1
|
Rose EM, Haakenson CM, Patel A, Gaind S, Shank BD, Ball GF. Song system neuroanatomy, and immediate early gene expression in a finch species with extensive male and female song. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:735-749. [PMID: 37436439 DOI: 10.1007/s00359-023-01651-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/13/2023]
Abstract
Birdsong is a relatively well-studied behavior, both due to its importance as a model for vocal production learning and as an intriguing complex social behavior. Until the last few decades, work on birdsong focused almost exclusively on males. However, it is now widely accepted that female song not only exists, but is fairly common throughout the oscine passerines. Despite this, and the large number of researchers who have begun exploring female song in the field, researchers in the lab have been slow to adopt model species with female song. Studying female song in the lab is critical for our understanding of sex-specific factors in the physiology controlling this fascinating behavior. Additionally, as a model for vocal production learning in humans, understanding the mechanistic and neuroendocrine control of female song is clearly important. In this study, we examined the red-cheeked cordon bleu (RCCB), an Estrildid finch species with extensive female song. Specifically, we found that there were no significant sex differences in circulating levels of testosterone and progesterone, nor in song production rate. There were no significant differences in cell densities in the three nuclei of the song control system we examined. Additionally, the volume of the robust nucleus of the arcopallium was not significantly different and we report the smallest sex difference in HVC yet published in a songbird. Finally, we demonstrated similar levels of motor driven immediate early gene expression in both males and females after song production.
Collapse
Affiliation(s)
- Evangeline M Rose
- Department of Psychology, University of Maryland, College Park, MD, USA.
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA.
| | - Chelsea M Haakenson
- Department of Psychology, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Aliyah Patel
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Shivika Gaind
- Department of Psychology, University of Maryland, College Park, MD, USA
| | | | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| |
Collapse
|
2
|
Riyahi S, Liebermann-Lilie ND, Jacobs A, Korsten P, Mayer U, Schmoll T. Transcriptomic changes in the posterior pallium of male zebra finches associated with social niche conformance. BMC Genomics 2024; 25:694. [PMID: 39009985 PMCID: PMC11251365 DOI: 10.1186/s12864-024-10573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
Animals plastically adjust their physiological and behavioural phenotypes to conform to their social environment-social niche conformance. The degree of sexual competition is a critical part of the social environment to which animals adjust their phenotypes, but the underlying genetic mechanisms are poorly understood. We conducted a study to investigate how differences in sperm competition risk affect the gene expression profiles of the testes and two brain areas (posterior pallium and optic tectum) in breeding male zebra finches (Taeniopygia castanotis). In this pre-registered study, we investigated a large sample of 59 individual transcriptomes. We compared two experimental groups: males held in single breeding pairs (low sexual competition) versus those held in two pairs (elevated sexual competition) per breeding cage. Using weighted gene co-expression network analysis (WGCNA), we observed significant effects of the social treatment in all three tissues. However, only the treatment effects found in the pallium were confirmed by an additional randomisation test for statistical robustness. Likewise, the differential gene expression analysis revealed treatment effects only in the posterior pallium (ten genes) and optic tectum (six genes). No treatment effects were found in the testis at the single gene level. Thus, our experiments do not provide strong evidence for transcriptomic adjustment specific to manipulated sperm competition risk. However, we did observe transcriptomic adjustments to the manipulated social environment in the posterior pallium. These effects were polygenic rather than based on few individual genes with strong effects. Our findings are discussed in relation to an accompanying paper using the same animals, which reports behavioural results consistent with the results presented here.
Collapse
Affiliation(s)
- Sepand Riyahi
- Evolutionary Biology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany.
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, Vienna, 1030, Austria.
| | - Navina D Liebermann-Lilie
- Evolutionary Biology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
| | - Arne Jacobs
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Peter Korsten
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Uwe Mayer
- Center for Mind/Brain Science, University of Trento, Piazza Manifattura 1, Rovereto, TN, 38068, Italy.
| | - Tim Schmoll
- Evolutionary Biology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany.
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
3
|
Lefeuvre M, Rutkowska J. Zebra finch song parameters are affected by the breeding status of the male, but not temperature variability. Physiol Behav 2024; 281:114581. [PMID: 38734358 DOI: 10.1016/j.physbeh.2024.114581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Bird song is a crucial feature for mate choice and reproduction. Song can potentially communicate information related to the quality of the mate, through song complexity, structure or finer changes in syllable characteristics. It has been shown in zebra finches that those characteristics can be affected by various factors including motivation, hormone levels or extreme temperature. However, although the literature on zebra finch song is substantial, some factors have been neglected. In this paper, we recorded male zebra finches in two breeding contexts (before and after pairing) and in two ambient temperature conditions (stable and variable) to see how those factors could influence song production. We found strong differences between the two breeding contexts: compared to their song before pairing, males that were paired had lower song rate, syllable consistency, frequency and entropy, while surprisingly the amplitude of their syllables increased. Temperature variability had an impact on the extent of these differences, but did not directly affect the song parameters that we measured. Our results describe for the first time how breeding status and temperature variability can affect zebra finch song, and give some new insights into the subtleties of the acoustic communication of this model species.
Collapse
Affiliation(s)
- Maëlle Lefeuvre
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Cracow, Poland; Jagiellonian University, Faculty of Biology, Institute of Environmental Sciences, Cracow, Poland.
| | - Joanna Rutkowska
- Jagiellonian University, Faculty of Biology, Institute of Environmental Sciences, Cracow, Poland
| |
Collapse
|
4
|
Vajaria R, Davis D, Thaweepanyaporn K, Dovey J, Nasuto S, Delivopoulos E, Tamagnini F, Knight P, Vasudevan N. Estrogen and testosterone secretion from the mouse brain. Steroids 2024; 204:109398. [PMID: 38513983 DOI: 10.1016/j.steroids.2024.109398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Estrogen and testosterone are typically thought of as gonadal or adrenal derived steroids that cross the blood brain barrier to signal via both rapid nongenomic and slower genomic signalling pathways. Estrogen and testosterone signalling has been shown to drive interlinked behaviours such as social behaviours and cognition by binding to their cognate receptors in hypothalamic and forebrain nuclei. So far, acute brain slices have been used to study short-term actions of 17β-estradiol, typically using electrophysiological measures. For example, these techniques have been used to investigate, nongenomic signalling by estrogen such as the estrogen modulation of long-term potentiation (LTP) in the hippocampus. Using a modified method that preserves the slice architecture, we show, for the first time, that acute coronal slices from the prefrontal cortex and from the hypothalamus maintained in aCSF over longer periods i.e. 24 h can be steroidogenic, increasing their secretion of testosterone and estrogen. We also show that the hypothalamic nuclei produce more estrogen and testosterone than the prefrontal cortex. Therefore, this extended acute slice system can be used to study the regulation of steroid production and secretion by discrete nuclei in the brain.
Collapse
Affiliation(s)
- Ruby Vajaria
- School of Biological Sciences, University of Reading, Reading, UK
| | - DeAsia Davis
- School of Biological Sciences, University of Reading, Reading, UK
| | | | - Janine Dovey
- School of Biological Sciences, University of Reading, Reading, UK
| | - Slawomir Nasuto
- School of Biological Sciences, University of Reading, Reading, UK
| | | | | | - Philip Knight
- School of Biological Sciences, University of Reading, Reading, UK
| | | |
Collapse
|
5
|
Chen L, Yu Q, Guo F, Wang X, Cai Z, Zhou Q. Neurotensin counteracts hair growth inhibition induced by chronic restraint stress. Exp Dermatol 2024; 33:e14990. [PMID: 38071436 DOI: 10.1111/exd.14990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/30/2023] [Accepted: 11/23/2023] [Indexed: 01/30/2024]
Abstract
Stress has been considered as a potential trigger for hair loss through the neuroendocrine-hair follicle (HF) axis. Neurotensin (NTS), a neuropeptide, is known to be dysregulated in the inflammatory-associated skin diseases. However, the precise role of NTS in stress-induced hair loss is unclear. To investigate the function and potential mechanisms of NTS in stress-induced hair growth inhibition, we initially detected the expression of neurotensin receptor (Ntsr) and NTS in the skin tissues of stressed mice by RNA-sequencing and ELISA. We found chronic restraint stress (CRS) significantly decreased the expression of both NTS and Ntsr in the skin tissues of mice. Intracutaneous injection of NTS effectively counteracted CRS-induced inhibition of hair growth in mice. Furthermore, NTS regulated a total of 1093 genes expression in human dermal papilla cells (HDPC), with 591 genes being up-regulated and 502 genes being down-regulated. GO analysis showed DNA replication, cell cycle, integral component of plasma membrane and angiogenesis-associated genes were significantly regulated by NTS. KEGG enrichment demonstrated that NTS also regulated genes related to the Hippo signalling pathway, axon guidance, cytokine-cytokine receptor interaction and Wnt signalling pathway in HDPC. Our results not only uncovered the potential effects of NTS on stress-induced hair growth inhibition but also provided an understanding of the mechanisms at the gene transcriptional level.
Collapse
Affiliation(s)
- Lingjing Chen
- Department of Dermatology, Hangzhou Children's Hospital, Hangzhou, China
| | - Qing Yu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Dermatology, Yuyao People's Hospital, Ningbo, China
| | - Feiying Guo
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Dermatology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Xuewen Wang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenying Cai
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Zhou
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Hecht EE, Barton SA, Rogers Flattery CN, Meza Meza A. The evolutionary neuroscience of domestication. Trends Cogn Sci 2023; 27:553-567. [PMID: 37087363 DOI: 10.1016/j.tics.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/24/2023]
Abstract
How does domestication affect the brain? This question has broad relevance. Domesticated animals play important roles in human society, and substantial recent work has addressed the hypotheses that a domestication syndrome links phenotypes across species, including Homo sapiens. Surprisingly, however, neuroscience research on domestication remains largely disconnected from current knowledge about how and why brains change in evolution. This article aims to bridge that gap. Examination of recent research reveals some commonalities across species, but ultimately suggests that brain changes associated with domestication are complex and variable. We conclude that interactions between behavioral, metabolic, and life-history selection pressures, as well as the role the role of experience and environment, are currently largely overlooked and represent important directions for future research.
Collapse
Affiliation(s)
- Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02171, USA.
| | - Sophie A Barton
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02171, USA
| | | | - Araceli Meza Meza
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02171, USA
| |
Collapse
|
7
|
Green P, George E, Rosvall K, Johnsen S, Nowicki S. Testosterone, signal coloration, and signal color perception in male zebra finch contests. Ethology 2022; 128:131-142. [PMID: 35185233 PMCID: PMC8849566 DOI: 10.1111/eth.13247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Many animals use assessment signals to resolve contests over limited resources while minimizing the costs of those contests. The carotenoid-based orange to red bills of male zebra finches (Taeniopygia guttata) are thought to function as assessment signals in male-male contests, but behavioral analyses relating contest behaviors and outcomes to bill coloration have yielded mixed results. We examined the relationship between bill color and contests while incorporating measurements of color perception and testosterone (T) production, for an integrative view of aggressive signal behavior, production, and perception. We assayed the T production capabilities of 12 males in response to a gonadotropin-releasing hormone (GnRH) challenge. We then quantified the initiation, escalation, and outcome of over 400 contests in the group, and measured bill color using calibrated photography. Finally, because signal perception can influence signal function, we tested how males perceive variation in bill coloration, asking if males exhibit categorical perception of bill color, as has been shown recently in female zebra finches. The data suggest that males with greater T production capabilities than their rivals were more likely to initiate contests against those rivals, while males with redder bills than their rivals were more likely to win contests. Males exhibited categorical color perception, but individual variation in the effect of categorical perception on color discrimination abilities did not predict any aspects of contest behavior or outcomes. Our results are consistent with the hypotheses that T plays a role in zebra finch contests and that bill coloration functions as an aggressive signal. We suggest future approaches, based on animal contest theory, for how links among signals, perception, and assessment can be tested.
Collapse
Affiliation(s)
- P.A. Green
- Department of Biology, Duke University, Durham, NC 27708, USA,Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, TR10 9FE, UK
| | - E.M. George
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA,Center for the Integrative Study of Animal Behavior, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - K.A. Rosvall
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA,Center for the Integrative Study of Animal Behavior, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - S. Johnsen
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - S. Nowicki
- Department of Biology, Duke University, Durham, NC 27708, USA,Department of Neurobiology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
8
|
Gleeson BT. Masculinity and the Mechanisms of Human Self-Domestication. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY 2020. [DOI: 10.1007/s40750-019-00126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Prior NH, Fernandez MSA, Soula HA, Vignal C. Water restriction influences intra-pair vocal behavior and the acoustic structure of vocalisations in the opportunistically breeding zebra finch (Taeniopygia guttata). Behav Processes 2019; 162:147-156. [PMID: 30825505 DOI: 10.1016/j.beproc.2019.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/12/2019] [Accepted: 02/26/2019] [Indexed: 12/27/2022]
Abstract
Seasonally-breeding species experience significant and predictable shifts in vocal behaviour; however, it is unclear to what extent this is true for species that breed opportunistically. The Australian zebra finch is an opportunistically breeding species, which means individuals must time breeding bouts based on many environmental factors. Here we tested the effect of experimental water restriction, which suppresses reproductive readiness in zebra finches, on vocal behaviour of males and females. More specifically, we quantified the effect of water restriction on three parameters of vocal behaviour in pair-bonded zebra finches: vocal activity, patterns of vocal exchanges, and the acoustic structure of vocalisations (calls and male song). We found that water restriction caused a decrease in vocal output (both song and call rate). Additionally, water restriction affected the composition of male songs. However, there was no effect of water restriction on the patterns of calling exchanges for monogamous partners (temporal coordination and turn taking). Finally, water restriction had vocalisation- and sex-specific effects on the acoustic structure of song syllables and calls. Because the direction of these effects were vocalisation- and sex- specific, there may be different mechanisms underlying the effects of water restriction on acoustic structure depending on context. These results contribute to the growing body of research highlighting the rich communicative potential of bird calls. Our current results raise the hypothesis that zebra finches may use changes in vocal behaviour and/or the structure of vocalisations of their conspecifics when making breeding decisions.
Collapse
Affiliation(s)
- Nora H Prior
- Univ Lyon, UJM-Saint-Etienne, CNRS, Neuro-PSI/ENES UMR 9197, F-42023, SAINT-ETIENNE, France; Biology/ Psychology Departments, University of Maryland, College Park, USA.
| | - Marie S A Fernandez
- Univ Lyon, UJM-Saint-Etienne, CNRS, Neuro-PSI/ENES UMR 9197, F-42023, SAINT-ETIENNE, France; Univ Lyon, INRIA, Beagle, F-69100, Villeurbanne, France
| | - Hédi A Soula
- Univ Lyon, INRIA, Beagle, F-69100, Villeurbanne, France; Sorbonne Université, Inserm UMRS 1138, F-75006, Paris, France
| | - Clémentine Vignal
- Sorbonne Université, CNRS, Institute of Ecology and Environmental Sciences UMR 7618, F-75005 Paris, France
| |
Collapse
|
10
|
Liere P, Cornil CA, de Bournonville MP, Pianos A, Keller M, Schumacher M, Balthazart J. Steroid profiles in quail brain and serum: Sex and regional differences and effects of castration with steroid replacement. J Neuroendocrinol 2019; 31:e12681. [PMID: 30585662 PMCID: PMC6412023 DOI: 10.1111/jne.12681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 02/02/2023]
Abstract
Both systemic and local production contribute to the concentration of steroids measured in the brain. This idea was originally based on rodent studies and was later extended to other species, including humans and birds. In quail, a widely used model in behavioural neuroendocrinology, it was demonstrated that all enzymes needed to produce sex steroids from cholesterol are expressed and active in the brain, although the actual concentrations of steroids produced were never investigated. We carried out a steroid profiling in multiple brain regions and serum of sexually mature male and female quail by gas chromatography coupled with mass spectrometry. The concentrations of some steroids (eg, corticosterone, progesterone and testosterone) were in equilibrium between the brain and periphery, whereas other steroids (eg, pregnenolone (PREG), 5α/β-dihydroprogesterone and oestrogens) were more concentrated in the brain. In the brain regions investigated, PREG sulphate, progesterone and oestrogen concentrations were higher in the hypothalamus-preoptic area. Progesterone and its metabolites were more concentrated in the female than the male brain, whereas testosterone, its metabolites and dehydroepiandrosterone were more concentrated in males, suggesting that sex steroids present in quail brain mainly depend on their specific steroidogenic pathways in the ovaries and testes. However, the results of castration experiments suggested that sex steroids could also be produced in the brain independently of the peripheral source. Treatment with testosterone or oestradiol restored the concentrations of most androgens or oestrogens, respectively, although penetration of oestradiol in the brain appeared to be more limited. These studies illustrate the complex interaction between local brain synthesis and the supply from the periphery for the steroids present in the brain that are either directly active or represent the substrate of centrally located enzymes.
Collapse
Affiliation(s)
- Philippe Liere
- U1195 INSERM, University Paris Sud and University Paris Saclay, 80 rue du Général Leclerc, 94276 Le Kremlin-Bicêtre Cédex, France
| | - Charlotte A. Cornil
- University of Liège, GIGA Neurosciences, 1 Avenue de l’Hôpital (Bat. B36), 4000 Liège, Belgium
| | | | - Antoine Pianos
- U1195 INSERM, University Paris Sud and University Paris Saclay, 80 rue du Général Leclerc, 94276 Le Kremlin-Bicêtre Cédex, France
| | - Matthieu Keller
- Laboratoire de Physiologie de la Reproduction et des Comportements, UMR 7247 INRA/CNRS/Université de Tours, Nouzilly, France
| | - Michael Schumacher
- U1195 INSERM, University Paris Sud and University Paris Saclay, 80 rue du Général Leclerc, 94276 Le Kremlin-Bicêtre Cédex, France
| | - Jacques Balthazart
- University of Liège, GIGA Neurosciences, 1 Avenue de l’Hôpital (Bat. B36), 4000 Liège, Belgium
| |
Collapse
|
11
|
Crino OL, Jensen SM, Buchanan KL, Griffith SC. Evidence for condition mediated trade-offs between the HPA- and HPG-axes in the wild zebra finch. Gen Comp Endocrinol 2018; 259:189-198. [PMID: 29197553 DOI: 10.1016/j.ygcen.2017.11.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/16/2017] [Accepted: 11/28/2017] [Indexed: 11/20/2022]
Abstract
Opportunistic breeding is a strategy used to maximize reproductive success in unpredictable environments. Birds that breed opportunistically are thought to maintain partial activation of the reproductive axis in order to rapidly initiate breeding when environmental conditions become suitable. The physiological mechanisms that modulate reproduction in seasonally breeding birds have been well explored. In contrast, the physiological mechanisms that allow opportunistic breeding birds to maintain a continued state of reproductive readiness has not been well established. Here, we tested the hypothesis that reproductive readiness is modulated through condition-mediated effects on the hypothalamic-pituitaryadrenal (HPA) axis and its downstream effects on corticosterone (CORT) secretion in wild zebra finches (Taeniopygia guttata). We examined the variation in body condition, HPA-axis activity (endogenous and adrenocorticotropic hormone (ACTH)-induced responses), and hypothalamic-pituitary-gonadal (HPG) axis activity activity (baseline and gonadotropin-releasing hormone (GnRH) induced testosterone and estradiol levels) in zebra finches across five sites in the Northern Territory in Australia. We found that birds at the sites in the lowest condition had the highest level of baseline and peak CORT. Additionally, males at the sites in the lowest condition had the highest fold increase in testosterone following a GnRH challenge. Across sites, birds with low body condition had high baseline, peak, and ACTH-induced levels of CORT. Our data suggest that reproductive readiness in opportunistically breeding birds is modulated by condition-mediated trade-offs between the HPA- and the HPG-axes. Further work is needed to understand the environmental conditions that influence reproductive activation in opportunistically breeding birds.
Collapse
Affiliation(s)
- Ondi L Crino
- School of Life and Environmental Sciences, Deakin University, 3228 Victoria, Australia; Department of Biological Sciences, Macquarie University, 2122 New South Wales, Australia.
| | - Sophia M Jensen
- Department of Biological Sciences, Macquarie University, 2122 New South Wales, Australia
| | - Katherine L Buchanan
- School of Life and Environmental Sciences, Deakin University, 3228 Victoria, Australia
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, 2122 New South Wales, Australia
| |
Collapse
|