA and OX1R in both the interstitial and the tubular compartments of the testis throughout the period of postnatal development. In testicular sections on 0day postpartum (dpp), gonocytes, Sertoli cells and foetal Leydig cells showed OXA and OX1R-immunopositive signals. At 10dpp, Sertoli cells, spermatogonia, early spermatocytes and Leydig cells showed immunopositive signals for both, the ligand and the receptor. On 30 and 90dpp, the spermatogonia, Sertoli cells, spermatocytes, spermatids and Leydig cells showed the OXA and OX1R-immunopositive signals. At 90dpp, strong OXA-positive signals were seen in Leydig cells, primary spermatocytes and spermatogonia, while OX1R-immunopositive intense signals were observed in Leydig cells and elongated spermatids. Further, semiquantitative RT-PCR and immunoblot analyses showed that OXA and OX1R were expressed in the testis both at transcript and protein levels during different stages of postnatal development. The expression of OXA and OX1R increased progressively from day of birth (0dpp) until adulthood (90dpp), with maximal expression at 90 dpp. The results suggest that OXA and OX1R are expressed in the testis and that they may help in proliferation and development of germ cells, Leydig cells and Sertoli cells, and in the spermatogenic process and steroidogenesis.
Collapse
Affiliation(s)
- Deepanshu Joshi
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Shio Kumar Singh
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|