1
|
Vogt G. Phenotypic plasticity in the monoclonal marbled crayfish is associated with very low genetic diversity but pronounced epigenetic diversity. Curr Zool 2023; 69:426-441. [PMID: 37614917 PMCID: PMC10443617 DOI: 10.1093/cz/zoac094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/19/2022] [Indexed: 08/25/2023] Open
Abstract
Clonal organisms are particularly useful to investigate the contribution of epigenetics to phenotypic plasticity, because confounding effects of genetic variation are negligible. In the last decade, the apomictic parthenogenetic marbled crayfish, Procambarus virginalis, has been developed as a model to investigate the relationships between phenotypic plasticity and genetic and epigenetic diversity in detail. This crayfish originated about 30 years ago by autotriploidy from a single slough crayfish Procambarus fallax. As the result of human releases and active spreading, marbled crayfish has established numerous populations in very diverse habitats in 22 countries from the tropics to cold temperate regions. Studies in the laboratory and field revealed considerable plasticity in coloration, spination, morphometric parameters, growth, food preference, population structure, trophic position, and niche width. Illumina and PacBio whole-genome sequencing of marbled crayfish from representatives of 19 populations in Europe and Madagascar demonstrated extremely low genetic diversity within and among populations, indicating that the observed phenotypic diversity and ability to live in strikingly different environments are not due to adaptation by selection on genetic variation. In contrast, considerable differences were found between populations in the DNA methylation patterns of hundreds of genes, suggesting that the environmentally induced phenotypic plasticity is mediated by epigenetic mechanisms and corresponding changes in gene expression. Specific DNA methylation fingerprints persisted in local populations over successive years indicating the existence of epigenetic ecotypes, but there is presently no information as to whether these epigenetic signatures are transgenerationally inherited or established anew in each generation and whether the recorded phenotypic plasticity is adaptive or nonadaptive.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Mandrioli M. From Environmental Epigenetics to the Inheritance of Acquired Traits: A Historian and Molecular Perspective on an Unnecessary Lamarckian Explanation. Biomolecules 2023; 13:1077. [PMID: 37509113 PMCID: PMC10377537 DOI: 10.3390/biom13071077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/16/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
In the last decade, it has been suggested that epigenetics may enhance the adaptive possibilities of animals and plants to novel environments and/or habitats and that such epigenetic changes may be inherited from parents to offspring, favoring their adaptation. As a consequence, several Authors called for a shift in the Darwinian paradigm, asking for a neo-Lamarckian view of evolution. Regardless of what will be discovered about the mechanisms of rapid adaptation to environmental changes, the description of epigenetic inheritance as a Lamarckian process is incorrect from a historical point of view and useless at a scientific level. At the same time, even if some examples support the presence of adaptation without the involvement of changes in DNA sequences, in the current scenario no revolution is actually occurring, so we are simply working on a stimulating research program that needs to be developed but that is, at present, completely Darwinian.
Collapse
Affiliation(s)
- Mauro Mandrioli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
| |
Collapse
|
3
|
Bock SL, Smaga CR, McCoy JA, Parrott BB. Genome-wide DNA methylation patterns harbour signatures of hatchling sex and past incubation temperature in a species with environmental sex determination. Mol Ecol 2022; 31:5487-5505. [PMID: 35997618 PMCID: PMC9826120 DOI: 10.1111/mec.16670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 01/11/2023]
Abstract
Conservation of thermally sensitive species depends on monitoring organismal and population-level responses to environmental change in real time. Epigenetic processes are increasingly recognized as key integrators of environmental conditions into developmentally plastic responses, and attendant epigenomic data sets hold potential for revealing cryptic phenotypes relevant to conservation efforts. Here, we demonstrate the utility of genome-wide DNA methylation (DNAm) patterns in the face of climate change for a group of especially vulnerable species, those with temperature-dependent sex determination (TSD). Due to their reliance on thermal cues during development to determine sexual fate, contemporary shifts in temperature are predicted to skew offspring sex ratios and ultimately destabilize sensitive populations. Using reduced-representation bisulphite sequencing, we profiled the DNA methylome in blood cells of hatchling American alligators (Alligator mississippiensis), a TSD species lacking reliable markers of sexual dimorphism in early life stages. We identified 120 sex-associated differentially methylated cytosines (DMCs; FDR < 0.1) in hatchlings incubated under a range of temperatures, as well as 707 unique temperature-associated DMCs. We further developed DNAm-based models capable of predicting hatchling sex with 100% accuracy (in 20 training samples and four test samples) and past incubation temperature with a mean absolute error of 1.2°C (in four test samples) based on the methylation status of 20 and 24 loci, respectively. Though largely independent of epigenomic patterning occurring in the embryonic gonad during TSD, DNAm patterns in blood cells may serve as nonlethal markers of hatchling sex and past incubation conditions in conservation applications. These findings also raise intriguing questions regarding tissue-specific epigenomic patterning in the context of developmental plasticity.
Collapse
Affiliation(s)
- Samantha L. Bock
- Eugene P. Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- Savannah River Ecology LaboratoryAikenSouth CarolinaUSA
| | - Christopher R. Smaga
- Eugene P. Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- Savannah River Ecology LaboratoryAikenSouth CarolinaUSA
| | - Jessica A. McCoy
- Department of BiologyCollege of CharlestonCharlestonSouth CarolinaUSA
| | - Benjamin B. Parrott
- Eugene P. Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- Savannah River Ecology LaboratoryAikenSouth CarolinaUSA
| |
Collapse
|
4
|
Chapelle V, Silvestre F. Population Epigenetics: The Extent of DNA Methylation Variation in Wild Animal Populations. EPIGENOMES 2022; 6:31. [PMID: 36278677 PMCID: PMC9589984 DOI: 10.3390/epigenomes6040031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Population epigenetics explores the extent of epigenetic variation and its dynamics in natural populations encountering changing environmental conditions. In contrast to population genetics, the basic concepts of this field are still in their early stages, especially in animal populations. Epigenetic variation may play a crucial role in phenotypic plasticity and local adaptation as it can be affected by the environment, it is likely to have higher spontaneous mutation rate than nucleotide sequences do, and it may be inherited via non-mendelian processes. In this review, we aim to bring together natural animal population epigenetic studies to generate new insights into ecological epigenetics and its evolutionary implications. We first provide an overview of the extent of DNA methylation variation and its autonomy from genetic variation in wild animal population. Second, we discuss DNA methylation dynamics which create observed epigenetic population structures by including basic population genetics processes. Then, we highlight the relevance of DNA methylation variation as an evolutionary mechanism in the extended evolutionary synthesis. Finally, we suggest new research directions by highlighting gaps in the knowledge of the population epigenetics field. As for our results, DNA methylation diversity was found to reveal parameters that can be used to characterize natural animal populations. Some concepts of population genetics dynamics can be applied to explain the observed epigenetic structure in natural animal populations. The set of recent advancements in ecological epigenetics, especially in transgenerational epigenetic inheritance in wild animal population, might reshape the way ecologists generate predictive models of the capacity of organisms to adapt to changing environments.
Collapse
Affiliation(s)
- Valentine Chapelle
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth, and Environment, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | | |
Collapse
|
5
|
Vogt G. Paradigm shifts in animal epigenetics: Research on non-model species leads to new insights into dependencies, functions and inheritance of DNA methylation. Bioessays 2022; 44:e2200040. [PMID: 35618444 DOI: 10.1002/bies.202200040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/06/2022]
Abstract
Recent investigations with non-model species and whole-genome approaches have challenged several paradigms in animal epigenetics. They revealed that epigenetic variation in populations is not the mere consequence of genetic variation, but is a semi-independent or independent source of phenotypic variation, depending on mode of reproduction. DNA methylation is not positively correlated with genome size and phylogenetic position as earlier believed, but has evolved differently between and within higher taxa. Epigenetic marks are usually not completely erased in the zygote and germ cells as generalized from mouse, but often persist and can be transgenerationally inherited, making them evolutionarily relevant. Gene body methylation and promoter methylation are similar in vertebrates and invertebrates with well methylated genomes but transposon silencing through methylation is variable. The new data also suggest that animals use epigenetic mechanisms to cope with rapid environmental changes and to adapt to new environments. The main benefiters are asexual populations, invaders, sessile taxa and long-lived species.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
6
|
Olmedo-Suárez MÁ, Ramírez-Díaz I, Pérez-González A, Molina-Herrera A, Coral-García MÁ, Lobato S, Sarvari P, Barreto G, Rubio K. Epigenetic Regulation in Exposome-Induced Tumorigenesis: Emerging Roles of ncRNAs. Biomolecules 2022; 12:513. [PMID: 35454102 PMCID: PMC9032613 DOI: 10.3390/biom12040513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Environmental factors, including pollutants and lifestyle, constitute a significant role in severe, chronic pathologies with an essential societal, economic burden. The measurement of all environmental exposures and assessing their correlation with effects on individual health is defined as the exposome, which interacts with our unique characteristics such as genetics, physiology, and epigenetics. Epigenetics investigates modifications in the expression of genes that do not depend on the underlying DNA sequence. Some studies have confirmed that environmental factors may promote disease in individuals or subsequent progeny through epigenetic alterations. Variations in the epigenetic machinery cause a spectrum of different disorders since these mechanisms are more sensitive to the environment than the genome, due to the inherent reversible nature of the epigenetic landscape. Several epigenetic mechanisms, including modifications in DNA (e.g., methylation), histones, and noncoding RNAs can change genome expression under the exogenous influence. Notably, the role of long noncoding RNAs in epigenetic processes has not been well explored in the context of exposome-induced tumorigenesis. In the present review, our scope is to provide relevant evidence indicating that epigenetic alterations mediate those detrimental effects caused by exposure to environmental toxicants, focusing mainly on a multi-step regulation by diverse noncoding RNAs subtypes.
Collapse
Affiliation(s)
- Miguel Ángel Olmedo-Suárez
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Facultad de Biotecnología, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Andrea Pérez-González
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Alejandro Molina-Herrera
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Miguel Ángel Coral-García
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Decanato de Ciencias de la Salud, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Sagrario Lobato
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Pouya Sarvari
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
| | - Guillermo Barreto
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Laboratoire IMoPA, CNRS, Université de Lorraine, UMR 73635 Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
- Laboratoire IMoPA, CNRS, Université de Lorraine, UMR 73635 Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
7
|
Siddiqui R, Maciver SK, Khan NA. Gut microbiome-immune system interaction in reptiles. J Appl Microbiol 2022; 132:2558-2571. [PMID: 34984778 DOI: 10.1111/jam.15438] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/12/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022]
Abstract
Reptiles are ectothermic amniotes in a world dominated by endotherms. Reptiles originated more than 300 million years ago and they often dwell in polluted environments which may expose them to pathogenic micro-organisms, radiation and/or heavy metals. Reptiles also possess greater longevity and may live much longer than similar-sized land mammals, for example, turtles, tortoises, crocodiles and tuatara are long-lived reptiles living up to 100 years or more. Many recent studies have emphasized the pivotal role of the gut microbiome on its host; thus, we postulated that reptilian gut microbiome and/or its metabolites and the interplay with their robust immune system may contribute to their longevity and overall hardiness. Herein, we discuss the composition of the reptilian gut microbiome, immune system-gut microbiome cross-talk, antimicrobial peptides, reptilian resistance to infectious diseases and cancer, ageing, as well the current knowledge of the genome and epigenome of these remarkable species. Preliminary studies have demonstrated that microbial gut flora of reptiles such as crocodiles, tortoises, water monitor lizard and python exhibit remarkable anticancer and antibacterial properties, as well as comprise novel gut bacterial metabolites and antimicrobial peptides. The underlying mechanisms between the gut microbiome and the immune system may hold clues to developing new therapies overall for health, and possible extrapolation to exploit the ancient defence systems of reptiles for Homo sapiens benefit.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Sutherland K Maciver
- Centre for Discovery Brain Science, Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
8
|
Siddiqui R, Maciver S, Elmoselhi A, Soares NC, Khan NA. Longevity, cellular senescence and the gut microbiome: lessons to be learned from crocodiles. Heliyon 2021; 7:e08594. [PMID: 34977412 PMCID: PMC8688568 DOI: 10.1016/j.heliyon.2021.e08594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/24/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Crocodiles are flourishing large-bodied ectotherms in a world dominated by endotherms. They survived the Cretaceous extinction event, that eradicated the dinosaurs who are thought to be their ancestral hosts. Crocodiles reside in polluted environments; and often inhabit water which contains heavy metals; frequent exposure to radiation; feed on rotten meat and considered as one of the hardy species that has successfully survived on this planet for millions of years. Another capability that crocodiles possess is their longevity. Crocodiles live much longer than similar-sized land mammals, sometimes living up to 100 years. But how do they withstand such harsh conditions that are detrimental to Homo sapiens? Given the importance of gut microbiome on its' host physiology, we postulate that the crocodile gut microbiome and/or its' metabolites produce substances contributing to their "hardiness" and longevity. Thus, we accomplished literature search in PubMed, Web of Science and Google Scholar and herein, we discuss the composition of the crocodile gut microbiome, longevity and cellular senescence in crocodiles, their resistance to infectious diseases and cancer, and our current knowledge of the genome and epigenome of these remarkable species. Furthermore, preliminary studies that demonstrate the remarkable properties of crocodile gut microbial flora are discussed. Given the profound role of the gut microbiome in the health of its' host, it is likely that the crocodile gut microbiome and its' metabolites may be contributing to their extended life expectancy and elucidating the underlying mechanisms and properties of these metabolites may hold clues to developing new treatments for age-related diseases for the benefit of Homo sapiens.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Sutherland Maciver
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Adel Elmoselhi
- College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Nelson Cruz Soares
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Naveed Ahmed Khan
- College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
9
|
Skinner MK, Nilsson EE. Role of environmentally induced epigenetic transgenerational inheritance in evolutionary biology: Unified Evolution Theory. ENVIRONMENTAL EPIGENETICS 2021; 7:dvab012. [PMID: 34729214 PMCID: PMC8557805 DOI: 10.1093/eep/dvab012] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 05/15/2023]
Abstract
The current evolutionary biology theory primarily involves genetic alterations and random DNA sequence mutations to generate the phenotypic variation required for Darwinian natural selection to act. This neo-Darwinian evolution is termed the Modern Evolution Synthesis and has been the primary paradigm for nearly 100 years. Although environmental factors have a role in neo-Darwinian natural selection, Modern Evolution Synthesis does not consider environment to impact the basic molecular processes involved in evolution. An Extended Evolutionary Synthesis has recently developed that extends the modern synthesis to consider non-genetic processes. Over the past few decades, environmental epigenetics research has been demonstrated to regulate genetic processes and directly generate phenotypic variation independent of genetic sequence alterations. Therefore, the environment can on a molecular level through non-genetic (i.e. epigenetic) mechanisms directly influence phenotypic variation, genetic variation, inheritance and adaptation. This direct action of the environment to alter phenotype that is heritable is a neo-Lamarckian concept that can facilitate neo-Darwinian (i.e. Modern Synthesis) evolution. The integration of genetics, epigenetics, Darwinian theory, Lamarckian concepts, environment, and epigenetic inheritance provides a paradigm shift in evolution theory. The role of environmental-induced epigenetic transgenerational inheritance in evolution is presented to describe a more unified theory of evolutionary biology.
Collapse
Affiliation(s)
- Michael K Skinner
- **Correspondence address. Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA. Tel: +1 509-335-1524; E-mail:
| | - Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
10
|
Perego MC, Morrell BC, Zhang L, Schütz LF, Spicer LJ. Developmental and hormonal regulation of ubiquitin-like with plant homeodomain and really interesting new gene finger domains 1 gene expression in ovarian granulosa and theca cells of cattle. J Anim Sci 2020; 98:5866609. [PMID: 32614952 DOI: 10.1093/jas/skaa205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/25/2020] [Indexed: 12/27/2022] Open
Abstract
Ubiquitin-like with plant homeodomain and really interesting new gene finger domains 1 (UHRF1) is a multi-domain nuclear protein that plays an important role in epigenetics and tumorigenesis, but its role in normal ovarian follicle development remains unknown. Thus, the present study evaluated if UHRF1 mRNA abundance in bovine follicular cells is developmentally and hormonally regulated, and if changes in UHRF1 are associated with changes in DNA methylation in follicular cells. Abundance of UHRF1 mRNA was greater in granulosa cells (GC) and theca cells (TC) from small (<6 mm) than large (≥8 mm) follicles and was greater in small-follicle GC than TC. In GC and TC, fibroblast growth factor 9 (FGF9) treatment increased (P < 0.05) UHRF1 expression by 2-fold. Also, luteinizing hormone (LH) and insulin-like growth factor 1 (IGF1) increased (P < 0.05) UHRF1 expression in TC by 2-fold, and forskolin (an adenylate cyclase inducer) alone or combined with IGF1 increased (P < 0.05) UHRF1 expression by 3-fold. An E2F transcription factor inhibitor (E2Fi) decreased (P < 0.05) UHRF1 expression by 44% in TC and by 99% in GC. Estradiol, progesterone, and dibutyryl-cAMP decreased (P < 0.05) UHRF1 mRNA abundance in GC. Treatment of GC with follicle-stimulating hormone (FSH) alone had no effect but when combined with IGF1 enhanced the UHRF1 mRNA abundance by 2.7-fold. Beauvericin (a mycotoxin) completely inhibited the FSH plus IGF1-induced UHRF1 expression in small-follicle GC. Treatments that increased UHRF1 mRNA (i.e., FGF9) in GC tended to decrease (by 63%; P < 0.10) global DNA methylation, and those that decreased UHRF1 mRNA (i.e., E2Fi) in GC tended to increase (by 2.4-fold; P < 0.10) global DNA methylation. Collectively, these results suggest that UHRF1 expression in both GC and TC is developmentally and hormonally regulated, and that UHRF1 may play a role in follicular growth and development as well as be involved in ovarian epigenetic processes.
Collapse
Affiliation(s)
| | - Breanne C Morrell
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK
| | | | | | - Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK
| |
Collapse
|
11
|
Chung FFL, Herceg Z. The Promises and Challenges of Toxico-Epigenomics: Environmental Chemicals and Their Impacts on the Epigenome. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:15001. [PMID: 31950866 PMCID: PMC7015548 DOI: 10.1289/ehp6104] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND It has been estimated that a substantial portion of chronic and noncommunicable diseases can be caused or exacerbated by exposure to environmental chemicals. Multiple lines of evidence indicate that early life exposure to environmental chemicals at relatively low concentrations could have lasting effects on individual and population health. Although the potential adverse effects of environmental chemicals are known to the scientific community, regulatory agencies, and the public, little is known about the mechanistic basis by which these chemicals can induce long-term or transgenerational effects. To address this question, epigenetic mechanisms have emerged as the potential link between genetic and environmental factors of health and disease. OBJECTIVES We present an overview of epigenetic regulation and a summary of reported evidence of environmental toxicants as epigenetic disruptors. We also discuss the advantages and challenges of using epigenetic biomarkers as an indicator of toxicant exposure, using measures that can be taken to improve risk assessment, and our perspectives on the future role of epigenetics in toxicology. DISCUSSION Until recently, efforts to apply epigenomic data in toxicology and risk assessment were restricted by an incomplete understanding of epigenomic variability across tissue types and populations. This is poised to change with the development of new tools and concerted efforts by researchers across disciplines that have led to a better understanding of epigenetic mechanisms and comprehensive maps of epigenomic variation. With the foundations now in place, we foresee that unprecedented advancements will take place in the field in the coming years. https://doi.org/10.1289/EHP6104.
Collapse
Affiliation(s)
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
12
|
Thorson JLM, Smithson M, Sadler-Riggleman I, Beck D, Dybdahl M, Skinner MK. Regional epigenetic variation in asexual snail populations among urban and rural lakes. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz020. [PMID: 31723440 PMCID: PMC6836316 DOI: 10.1093/eep/dvz020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 05/27/2023]
Abstract
Epigenetic variation has the potential to influence environmentally dependent development and contribute to phenotypic responses to local environments. Environmental epigenetic studies of sexual organisms confirm the capacity to respond through epigenetic variation. An epigenetic response could be even more important in a population when genetic variation is lacking. A previous study of an asexual snail, Potamopyrgus antipodarum, demonstrated that different populations derived from a single clonal lineage differed in both shell phenotype and methylation signature when comparing lake versus river populations. Here, we examine methylation variation among lakes that differ in environmental disturbance and pollution histories. Snails were collected from a more pristine rural Lake 1 (Lake Lytle), and two urban lakes, Lake 2 (Capitol Lake) and Lake 3 (Lake Washington) on the Northwest Pacific coast. DNA methylation was assessed for each sample population using methylated DNA immunoprecipitation, MeDIP, followed by next-generation sequencing. The differential DNA methylation regions (DMRs) identified among the different lake comparisons suggested a higher number of DMRs and variation between rural Lake 1 and one urban Lake 2, and between the two urban Lakes 2 and 3, but limited variation between the rural Lake 1 and urban Lake 3. DMR genomic characteristics and gene associations were investigated. The presence of site-specific differences between each of these lake populations suggest an epigenetic response to varied environmental factors. The results do not support an effect of geographic distance in these populations. The role of dispersal distance among lakes, population history, environmental pollution and stably inherited methylation versus environmentally triggered methylation in producing the observed epigenetic variation are discussed. Observations support the proposal that epigenetic alterations may associate with phenotypic variation and environmental factors and history of the different lakes.
Collapse
Affiliation(s)
- Jennifer L M Thorson
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Mark Smithson
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Ingrid Sadler-Riggleman
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Daniel Beck
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Mark Dybdahl
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Michael K Skinner
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| |
Collapse
|
13
|
Piferrer F, Anastasiadi D, Valdivieso A, Sánchez-Baizán N, Moraleda-Prados J, Ribas L. The Model of the Conserved Epigenetic Regulation of Sex. Front Genet 2019; 10:857. [PMID: 31616469 PMCID: PMC6775248 DOI: 10.3389/fgene.2019.00857] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022] Open
Abstract
Epigenetics integrates genomic and environmental information to produce a given phenotype. Here, the model of Conserved Epigenetic Regulation of Sex (CERS) is discussed. This model is based on our knowledge on genes involved in sexual development and on epigenetic regulation of gene expression activation and silencing. This model was recently postulated to be applied to the sexual development of fish, and it states that epigenetic and gene expression patterns are more associated with the development of a particular gonadal phenotype, e.g., testis differentiation, rather than with the intrinsic or extrinsic causes that lead to the development of this phenotype. This requires the existence of genes with different epigenetic modifications, for example, changes in DNA methylation levels associated with the development of a particular sex. Focusing on DNA methylation, the identification of CpGs, the methylation of which is linked to sex, constitutes the basis for the identification of Essential Epigenetic Marks (EEM). EEMs are defined as the number and identity of informative epigenetic marks that are strictly necessary, albeit perhaps not sufficient, to bring about a specific, measurable, phenotype of interest. Here, we provide a summary of the genes where DNA methylation has been investigated so far, focusing on fish. We found that cyp19a1a and dmrt1, two key genes for ovary and testis development, respectively, consistently show an inverse relationship between their DNA methylation and expression levels, thus following CERS predictions. However, in foxl2a, a pro-female gene, and amh, a pro-male gene, such relationship is not clear. The available data of other genes related to sexual development such as sox9, gsdf, and amhr2 are also discussed. Next, we discuss the use of CERS to make testable predictions of how sex is epigenetically regulated and to better understand sexual development, as well as the use of EEMs as tools for the diagnosis and prognosis of sex. We argue that CERS can aid in focusing research on the epigenetic regulation of sexual development not only in fish but also in vertebrates in general, particularly in reptiles with temperature sex-determination, and can be the basis for possible practical applications including sex control in aquaculture and also in conservation biology.
Collapse
Affiliation(s)
- Francesc Piferrer
- Institut de Ciències del Mar (ICM), Spanish National Research Council (CSIC), Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Volkova PY, Geras'kin SA. 'Omic' technologies as a helpful tool in radioecological research. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 189:156-167. [PMID: 29677564 DOI: 10.1016/j.jenvrad.2018.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
This article presents a brief review of the modern 'omic' technologies, namely genomics, epigenomics, transcriptomics, proteomics, and metabolomics, as well as the examples of their possible use in radioecology. For each technology, a short description of advances, limitations, and instrumental applications is given. In addition, the review contains examples of successful use of 'omic' technologies in the assessment of biological effects of pollutants in the field conditions.
Collapse
Affiliation(s)
- Polina Yu Volkova
- Institute of Radiology and Agroecology, 249032, Kievskoe shosse, 109 km, Obninsk, Russia.
| | - Stanislav A Geras'kin
- Institute of Radiology and Agroecology, 249032, Kievskoe shosse, 109 km, Obninsk, Russia
| |
Collapse
|
15
|
Abstract
This manuscript describes the different topics I have been involved in the fields of reproductive
physiology and embryo biotechnologies with attempts to address practical issues raised
mainly by the breeding industry. The journey started with phenotyping work in the field of
reproductive physio-pathology. Other issues were related to the optimization of reproductive
biotechnologies to favorize genetic selection. The implementation of genomic selection
raised opportunities to develop the use embryo biotechnologies and showed the interest of
combining them in the case of embryo genotyping. There is still a need to refine phenotyping
for reproductive traits especially for the identification of markers of uterine dysfunction.
It is believed that new knowledge generated by combining different molecular approaches
will be the source of applications that may benefit AI practice and embryo technologies.
Collapse
Affiliation(s)
- Patrice Humblot
- Division of Reproduction, Department of Clinical Sciences, SLU, Uppsala, Sweden
| |
Collapse
|
16
|
Jeremias G, Barbosa J, Marques SM, Asselman J, Gonçalves FJM, Pereira JL. Synthesizing the role of epigenetics in the response and adaptation of species to climate change in freshwater ecosystems. Mol Ecol 2018; 27:2790-2806. [DOI: 10.1111/mec.14727] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/23/2022]
Affiliation(s)
| | - João Barbosa
- Department of Biology; University of Aveiro; Aveiro Portugal
| | - Sérgio M. Marques
- Department of Biology; University of Aveiro; Aveiro Portugal
- CESAM - Centre for Environmental and Marine Studies; University of Aveiro; Aveiro Portugal
| | - Jana Asselman
- Laboratory for Environmental Toxicology and Aquatic Ecology (GhEnToxLab); Ghent University; Ghent Belgium
| | - Fernando J. M. Gonçalves
- Department of Biology; University of Aveiro; Aveiro Portugal
- CESAM - Centre for Environmental and Marine Studies; University of Aveiro; Aveiro Portugal
| | - Joana L. Pereira
- Department of Biology; University of Aveiro; Aveiro Portugal
- CESAM - Centre for Environmental and Marine Studies; University of Aveiro; Aveiro Portugal
| |
Collapse
|
17
|
Tubbs CW, McDonough CE. Reproductive Impacts of Endocrine-Disrupting Chemicals on Wildlife Species: Implications for Conservation of Endangered Species. Annu Rev Anim Biosci 2017; 6:287-304. [PMID: 29140722 DOI: 10.1146/annurev-animal-030117-014547] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Wildlife have proven valuable to our understanding of the potential effects of endocrine-disrupting chemicals (EDCs) on human health by contributing considerably to our understanding of the mechanisms and consequences of EDC exposure. But the threats EDCs present to populations of wildlife species themselves are significant, particularly for endangered species whose existence is vulnerable to any reproductive perturbation. However, few studies address the threats EDCs pose to endangered species owing to challenges associated with their study. Here, we highlight those barriers and review the available literature concerning EDC effects on endangered species. Drawing from other investigations into nonthreatened wildlife species, we highlight opportunities for new approaches to advance our understanding and potentially mitigate the effects of EDCs on endangered species to enhance their fertility.
Collapse
Affiliation(s)
- Christopher W Tubbs
- San Diego Zoo Global, Institute for Conservation Research, Escondido, California 92027, USA;
| | - Caitlin E McDonough
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, New York 13244, USA;
| |
Collapse
|
18
|
Vogt G. Facilitation of environmental adaptation and evolution by epigenetic phenotype variation: insights from clonal, invasive, polyploid, and domesticated animals. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx002. [PMID: 29492304 PMCID: PMC5804542 DOI: 10.1093/eep/dvx002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/28/2017] [Accepted: 02/02/2017] [Indexed: 05/13/2023]
Abstract
There is increasing evidence, particularly from plants, that epigenetic mechanisms can contribute to environmental adaptation and evolution. The present article provides an overview on this topic for animals and highlights the special suitability of clonal, invasive, hybrid, polyploid, and domesticated species for environmental and evolutionary epigenetics. Laboratory and field studies with asexually reproducing animals have shown that epigenetically diverse phenotypes can be produced from the same genome either by developmental stochasticity or environmental induction. The analysis of invasions revealed that epigenetic phenotype variation may help to overcome genetic barriers typically associated with invasions such as bottlenecks and inbreeding. Research with hybrids and polyploids established that epigenetic mechanisms are involved in consolidation of speciation by contributing to reproductive isolation and restructuring of the genome in the neo-species. Epigenetic mechanisms may even have the potential to trigger speciation but evidence is still meager. The comparison of domesticated animals and their wild ancestors demonstrated heritability and selectability of phenotype modulating DNA methylation patterns. Hypotheses, model predictions, and empirical results are presented to explain how epigenetic phenotype variation could facilitate adaptation and speciation. Clonal laboratory lineages, monoclonal invaders, and adaptive radiations of different evolutionary age seem particularly suitable to empirically test the proposed ideas. A respective research agenda is presented.
Collapse
Affiliation(s)
- Günter Vogt
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| |
Collapse
|