1
|
Falah G, Sharvit L, Atzmon G. CRISPR-Cas9 mediated d3GHR knockout in HEK293 cells: Revealing the longevity associated isoform stress resilience. Exp Gerontol 2024; 196:112586. [PMID: 39303817 DOI: 10.1016/j.exger.2024.112586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The Growth Hormone Receptor (GHR) gene encodes a protein that is essential for mediating the biological effects of growth hormone (GH). A series of molecular events are set off when GH binds to its receptor, resulting in a variety of physiological reactions linked to development, growth, and metabolism. Recently a particular genetic variation, within the GHR gene that is labeled as the "d3GHR," which lacks exon 3 was associated with longevity. This specific deletion isoform was connected to changes in the structure of the GHR protein, which may have an impact on the GHR's function. To test in vitro the advantage of the d3 carrier that may link to longevity, we employed the CRISPR/Cas9 technique to produce two isoforms: the homozygotes isoform (d3/d3) and the heterozygotes isoform (d3/fl) using HEK293 cell line. The CRISPR editing effectiveness was >85 %, indicating that we had successfully built the Cas9-gRNA complex that is appropriate for the GHR gene. The viability of the resulted isoform cells was examined under three environmental stressors that mimic some aging processes. In addition, we examined the GHR signaling pathway by selecting potential downstream genes in the GHR signaling cascade. The results show that heterozygotes cells demonstrated higher survival rates under UV radiation compared with the WT cells (87 % compared with 67 % for the WT cells when exposed to 2 min of UV radiation), and in fasting conditions, the d3GHR cells showed a 15 % greater viability than the WT cells. Moreover, the baseline expression levels (without intervention) of the IGF1 and JAK/STAT genes signaling pathways significantly declined in the homozygotes cells compared with the WT (p < 0.05). This noteworthy finding might offer a practical approach to test illness prevention and give the scientific community critical new insights on mechanism associated with lifespan.
Collapse
Affiliation(s)
- Ghadeer Falah
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Lital Sharvit
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Gil Atzmon
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel; Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
Jung J, Jeong Y, Xu Y, Yi J, Kim M, Jeong HJ, Shin SH, Yang YH, Son J, Sung C. Production and engineering of nanobody-based quenchbody sensors for detecting recombinant human growth hormone and its isoforms. Drug Test Anal 2023; 15:1439-1448. [PMID: 37667448 DOI: 10.1002/dta.3562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 09/06/2023]
Abstract
Due to athletes' misuse of recombinant human growth hormone (rhGH) for performance improvement, the World Anti-Doping Agency has designated rhGH as a prohibited substance. This study focuses on the development and improvement of a simple and fast rhGH detection method using a fluorescence-incorporated antibody sensor "Quenchbody (Q-body)" that activates upon antigen binding. Camelid-derived nanobodies were used to produce stable Q-bodies that withstand high temperatures and pH levels. Notably, pituitary human growth hormone (phGH) comprises two major isoforms, namely 22 and 20 kDa GH, which exist in a specific ratio, and the rhGH variant shares the same sequence as the 22 kDa GH isoform. Therefore, we aimed to discriminate rhGH abuse by analyzing its specific isoform ratio. Two nanobodies, NbPit (recognizing phGH) and NbRec (preferentially recognizing 22 kDa rhGH), were used to develop the Q-bodies. Nanobody production in Escherichia coli involved the utilization of a vector containing 6xHis-tag, and Q-bodies were obtained using a maleimide-thiol reaction between the N-terminal of the cysteine tag and a fluorescent dye. The addition of tryptophan residue through antibody engineering resulted in increased fluorescence intensity (FI) (from 2.58-fold to 3.04-fold). The limit of detection (LOD) was determined using a fluorescence response, with TAMRA-labeled NbRec successfully detecting 6.38 ng/ml of 22 kDa rhGH while unable to detect 20 kDa GH. However, ATTO520-labeled NbPit detected 7.00 ng/ml of 20 kDa GH and 2.20 ng/ml 22 kDa rhGH. Q-bodies successfully detected changes in the GH concentration ratio from 10 to 40 ng/ml in human serum within 10 min without requiring specialized equipment and kits. Overall, these findings have potential applications in the field of anti-doping measures and can contribute to improved monitoring and enforcement of rhGH misuse, ultimately enhancing fairness and integrity in competitive sports.
Collapse
Affiliation(s)
- Jaehoon Jung
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Yujin Jeong
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Yinglan Xu
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Joonyeop Yi
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Interdisciplinary Program of Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Minyoung Kim
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University Sejong-ro 2639, Sejong, Republic of Korea
| | - Sang Hoon Shin
- Department of Surgery, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Yung-Hun Yang
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Junghyun Son
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Changmin Sung
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
3
|
Yang L, Li C, Song T, Zhan X. Growth hormone proteoformics atlas created to promote predictive, preventive, and personalized approach in overall management of pituitary neuroendocrine tumors. EPMA J 2023; 14:443-456. [PMID: 37605654 PMCID: PMC10439873 DOI: 10.1007/s13167-023-00329-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 08/23/2023]
Abstract
Human growth hormone (GH) is the indispensable hormone for the maintenance of normal physiological functions of the human body, including the growth, development, metabolism, and even immunoregulation. The GH is synthesized, secreted, and stored by somatotroph cells in adenohypophysis. Abnormal GH is associated with various GH-related diseases, such as acromegaly, dwarfism, diabetes, and cancer. Currently, some studies found there are dozens or even hundreds of GH proteoforms in tissue and serum as well as a series of GH-binding protein (GHBP) proteoforms and GH receptor (GHR) proteoforms were also identified. The structure-function relationship of protein hormone proteoforms is significantly important to reveal their overall physiological and pathophysiological mechanisms. We propose the use of proteoformics to study the relationship between every GH proteoform and different physiological/pathophysiological states to clarify the pathogenic mechanism of GH-related disease such as pituitary neuroendocrine tumor and conduct precise molecular classification to promote predictive preventive personalized medicine (PPPM / 3P medicine). This article reviews GH proteoformics in GH-related disease such as pituitary neuroendocrine tumor, which has the potential role to provide novel insight into pathogenic mechanism, discover novel therapeutic targets, identify effective GH proteoform biomarker for patient stratification, predictive diagnosis, and prognostic assessment, improve therapy method, and further accelerate the development of 3P medicine.
Collapse
Affiliation(s)
- Lamei Yang
- Medical Science and Technology Innovation Center, and Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Chunling Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
| | - Tao Song
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Weiqi Road, Jinan, Shandong 250021 People’s Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, and Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
4
|
Li N, Desiderio DM, Zhan X. The use of mass spectrometry in a proteome-centered multiomics study of human pituitary adenomas. MASS SPECTROMETRY REVIEWS 2022; 41:964-1013. [PMID: 34109661 DOI: 10.1002/mas.21710] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
A pituitary adenoma (PA) is a common intracranial neoplasm, and is a complex, chronic, and whole-body disease with multicausing factors, multiprocesses, and multiconsequences. It is very difficult to clarify molecular mechanism and treat PAs from the single-factor strategy model. The rapid development of multiomics and systems biology changed the paradigms from a traditional single-factor strategy to a multiparameter systematic strategy for effective management of PAs. A series of molecular alterations at the genome, transcriptome, proteome, peptidome, metabolome, and radiome levels are involved in pituitary tumorigenesis, and mutually associate into a complex molecular network system. Also, the center of multiomics is moving from structural genomics to phenomics, including proteomics and metabolomics in the medical sciences. Mass spectrometry (MS) has been extensively used in phenomics studies of human PAs to clarify molecular mechanisms, and to discover biomarkers and therapeutic targets/drugs. MS-based proteomics and proteoform studies play central roles in the multiomics strategy of PAs. This article reviews the status of multiomics, multiomics-based molecular pathway networks, molecular pathway network-based pattern biomarkers and therapeutic targets/drugs, and future perspectives for personalized, predeictive, and preventive (3P) medicine in PAs.
Collapse
Affiliation(s)
- Na Li
- Shandong Key Laboratory of Radiation Oncology, Cancer Hospital of Shandong First Medical University, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
| | - Dominic M Desiderio
- The Charles B. Stout Neuroscience Mass Spectrometry Laboratory, Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Cancer Hospital of Shandong First Medical University, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
5
|
Zheng WV, Li Y, Xu Y, Lu D, Zhou T, Li D, Cheng X, Xiong Y, Wang S, Chen Z. Different isoforms of growth hormone (20 kD-GH and 22 kD-GH) shows different biological activities in mesenchymal stem cell (MSC). Cell Cycle 2022; 21:934-947. [PMID: 35188065 PMCID: PMC9037433 DOI: 10.1080/15384101.2022.2035491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
There are two main types of growth hormone (GH) in the circulatory system. One is 22 kD-GH, which is the predominant isoform in the circulating system, 90% GH is present as a 22 kD protein, and 10% of GH is present as a 20 kD protein. Amino acid sequences are identical between 20 kD-GH and 22 kD-GH protein, except that 20 kD-GH lacks 15 amino acid residues 32 to 46. Studies have shown that GH has many important biological effects on mesenchymal stem cells (MSCs). However, so far, the cellular characteristics of the two types of GH have not been studied in BM-MSCs. Furthermore, the biological activity of 20 kD-GH has not been explored in BM-MSCs. For this, in the current work, BM-MSCs were used as in vitro cell model. We have carried out the current research using a series of experimental techniques (such as Western-blot and indirect immunofluorescence). Firstly, we explored the cell behavior of two types of GH in the Bm-MSC model and found that they showed different biological characteristics; Secondly, we investigated the biological characteristics of 20 kD-GH and 22 kD-GH, and results showed that 22 kD-GH and 20 kD-GH exhibited different signaling profiles; Thirdly, we found that the 20 kD-GH and 22 kD-GH Gexhibited different regulatory effects on the osteogenic differentiation of BM-MSCs. The current research lays a solid foundation for further studies on the regulatory effects of GH on MSCs.
Collapse
Affiliation(s)
- Wei V. Zheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yaqin Li
- Department of Infectious Disease, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yanwei Xu
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Donghui Lu
- Department of Endocrinology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Tao Zhou
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Dezhi Li
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xianyi Cheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China,Department of Minimal Invasion Intervention, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yu Xiong
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China,Department of Minimal Invasion Intervention, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shaobin Wang
- Health Management Center of Peking University Shenzhen Hospital, Shenzhen, China
| | - Zaizhong Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China,Department of Minimal Invasion Intervention, Peking University Shenzhen Hospital, Shenzhen, China,CONTACT Zaizhong Chen Department of Minimal Invasion Intervention, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
6
|
Human growth hormone proteoform pattern changes in pituitary adenomas: Potential biomarkers for 3P medical approaches. EPMA J 2021; 12:67-89. [PMID: 33786091 DOI: 10.1007/s13167-021-00232-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
Relevance Human growth hormone (hGH) is synthesized, stored, and secreted by somatotroph cells in the pituitary gland, and promotes human growth and metabolism. Compared to a normal pituitary, a GH-secreting pituitary adenoma can secrete excessive GH to cause pathological changes in body tissues. GH proteoform changes would be associated with GH-related disease pathogenesis. Purpose This study aimed to elucidate changes in GH proteoforms between GH-secreting pituitary adenomas and control pituitaries for the predictive diagnostics, targeted prevention, and personalization of medical services. Methods The isoelectric point (pI) and relative molecular mass (Mr) are two basic features of a proteoform that can be used to effectively array and detect proteoforms with two-dimensional gel electrophoresis (2DGE) and 2DGE-based western blot. GH proteoforms were characterized with liquid chromatography (LC) and mass spectrometry (MS). Phosphoproteomics, ubiquitinomics, acetylomics, and bioinformatics were used to analyze post-translational modifications (PTMs) of GH proteoforms in GH-secreting pituitary adenoma tissues and control pituitaries. Results Sixty-six 2D gel spots were found to contain hGH, including 46 spots (46 GH proteoforms) in GH-secreting pituitary adenomas and 35 spots (35 GH proteoforms) in control pituitaries. Further, 35 GH proteoforms in control pituitary tissues were matched with 35 of 46 GH proteoforms in GH-secreting pituitary adenoma tissues; and 11 GH proteoforms were presented in only GH-secreting pituitary adenoma tissues but not in control pituitary tissues. The matched 35 GH proteoforms showed quantitative changes in GH-secreting pituitary adenomas compared to the controls. The quantitative levels of those 46 GH proteoforms in GH-secreting pituitary adenomas were significantly different from those 35 GH proteoforms in control pituitaries. Meanwhile, different types of PTMs were identified among those GH proteoforms. Phosphoproteomics identified phosphorylation at residues Ser77, Ser132, Ser134, Thr174, and Ser176 in hGH. Ubiquitinomics identified ubiquitination at residue Lys96 in hGH. Acetylomics identified acetylation at reside Lys171 in hGH. Deamination was identified at residue Asn178 in hGH. Conclusion These findings provide the first hGH proteoform pattern changes in GH-secreting pituitary adenoma tissues compared to control pituitary tissues, and the status of partial PTMs in hGH proteoforms. Those data provide in-depth insights into biological roles of hGH in GH-related diseases, and identify hGH proteoform pattern biomarkers for treatment of a GH-secreting pituitary adenoma in the context of 3P medicine -predictive diagnostics, targeted prevention, and personalization of medical services. Supplementary information The online version contains supplementary material available at 10.1007/s13167-021-00232-7.
Collapse
|
7
|
Tulipano G, Giustina A. Effects of octreotide on autophagy markers and cell viability markers related to metabolic activity in rat pituitary tumor cells. Pituitary 2020; 23:223-231. [PMID: 31997055 DOI: 10.1007/s11102-020-01028-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The aim of this work was to investigate possible direct effects of the somatostatin analog octreotide on autophagy markers and markers of cellular metabolic activity using in vitro cultured rat pituitary tumor cells (GH3 cell line). METHODS We measured two markers of the autophagic flux in cell lysates by Western blot and MTT reductive activity, total cellular ATP levels, pyruvate dehydrogenase (PDH) complex activity in cells lysates as markers of cell viability related to metabolic activity. RESULTS Octreotide (100 nM) treatment induced autophagy activation (increased LC3-I protein lipidation) and enhanced the autophagic flux (SQSTM1/p62 protein downregulation) in GH3 cells in different incubation media, in detail in Hank's balanced salt solution (HBSS) as well as in maintenance medium with serum. We did not observe any decrease of redox activity and energy production related to the induction of autophagy by octreotide. On the other hand, short-term treatments with octreotide in HBSS tended to enhance MTT reduction activity and to increase PDH complex enzymatic activity and ATP levels measured in GH3 cell lysates. CONCLUSIONS We provided evidence that octreotide can affect autophagy in pituitary tumor cells. The observed effects of octreotide were not related to a decrease of cellular metabolic activity. Finally, the induction of autophagy was either short-lived or overshadowed by other factors in the long term and this limit does not help clarifying their real impact on the pharmacological activity of somatostatin analogs.
Collapse
Affiliation(s)
- Giovanni Tulipano
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Andrea Giustina
- Division of Endocrinology, IRCCS San Raffaele Hospital, San Raffaele Vita- Salute University - Head, Milan, Italy
| |
Collapse
|
8
|
Ribeiro de Oliveira Longo Schweizer J, Ribeiro-Oliveira A, Bidlingmaier M. Growth hormone: isoforms, clinical aspects and assays interference. Clin Diabetes Endocrinol 2018; 4:18. [PMID: 30181896 PMCID: PMC6114276 DOI: 10.1186/s40842-018-0068-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/19/2018] [Indexed: 11/11/2022] Open
Abstract
The measurement of circulating concentrations of growth hormone (GH) is an indispensable tool in the diagnosis of both GH deficiency and GH excess. GH is a heterogeneous protein composed of several molecular isoforms, but the physiological role of these different isoforms has not yet been fully understood. The 22KD GH (22 K-GH) is the main isoform in circulation, followed by 20KD GH (20 K-GH) and other rare isoforms. Studies have been performed to better understand the biological actions of the different isoforms as well as their importance in pathological conditions. Generally, the non-22 K- and 20 K-GH isoforms are secreted in parallel to 22 K-GH, and only very moderate changes in the ratio between isoforms have been described in some pituitary tumors or during exercise. Therefore, in a diagnostic approach, concentrations of 22 K-GH accurately reflect total GH secretion. On the other hand, the differential recognition of GH isoforms by different GH immunoassays used in clinical routine contributes to the known discrepancy in results from different GH assays. This makes the application of uniform decision limits problematic. Therefore, the worldwide efforts to standardize GH assays include the recommendation to use 22 K-GH specific GH assays calibrated against the pure 22 K-GH reference preparation 98/574. Adoption of this recommendation might lead to improvement in diagnosis and follow-up of pathological conditions, and facilitate the comparison of results from different laboratories.
Collapse
Affiliation(s)
| | - Antônio Ribeiro-Oliveira
- 1Endocrinology Laboratory of Federal University of Minas Gerais. Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, 30130-100 Brazil
| | - Martin Bidlingmaier
- 2Endocrine Laboratory, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstraße 1, 80336 Munich, Germany
| |
Collapse
|
9
|
Wójcik M, Krawczyńska A, Antushevich H, Herman AP. Post-Receptor Inhibitors of the GHR-JAK2-STAT Pathway in the Growth Hormone Signal Transduction. Int J Mol Sci 2018; 19:E1843. [PMID: 29932147 PMCID: PMC6073700 DOI: 10.3390/ijms19071843] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023] Open
Abstract
The growth hormone (GH) plays a key role in the regulation of metabolic processes in an organism. Determination of the correct structure and functioning of the growth hormone receptor (GHR) allowed for a more detailed research of its post-receptor regulators, which substantially influences its signal transduction. This review is focused on the description of the post-receptor inhibitors of the GHR-JAK2-STAT pathway, which is one of the most important pathways in the transduction of the somatotropic axis signal. The aim of this review is the short characterization of the main post-receptor inhibitors, such as: cytokine-inducible SH2-containing protein (CIS), Suppressors of Cytokine Signaling (SOCS) 1, 2 and 3, sirtuin 1 (SIRT1), protein inhibitors of activated STAT (PIAS) 1, 3 and PIAS4, protein tyrosine phosphatases (PTP) 1B and H1, Src homology 2 (SH2) domain containing protein tyrosine phosphatase (SHP) 1, 2 and signal regulatory protein (SIRP) α1. The equilibrium between these regulators activity and inhibition is of special concern because, as many studies showed, even slight imbalance may disrupt the GH activity causing serious diseases. The regulation of the described inhibitors expression and activity may be a point of interest for pharmaceutical industry.
Collapse
Affiliation(s)
- Maciej Wójcik
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, ul. Instytucka 3, 05-110 Jabłonna, Poland.
| | - Agata Krawczyńska
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, ul. Instytucka 3, 05-110 Jabłonna, Poland.
| | - Hanna Antushevich
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, ul. Instytucka 3, 05-110 Jabłonna, Poland.
| | - Andrzej Przemysław Herman
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, ul. Instytucka 3, 05-110 Jabłonna, Poland.
| |
Collapse
|
10
|
Simopoulou M, Philippou A, Maziotis E, Sfakianoudis K, Nitsos N, Bakas P, Tenta R, Zevolis E, Pantos K, Koutsilieris M. Association between male Infertility and seminal plasma levels of growth hormone and insulin-like growth factor-1. Andrologia 2018; 50:e13048. [PMID: 29808481 DOI: 10.1111/and.13048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/02/2018] [Accepted: 04/07/2018] [Indexed: 01/01/2023] Open
Abstract
Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) have been proposed to play a pivotal role in male infertility due to their anabolic effects. The aim of this study was to investigate possible associations between seminal plasma levels of GH and IGF-1 and sperm parameters. Fifty men participated in this study. Semen analysis was performed, while cell-free seminal plasma was collected following sperm centrifugation. Seminal plasma concentrations of IGF-1 and GH were determined by enzyme-linked immunosorbent assay (ELISA). Due to the presence of asthenozoospermia in all participants who presented with abnormal sperm parameters, the participants were further subdivided into normal (group A), asthenozoospermic (group B) and asthenozoospermic plus at least one additional abnormal parameter (group C). A marginally nonsignificant statistical difference (p = 0.063) was revealed between the GH levels corresponding to the asthenozoospermic and the normal group with the latter presenting with higher GH levels. A statistically significant positive correlation (p < 0.05) was noted between levels of GH and IGF-1 in group C. The above relationship has also been observed in men with low sperm concentration, vitality, volume and abnormal morphology. These novel findings require further investigation in order for the biological significance of those associations to be clarified.
Collapse
Affiliation(s)
- Mara Simopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastassios Philippou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Maziotis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Nikolaos Nitsos
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
| | - Panagiotis Bakas
- Assisted Conception Unit, 2nd Department of Obstetrics and Gynecology, Medical School, Aretaieion Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Roxane Tenta
- Department of Nutrition & Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Evangelos Zevolis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|