1
|
Uehara SK, Nishiike Y, Maeda K, Karigo T, Kuraku S, Okubo K, Kanda S. Identification of the FSH-RH as the other gonadotropin-releasing hormone. Nat Commun 2024; 15:5342. [PMID: 38937445 PMCID: PMC11211334 DOI: 10.1038/s41467-024-49564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
In vertebrates, folliculogenesis and ovulation are regulated by two distinct pituitary gonadotropins: follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Currently, there is an intriguing consensus that a single hypothalamic neurohormone, gonadotropin-releasing hormone (GnRH), regulates the secretion of both FSH and LH, although the required timing and functions of FSH and LH are different. However, recent studies in many non-mammalian vertebrates indicated that GnRH is dispensable for FSH function. Here, by using medaka as a model teleost, we successfully identify cholecystokinin as the other gonadotropin regulator, FSH-releasing hormone (FSH-RH). Our histological and in vitro analyses demonstrate that hypothalamic cholecystokinin-expressing neurons directly affect FSH cells through the cholecystokinin receptor, Cck2rb, thereby increasing the expression and release of FSH. Remarkably, the knockout of this pathway minimizes FSH expression and results in a failure of folliculogenesis. Here, we propose the existence of the "dual GnRH model" in vertebrates that utilize both FSH-RH and LH-RH.
Collapse
Affiliation(s)
- Shun Kenny Uehara
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Yuji Nishiike
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuki Maeda
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Tomomi Karigo
- Kennedy Krieger Institute, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Molecular Life History Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinji Kanda
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan.
| |
Collapse
|
2
|
Suzuki H, Kawamura K, Kazeto Y. Effects of luteinizing hormone-releasing hormone analog and pimozide on the release of luteinizing hormone and ovulation in artificially matured Japanese eel Anguilla japonica. Comp Biochem Physiol A Mol Integr Physiol 2023; 288:111540. [PMID: 39491162 DOI: 10.1016/j.cbpa.2023.111540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh), control oogenesis in all vertebrates. In particular, Lh plays a key role in stimulating the final oocyte maturation and subsequent ovulation. The biosynthesis and secretion of Lh are regulated by several neurohormones, including gonadotropin-releasing hormone (GnRH) and dopamine. GnRH analogs, also known as Lh releasing hormone analogs (LHRHa), and dopamine antagonists are commonly used to induce sexual maturation in teleosts. However, the effects of these reagents differ among fish species. Therefore, in the present study, the effects of LHRHa and pimozide (a dopamine antagonist) on Lh release and ovulation induction were investigated in female eels whose ovarian development was artificially induced by recombinant Fsh with ovaries containing oocytes at the migratory nucleus stage in vitro and/or in vivo. Both LHRHa and pimozide stimulated the release of Lh from pituitary cells in a dose-dependent manner in vitro. Furthermore, the synergistic effects of LHRHa and pimozide were observed in the release of Lh from the pituitary gland. In vivo experiments demonstrated that the administration of pimozide alone or in combination with LHRHa induced the release of Lh and the fusion of oil droplets in oocytes. In addition, 17α-hydroxyprogesterone (OHP) combined with LHRHa and pimozide resulted in complete ovulation at a high rate (87.5% complete ovulation and 12.5% partial ovulation), whereas LHRHa and pimozide without OHP induced partial ovulation at a low rate (0% complete ovulation and 14.3% partial ovulation). These results suggest that combined treatment with LHRHa, pimozide, and OHP could induce ovulation in artificially matured female Japanese eels. However, future studies are needed to evaluate the quality of embryos produced by females induced with LHRHa, pimozide and OHP. Additionally, the pituitary gland obtained from female eels with artificially induced sexual maturation is suitable for investigating the mechanisms of Lh release.
Collapse
Affiliation(s)
- Hiroshi Suzuki
- Fisheries Technology Institute Shibushi Field Station, Japan Fisheries Research and Education Agency, 205, Natsui, Shibushi, Shibushi, Kagoshima 899-7101, Japan.
| | - Kyoko Kawamura
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Yukinori Kazeto
- Fisheries Technology Institute Minamiizu Field Station, Japan Fisheries Research and Education Agency, 183-2 Irouzaki, Minamiizu, Kamo, Shizuoka 415-0156, Japan.
| |
Collapse
|
3
|
Ohga H, Ohta K, Matsuyama M. Long-day stimulation increases thyroid-stimulating hormone expression and affects gonadal development in chub mackerel. Comp Biochem Physiol A Mol Integr Physiol 2023; 275:111334. [PMID: 36280226 DOI: 10.1016/j.cbpa.2022.111334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022]
Abstract
For seasonal breeders, photoperiodic changes are important signals that mark the start of the breeding season. Thyroid-stimulating hormone (TSH) is a glycoprotein hormone that not only promotes the secretion of thyroid hormone but also plays a key role in regulating seasonal reproduction in birds and mammals. However, whether TSH activation has been implicated as a seasonal indicator in fish breeding has not been fully investigated. In this study, we isolated tshb as a starting point to elucidate the effect of photoperiodic changes on the activation of the reproductive axis of chub mackerel. The isolated tshb was classified as tshba, which is widely conserved in vertebrates. The quantitative PCR results showed that tshb was strongly expressed in the pituitary. When female and male chub mackerel with immature gonads were reared for six weeks under different photoperiodic conditions, the gonads developed substantially in the long-day (LD) reared fish compared to those in the short-day reared fish. Real-time PCR results showed that the expression level of tshb in the pituitary gland was significantly elevated in the LD group. Although there was no difference in the gonadotropin-releasing hormone 1 gene expression level in the preoptic area of the brain, follicle-stimulating hormone and luteinizing hormone gene expression levels in the pituitary were also significantly elevated in the LD group. In conclusion, TSH is a potential mediator of seasonal information in the reproductive endocrine axis and may induce gonadal development during the breeding season of chub mackerel.
Collapse
Affiliation(s)
- Hirofumi Ohga
- Aqua-Bioresource Innovation Center (ABRIC) Karatsu Satellite, Kyushu University, Saga 847-0132, Japan.
| | - Kohei Ohta
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | | |
Collapse
|
4
|
Nyuji M, Hamaguchi M, Shimizu A, Isu S, Yoneda M, Matsuyama M. Development of sandwich enzyme-linked immunosorbent assays for chub mackerel Scomber japonicus gonadotropins and regulation of their secretion in female reproduction. Gen Comp Endocrinol 2022; 328:114103. [PMID: 35940318 DOI: 10.1016/j.ygcen.2022.114103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022]
Abstract
The pituitary gonadotropins (Gths), follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh), play critical roles in regulating gonadal development and sexual maturation in vertebrates. We developed non-competitive enzyme-linked immunosorbent assays (ELISAs) to measure Fsh and Lh in chub mackerel Scomber japonicus, which is a commercially important scombrid species. Mouse monoclonal antibodies specific for Fsh and Lh, and a rabbit polyclonal antibody against both Gths were produced by immunization with hormones purified from chub mackerel pituitaries. These monoclonal and polyclonal antibodies were used as capture and detection antibodies in the developed sandwich ELISAs. The ELISAs were reproducible, sensitive, and specific for chub mackerel Fsh and Lh. Parallelism between the standard curve and serial dilutions of chub mackerel serum and pituitary extract was observed for both Fsh and Lh ELISAs. Comparison between vitellogenic and immature females revealed that Fsh is secreted during vitellogenesis and Lh is barely released during immaturity. After gonadotropin-releasing hormone analog (GnRHa) injection, vitellogenic females showed increases in serum Lh, whereas serum levels of Fsh did not vary. Moreover, the serum steroid profiles revealed that estradiol-17β was continuously produced after GnRHa treatment, whereas 17,20β-dihydroxy-4-pregnen-3-one secretion was transiently induced. These results indicate that, in vitellogenic females, GnRHa stimulates the release of Lh, but not Fsh, which results in acceleration of vitellogenesis and induction of oocyte maturation via steroid production.
Collapse
Affiliation(s)
- Mitsuo Nyuji
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Nagasaki 851-2213, Japan.
| | - Masami Hamaguchi
- Fisheries Technology Institute, Hatsukaichi Field Station, Japan Fisheries Research and Education Agency, Hiroshima 739-0452, Japan
| | - Akio Shimizu
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Yokohama 236-8648, Japan
| | - Sayoko Isu
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Yokohama 236-8648, Japan
| | - Michio Yoneda
- Fisheries Technology Institute, Hakatajima Field Station, Japan Fisheries Research and Education Agency, Imabari 794-2305, Japan
| | - Michiya Matsuyama
- Aqua-Bioresource Innovation Center, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
5
|
Leptin Is an Important Endocrine Player That Directly Activates Gonadotropic Cells in Teleost Fish, Chub Mackerel. Cells 2021; 10:cells10123505. [PMID: 34944013 PMCID: PMC8700583 DOI: 10.3390/cells10123505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Leptin, secreted by adipocytes, directly influences the onset of puberty in mammals. Our previous study showed that leptin stimulation could promote the secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from pituitary cells in primary culture and ovarian development in chub mackerel. This study aimed to elucidate the detailed mechanism of leptin-induced effects on gonadotropin hormone-producing cells. We produced recombinant leptin using silkworm pupae and investigated the effects of leptin on FSH and LH secretion and gene expression in the primary culture of pituitary cells from chub mackerel. The presence or absence of co-expression of lepr mRNA, FSH and LH b-subunit mRNA in gonadotropic cells was examined by double-labeled in situ hybridization. The addition of leptin significantly increased the secretion and gene expression of FSH and LH from male and female pituitary cells in primary culture. In contrast, gonadotropin-releasing hormone 1 affected neither FSH secretion in cells from females nor fshb and lhb expression in cells from males and females. The expression of lepr was observed in FSH- and LH-producing cells of both males and females. The results indicate that leptin directly regulates gonadotropin synthesis and secretion and plays an important role in the induction of puberty in teleost fish.
Collapse
|
6
|
Ohga H, Matsuyama M. Effects of LPXRFamide peptides on chub mackerel gonadotropin secretion. Biol Reprod 2021; 105:1179-1188. [PMID: 34198332 DOI: 10.1093/biolre/ioab130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 12/21/2022] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH), a neuropeptide, suppresses gonadotropin (GTH) secretion in birds and mammals. In fish, the GnIH homolog LPXRFamide (LPXRFa) produces mature peptides with species-dependent effects on sexual reproduction. Here, we investigated the effects of LPXRFa on GTH secretion in the chub mackerel (cm; Scomber japonicus). We cloned cmlpxrfa (603 bp) and cmlpxrfa-r (1,416 bp). Additionally, we isolated lpxrfa from the bluefin tuna (Thunnus orientalis) to confirm the conservation of the LPXRFa mature sequence. Phylogenetic analysis showed that the LPXRFa precursor protein produces three mature peptides, LPXRFa-1, -2, and - 3, in both species. Reverse transcription-quantitative PCR revealed that cmlpxrfa is expressed in the hypothalamus and thalamus and midbrain (T.MB), and sexual differences were observed. Receptor expression was observed in the pre-optic area, hypothalamus, T.MB, and pituitary. Female hypothalamic lpxrfa expression did not change during puberty. Reporter gene assay showed that LPXRFa induced receptor activation via the CRE and SRE signaling pathways. However, in the presence of forskolin, an intracellular cyclic AMP enhancer, none of the LPXRFa could suppress receptor activity. The in vitro bioassay results showed that gonadotropin-releasing hormone-1 (GnRH1) had no effect on follicle-stimulating hormone (FSH) secretion, whereas the three LPXRFa significantly increased FSH secretion in pituitary cells from male chub mackerel. Contrarily, GnRH1 and three LPXRFa significantly increased luteinizing hormone (LH) secretion. The in vivo administration of LPXRFa had no effect on fshb and lhb expression in pre-pubertal and mature male chub mackerel. Overall, cmLPXRFa lacks the ability to suppress GTH secretion but can promote GTH secretion.
Collapse
Affiliation(s)
- Hirofumi Ohga
- Aqua-Bioresource Innovation Center (ABRIC) Karatsu satellite, Kyushu University, Saga 847-0132, Japan
| | | |
Collapse
|
7
|
Kazeto Y, Suzuki H, Ozaki Y, Gen K. C-terminal peptide (hCTP) of human chorionic gonadotropin enhances in vivo biological activity of recombinant Japanese eel follicle-stimulating hormone and luteinizing hormone produced in FreeStyle 293-F cell lines. Gen Comp Endocrinol 2021; 306:113731. [PMID: 33539901 DOI: 10.1016/j.ygcen.2021.113731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
Gonadotropins (Gths), follicle-stimulating hormone (Fsh), and luteinizing hormone (Lh) play central roles in the reproductive biology of vertebrates. In this study, recombinant single-chain Japanese eel Gths (rGth: rFsh and rLh), and recombinant chimeric Gths (rGth-hCTPs: rFsh-hCTP and rLh-hCTP; rGth-eCTPs: rFsh-eCTP and rLh-eCTP) with an extra O-glycosylation site (either a C-terminal peptide of human (hCTP) or equine (eCTP) chorionic gonadotropin), which are known to prolong the half-life of glycoprotein were produced in HEK293 cells and highly purified. Lectin blot analyses demonstrated that all these recombinant Gths contained N-glycans of the high mannose and complex types. In contrast, only rGth-hCTPs and rGth-eCTPs possessed highly sialylated O-linked oligosaccharides. Further analyses of glycans by liquid chromatography-mass spectrometry suggested that the species, amount, and degree of sialylation of N-glycans were comparable among recombinant Fshs and recombinant Lhs, while the amount of O-glycans with sialic acids in rGth-hCTPs was higher than that in the corresponding rGth-eCTPs. The serum levels of recombinant Gths in male eels significantly increased 12-24 h after a single injection of the Gths. The levels of rGth-hCTPs tended to be higher than those of the corresponding rGths and rGth-eCTPs throughout the experimental period, coinciding with the serum fluctuations of 11-ketotestosterone (11KT). The long-term treatment of male eels with these recombinant Gths also revealed the superiority of rGth-hCTPs in assisted reproduction; thus, the serum levels of 11KT and gonadosomatic indices in eels treated with rGth-hCTPs were higher than those in eels treated with the corresponding rGths and rGth-eCTPs. The induction of the entire process of spermatogenesis was only histologically observed in rGth-hCTPs-treated eels. These findings strongly suggest that hCTP enhances the in vivo biological activity of recombinant Japanese eel Gths due to the high abundance of O-linked glycans with sialylated antennae.
Collapse
Affiliation(s)
- Yukinori Kazeto
- Tamaki Field Station, Physiological Function Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Watarai, Mie 519-0423, Japan.
| | - Hiroshi Suzuki
- Tamaki Field Station, Physiological Function Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Watarai, Mie 519-0423, Japan; Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan.
| | - Yuichi Ozaki
- Tamaki Field Station, Physiological Function Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Watarai, Mie 519-0423, Japan.
| | - Koichiro Gen
- Tuna Aquaculture Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1551-8 Taira-machi, Nagasaki 851-2213, Japan.
| |
Collapse
|
8
|
Molés G, Hausken K, Carrillo M, Zanuy S, Levavi-Sivan B, Gómez A. Generation and use of recombinant gonadotropins in fish. Gen Comp Endocrinol 2020; 299:113555. [PMID: 32687933 DOI: 10.1016/j.ygcen.2020.113555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 02/09/2023]
Abstract
Understanding the differential roles of the pituitary gonadotropins Fsh and Lh in gonad maturation is crucial for a successful manipulation of the reproductive process in fish, and requires species-specific tools and appropriate active hormones. With the increasing availability of fish cDNAs coding for gonadotropin subunits, the production of recombinant hormones in heterologous systems has gradually substituted the approach of isolating native hormones. These recombinant hormones can be continually produced without depending on the fish as starting material and no cross-contamination with other pituitary glycoproteins is assured. Recombinant gonadotropins should be produced in eukaryotic cells, which have glycosylation capacity, but this post-translational modification varies greatly depending on the cell system, influencing hormone activity and stability. The production of recombinant gonadotropin beta-subunits to be used as antigens for antibody production has allowed the development of immunoassays for quantification of gonadotropins in some fish species. The administration in vivo of dimeric homologous recombinant gonadotropins has been used in basic studies and as a biotechnological approach to induce gametogenesis. In addition, gene-based therapies using somatic transfer of the gonadotropin genes have been tested as an alternative for hormone delivery in vivo. In summary, the use of homologous hormonal treatments can open new strategies in aquaculture to solve reproductive problems or develop out-of-season breeding programs.
Collapse
Affiliation(s)
- G Molés
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Ribera de Cabanes s/n, 12595 Castelló, Spain
| | - K Hausken
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - M Carrillo
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Ribera de Cabanes s/n, 12595 Castelló, Spain
| | - S Zanuy
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Ribera de Cabanes s/n, 12595 Castelló, Spain
| | - B Levavi-Sivan
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - A Gómez
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Ribera de Cabanes s/n, 12595 Castelló, Spain.
| |
Collapse
|
9
|
Ohga H, Matsuyama M. In vitro action of leptin on gonadotropin secretion in pre-pubertal male chub mackerel. Comp Biochem Physiol A Mol Integr Physiol 2020; 253:110856. [PMID: 33249145 DOI: 10.1016/j.cbpa.2020.110856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/31/2022]
Abstract
Leptin directly influences gonadotropin (GTH) secretion from female pituitary cells in vitro and is a key signal at the onset of puberty in female chub mackerel (Scomber japonicus). Here, we investigated whether leptin also influences GTH secretion in male chub mackerel. The addition of 1 nM homologous recombinant leptin to pre-pubertal male pituitary cells stimulated follicle-stimulating hormone secretion after 1 and 2 h of culture. Therefore, leptin signaling could also directly facilitate GTH secretion in male chub mackerel.
Collapse
Affiliation(s)
- Hirofumi Ohga
- Fisheries Research Institute of Karatsu, Kyushu University, Saga 847-0132, Japan.
| | - Michiya Matsuyama
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
10
|
Ohga H, Ito K, Matsumori K, Kimura R, Ohta K, Matsuyama M. Leptin stimulates gonadotropin release and ovarian development in marine teleost chub mackerel. Gen Comp Endocrinol 2020; 292:113442. [PMID: 32084348 DOI: 10.1016/j.ygcen.2020.113442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022]
Abstract
Leptin transmits information about energy stored in the periphery to the reproductive axis and is an essential signal for puberty initiation in mammals; however, to date, few studies have focused on the direct effects of leptin stimulation on reproductive factors in fish. This study demonstrated the effect of leptin stimulation on important reproductive factors and ovarian development in the marine teleost chub mackerel (Scomber japonicus). We prepared recombinant leptin and conducted functional analyses through in vitro bioassays using primary pituitary cells, long-term leptin treatment administered to pre-pubertal females, and intracerebroventricular (ICV) administration. The results showed that leptin stimulation strongly induced gonadotropin (follicle-stimulating hormone: FSH and luteinizing hormone: LH) secretion from pituitary cells collected from pre-pubertal females, and that long-term leptin treatment significantly promoted ovarian development and triggered pubertal onset. Furthermore, ICV administration of leptin did not affect kisspeptin gene expression but significantly upregulated gonadotropin-releasing hormone 1 (gnrh1), fshb and lhb gene expression in sexually immature females. These results strongly suggest leptin as an important signal for reproductive-axis activation in chub mackerel.
Collapse
Affiliation(s)
- Hirofumi Ohga
- Fisheries Research Institute of Karatsu, Faculty of Agriculture, Kyushu University, Saga 847-0132, Japan.
| | - Kosuke Ito
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Kojiro Matsumori
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Ryuto Kimura
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Kohei Ohta
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Michiya Matsuyama
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
11
|
Kanda S. Evolution of the regulatory mechanisms for the hypothalamic-pituitary-gonadal axis in vertebrates-hypothesis from a comparative view. Gen Comp Endocrinol 2019; 284:113075. [PMID: 30500374 DOI: 10.1016/j.ygcen.2018.11.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/26/2022]
Abstract
Reproduction is regulated by the hypothalamic-pituitary-gonadal (HPG) axis in vertebrates. In addition to wealth of knowledge in mammals, recent studies in non-mammalian species, especially teleosts, have provided evidence that some of the components in the HPG axis are conserved in bony vertebrates. On the other hand, from the comparisons of the recent accumulating knowledge between mammals and teleosts, unique characteristics of the regulatory system in each group have been unveiled. A hypophysiotropic neurotransmitter/hormone, gonadotropin releasing hormone (GnRH), pituitary gonadotropins, follicle stimulating hormone (FSH), and luteinizing hormone (LH) were proven to be common important elements of the HPG axis in teleosts and mammals, although the roles of each vary. Conversely, there are some modulators of GnRH or gonadotropins that are not common to all vertebrates. In this review, I will introduce the mechanism for HPG axis regulation in mammals and teleosts, and describe their evolution from a hypothetical common ancestor.
Collapse
Affiliation(s)
- Shinji Kanda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
12
|
Nyuji M, Yamamoto I, Hamada K, Kazeto Y, Okuzawa K. Effect of GnRHa on plasma levels of Fsh and Lh in the female greater amberjack Seriola dumerili. JOURNAL OF FISH BIOLOGY 2019; 95:1350-1354. [PMID: 31513717 DOI: 10.1111/jfb.14137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
The effects of gonadotropin-releasing hormone agonist (GnRHa) on plasma levels of follicle-stimulating hormone (Fsh) and luteinising hormone (Lh) are reported for female greater amberjack Seriola dumerili with post-vitellogenic ovarian oocytes. Five females were implanted with pellets containing GnRHa (600 μg kg-1 body weight), while five other females were injected with saline. All females implanted with GnRHa-containing pellets ovulated 36-42 h post-implantation. The GnRHa implants elevated Lh, but not Fsh plasma levels within 42 h of GnRHa administration.
Collapse
Affiliation(s)
- Mitsuo Nyuji
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Japan
| | - Ikki Yamamoto
- Kamiura Laboratory, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Saiki, Japan
| | - Kazuhisa Hamada
- Marine Farm Laboratory Limited Company, 309 Takahiro, Tachibaura, Otsuki-cho, Hata-gun, Kochi, Japan
| | - Yukinori Kazeto
- Kamiura Laboratory, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Saiki, Japan
| | - Koichi Okuzawa
- Kamiura Laboratory, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Saiki, Japan
| |
Collapse
|
13
|
Nyuji M, Hamada K, Kazeto Y, Mekuchi M, Gen K, Soyano K, Okuzawa K. Photoperiodic regulation of plasma gonadotropin levels in previtellogenic greater amberjack (Seriola dumerili). Gen Comp Endocrinol 2018; 269:149-155. [PMID: 30236970 DOI: 10.1016/j.ygcen.2018.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/26/2022]
Abstract
In Seriola species, exposure to a long photoperiod regime is known to induce ovarian development. This study examined photoperiodic effects on pituitary gene expression and plasma levels of follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) in previtellogenic greater amberjack (Seriola dumerili). The fish were exposed to short (8L:16D) or long (18L:6D) photoperiod. The water temperature was maintained at 22 °C. Compared with the short-photoperiod group, plasma Fsh levels were higher on days 10 and 30 in the long-photoperiod group, but plasma Lh levels did not significantly differ. On day 30, pituitary Fsh- and Lh-β subunit gene expressions were also higher in the long-photoperiod group than the short-photoperiod group, whereas α-subunit gene expressions were higher on days 20 and 30. Throughout the experiment, average gonadosomatic index and plasma E2 levels did not significantly differ between the two groups. This study clearly demonstrated that a long photoperiod induced Fsh release in the previtellogenic fish followed by upregulation of pituitary Fsh and Lh subunit gene expressions. An increase in plasma Fsh levels may be a key factor that mediates the photoperiodic effect on the initiation of ovarian development.
Collapse
Affiliation(s)
- Mitsuo Nyuji
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama 236-8648, Japan.
| | - Kazuhisa Hamada
- Marine Farm Laboratory Limited Company, 309 Takahiro, Tachibaura, Otsuki-cho, Hata-gun, Kochi 788-0352 Japan
| | - Yukinori Kazeto
- Kamiura Laboratory, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Saiki 879-2602, Japan
| | - Miyuki Mekuchi
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama 236-8648, Japan
| | - Koichiro Gen
- Seikai National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Nagasaki 851-2231, Japan
| | - Kiyoshi Soyano
- Institute for East China Sea Research, Nagasaki University, Nagasaki 851-2213, Japan
| | - Koichi Okuzawa
- Kamiura Laboratory, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Saiki 879-2602, Japan
| |
Collapse
|
14
|
Lumayno SDP, Ohga H, Selvaraj S, Nyuji M, Yamaguchi A, Matsuyama M. Molecular characterization and functional analysis of pituitary GnRH receptor in a commercial scombroid fish, chub mackerel (Scomber japonicus). Gen Comp Endocrinol 2017; 247:143-151. [PMID: 28153577 DOI: 10.1016/j.ygcen.2017.01.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 10/20/2022]
Abstract
The gonadotropin-releasing hormone (GnRH) is essential during pubertal onset, for its regulation of the synthesis and release of pituitary gonadotropins. Its action is mediated by GnRH receptors (GnRHRs) in the pituitary gonadotrophs. Our previous study demonstrated that the chub mackerel brain expresses three GnRH forms (gnrh1, gnrh2, and gnrh3), and that only GnRH1 neurons innervate anterior pituitary regions. Furthermore, chub mackerel gnrh1 mRNA exhibited a significant increase at pubertal onset. The present study aimed to isolate the functional GnRHR form involved in chub mackerel puberty. The open reading frame of our cloned receptor encodes 428 amino acids and contains seven transmembrane domains. Phylogenetic analysis also indicated clustering with other teleost-type IIB GnRHRs, mainly those involved in reproduction. Reporter gene assay results showed that all four synthetic peptides (GnRH1, GnRH2, GnRH3, and GnRH analogue) bind to the cloned receptor. Three deduced GnRH ligands stimulated luteinizing hormone (LH) release from cultured pituitary cells in vitro. Receptor gene expression was mainly detected in the pituitary and showed an increasing trend in the developing gonadal stages of both sexes during the pubertal process; this process was synchronous with previous studies of follicle-stimulating hormone beta (fshβ) and lhβ gene expression in chub mackerel. These results suggest that the cloned receptor is likely involved in the regulation of pubertal onset in this species. Therefore, we have designated the receptor cmGnRHR1.
Collapse
Affiliation(s)
| | - Hirofumi Ohga
- Laboratory of Marine Biology, Kyushu University, Fukuoka 812-8581, Japan
| | - Sethu Selvaraj
- Laboratory of Marine Biology, Kyushu University, Fukuoka 812-8581, Japan
| | - Mitsuo Nyuji
- Laboratory of Marine Biology, Kyushu University, Fukuoka 812-8581, Japan
| | - Akihiko Yamaguchi
- Laboratory of Marine Biology, Kyushu University, Fukuoka 812-8581, Japan
| | - Michiya Matsuyama
- Laboratory of Marine Biology, Kyushu University, Fukuoka 812-8581, Japan.
| |
Collapse
|