1
|
Wang B, Paullada-Salmerón JA, Muñoz-Cueto JA. Gonadotropin-inhibitory hormone and its receptors in teleosts: Physiological roles and mechanisms of actions. Gen Comp Endocrinol 2024; 350:114477. [PMID: 38387532 DOI: 10.1016/j.ygcen.2024.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Gonadotropin-inhibitory hormone (GnIH) was the first reported hypothalamic neuropeptide inhibiting reproduction in vertebrates. Since its discovery in the quail brain, its orthologs have been identified in a variety of vertebrate species and even protochordates. Depending on the species, the GnIH precursor polypeptides comprise two, three or four mature peptides of the RFamide family. It has been well documented that GnIH inhibits reproduction at the brain-pituitary-gonadal levels and participates in metabolism, stress response, and social behaviors in birds and mammals. However, most studies in fish have mainly been focused on the physiological roles of GnIH in the control of reproduction and results obtained are in some cases conflicting, leaving aside its potential roles in the regulation of other functions. In this manuscript we summarize the information available in fish with respect to the structural diversity of GnIH peptides and functional roles of GnIH in reproduction and other physiological processes. We also highlight the molecular mechanisms of GnIH actions on target cells and possible interactions with other neuroendocrine factors.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China; Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real (Cádiz), Spain
| | - José A Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real (Cádiz), Spain; Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real (Cádiz), Spain; The European University of the Seas (SEA-EU), Cádiz, Spain
| | - José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real (Cádiz), Spain; Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real (Cádiz), Spain; The European University of the Seas (SEA-EU), Cádiz, Spain.
| |
Collapse
|
2
|
Narwal R, Laxmi RK, Rawat VS, Sehgal N. Molecular cloning and bioinformatic characterization of Gonadotropin Inhibitory Hormone (GnIH) and its receptors in the freshwater murrel, Channa punctatus (Bloch, 1793). FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:711-736. [PMID: 37462854 DOI: 10.1007/s10695-023-01211-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/22/2023] [Indexed: 08/11/2023]
Abstract
Gonadotropin inhibitory hormone belonging to the RFamide peptide family, a hypothalamic neuropeptide, regulates Hypothalamus-pituitary-gonadal (HPG) axis and inhibits gonadal development. GnIH polypeptide precursor has an Arg-Phe-NH2 (RFamide) motif at the C-terminal, which has LPXRF (X = Q or L) domain. The actions of GnIH are mediated through G-protein coupled receptors and upto three receptors have been characterized in many teleosts. GnIH exerts its inhibitory effect on the HPG axis through direct interaction with GnRH and Kisspeptin neurons in the brain and acts directly on the pituitary gonadotrophs. To decipher the role of GnIH in Indian freshwater murrel, Channa punctatus, we sequenced the cDNA encoding GnIH and its two receptors. The identified GnIH mRNA encodes three RFamide peptides having -MPMRF, -MPQRF, and -LPQRFamide motifs. In silico analysis of the amino acid sequence of GnIH exhibits its molecular and functional properties and the protein-protein interaction with significant factors regulating the HPG axis. The 3-D structure of GnIH and its receptors, provides more relevant information about the active residues of these proteins which might be involved in their functioning and interaction with other proteins. Molecular dynamic simulation of GnIH protein has provided more insight into its dynamic behavior. The expression of GnIH and its receptors, shows an inverse correlation with gonadal development during the annual reproductive cycle.
Collapse
Affiliation(s)
- Ritu Narwal
- Department of Zoology, University of Delhi, Delhi, India, 110007
| | | | | | - Neeta Sehgal
- Department of Zoology, University of Delhi, Delhi, India, 110007.
| |
Collapse
|
3
|
Bao Q, Gu W, Song L, Weng K, Cao Z, Zhang Y, Zhang Y, Ji T, Xu Q, Chen G. The Photoperiod-Driven Cyclical Secretion of Pineal Melatonin Regulates Seasonal Reproduction in Geese ( Anser cygnoides). Int J Mol Sci 2023; 24:11998. [PMID: 37569373 PMCID: PMC10419153 DOI: 10.3390/ijms241511998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
The photoperiod is the predominant environmental factor that governs seasonal reproduction in animals; however, the underlying molecular regulatory mechanism has yet to be fully elucidated. Herein, Yangzhou geese (Anser cygnoides) were selected at the spring equinox (SE), summer solstice (SS), autumn equinox (AE), and winter solstice (WS), and the regulation of seasonal reproduction via the light-driven cyclical secretion of pineal melatonin was investigated. We show that there were seasonal variations in the laying rate and GSI, while the ovarian area decreased 1.5-fold from the SS to the AE. Moreover, not only did the weight and volume of the pineal gland increase with a shortened photoperiod, but the secretory activity was also enhanced. Notably, tissue distribution further revealed seasonal oscillations in melatonin receptors (Mtnrs) in the pineal gland and the hypothalamus-pituitary-gonadal (HPG) axis. The immunohistochemical staining indicated higher Mtnr levels due to the shortened photoperiod. Furthermore, the upregulation of aralkylamine N-acetyltransferase (Aanat) was observed from the SS to the AE, concurrently resulting in a downregulation of the gonadotrophin-releasing hormone (GnRH) and gonadotropins (GtHs). This trend was also evident in the secretion of hormones. These data indicate that melatonin secretion during specific seasons is indicative of alterations in the photoperiod, thereby allowing for insight into the neuroendocrine regulation of reproduction via an intrinsic molecular depiction of external photoperiodic variations.
Collapse
Affiliation(s)
- Qiang Bao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Wang Gu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Lina Song
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Kaiqi Weng
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Zhengfeng Cao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Yu Zhang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Yang Zhang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Ting Ji
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Qi Xu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Guohong Chen
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Azrita A, Syandri H, Aryani N. Reproductive characteristics of the giant gurami sago strain (Osphronemus goramy Lacepède, 1801): basic knowledge for a future hatchery development strategy. F1000Res 2022; 10:922. [PMID: 35646328 PMCID: PMC9127375 DOI: 10.12688/f1000research.53760.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 11/20/2022] Open
Abstract
Background: The giant gourami sago strain (Osphronemus goramy Lacepède) has been approved in 2018 as a candidate for freshwater aquaculture in Indonesia. However, information on the species’ reproduction is minimal. This study analyzed the reproductive characteristics of the gourami sago strain broodfish to provide basic knowledge for a future hatchery development strategy. Methods: A total of 10 female and 10 male mature gourami sago strain broodfish were measured for body weight and length, and were evaluated for their reproductive characteristics. Breeding fish were spawned naturally in a 2×1×0.6 m concrete pond with a male-female sex ratio of 1:1. Egg weight and diameter were measured in 25 eggs per female using, respectively, ACIS AD- 600i scales with 0.01 g accuracy, and a microscope (Labo model L-711) using Canon Digital Camera Software 3 . Semen was collected using plastic syringes in 3 mL aliquots, then placed in an insulated ice-cooled container, and analyzed within two hours of collection. Results: Average weights of female and male broodfish before spawning were 2180±159.78 g and 3060±134.99 g, respectively. The relative fecundity and egg diameter were 1029±36 eggs kg-1 and 2.42±0.05 mm, respectively. The hatching rate and embryo survival to an eyed-egg stage were respectively 76.40±2.27% and 94.76±0.42%. Sperm characteristics showed that volume was 0.60±0.12 ml kg-1 and percentage of motile sperm was 70.04±2.27%. Female broodfish weight after spawning was strongly correlated with the weight before spawned (r2 = 0.999) and absolute fecundity was also strongly correlated with female broodfish weight before spawning (r2= 0.921). Sperm concentration was moderately correlated with sperm motility (r2 = 0.556) and duration of sperm motility (r2 = 0.502). Conclusions: The gourami sago strain broodfish has suitable reproductive characteristics for the development of hatcheries. Successful natural spawning should be followed by larval weaning and feeding technology to increase growth and survival.
Collapse
Affiliation(s)
- Azrita Azrita
- Department of Biology Education, Faculty of Education, Universitas Bung Hatta, Padang, West Sumatera, 25133, Indonesia
| | - Hafrijal Syandri
- Department of Aquaculture, Faculty of Fisheries and Marine Science, Universitas Bung Hatta, Padang, West Sumatera, 25133, Indonesia
| | - Netti Aryani
- Department of Aquaculture, Faculty of Fisheries and Marine Science, Universitas Riau, Pekanbaru, Riau, 28293, Indonesia
| |
Collapse
|
5
|
Wang B, Paullada-Salmerón JA, Vergès-Castillo A, Gómez A, Muñoz-Cueto JA. Signaling pathways activated by sea bass gonadotropin-inhibitory hormone peptides in COS-7 cells transfected with their cognate receptor. Front Endocrinol (Lausanne) 2022; 13:982246. [PMID: 36051397 PMCID: PMC9424679 DOI: 10.3389/fendo.2022.982246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Results of previous studies provided evidence for the existence of a functional gonadotropin-inhibitory hormone (GnIH) system in the European sea bass, Dicentrarchus labrax, which exerted an inhibitory action on the brain-pituitary-gonadal axis of this species. Herein, we further elucidated the intracellular signaling pathways mediating in sea bass GnIH actions and the potential interactions with sea bass kisspeptin (Kiss) signaling. Although GnIH1 and GnIH2 had no effect on basal CRE-luc activity, they significantly decreased forskolin-elicited CRE-luc activity in COS-7 cells transfected with their cognate receptor GnIHR. Moreover, an evident increase in SRE-luc activity was noticed when COS-7 cells expressing GnIHR were challenged with both GnIH peptides, and this stimulatory action was significantly reduced by two inhibitors of the PKC pathway. Notably, GnIH2 antagonized Kiss2-evoked CRE-luc activity in COS-7 cells expressing GnIHR and Kiss2 receptor (Kiss2R). However, GnIH peptides did not alter NFAT-RE-luc activity and ERK phosphorylation levels. These data indicate that sea bass GnIHR signals can be transduced through the PKA and PKC pathways, and GnIH can interfere with kisspeptin actions by reducing its signaling. Our results provide additional evidence for the understanding of signaling pathways activated by GnIH peptides in teleosts, and represent a starting point for the study of interactions with multiple neuroendocrine factors on cell signaling.
Collapse
Affiliation(s)
- Bin Wang
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - José A. Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
- Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Cádiz, Spain
- The European University of the Seas (SEA-EU), Cádiz, Spain
| | - Alba Vergès-Castillo
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
- Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Cádiz, Spain
- The European University of the Seas (SEA-EU), Cádiz, Spain
| | - Ana Gómez
- Institute of Aquaculture of Torre de la Sal, CSIC, Castellón, Spain
| | - José A. Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
- Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Cádiz, Spain
- The European University of the Seas (SEA-EU), Cádiz, Spain
- *Correspondence: José A. Muñoz-Cueto,
| |
Collapse
|
6
|
Bock SL, Chow MI, Forsgren KL, Lema SC. Widespread alterations to hypothalamic-pituitary-gonadal (HPG) axis signaling underlie high temperature reproductive inhibition in the eurythermal sheepshead minnow (Cyprinodon variegatus). Mol Cell Endocrinol 2021; 537:111447. [PMID: 34469772 DOI: 10.1016/j.mce.2021.111447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 01/13/2023]
Abstract
Fish experiencing abnormally high or prolonged elevations in temperature can exhibit impaired reproduction, even for species adapted to warm water environments. Such high temperature inhibition of reproduction has been linked to diminished gonadal steroidogenesis, but the mechanisms whereby hypothalamic-pituitary-gonadal (HPG) axis signaling is impacted by high temperature are not fully understood. Here, we characterized differences in HPG status in adult sheepshead minnow (Cyprinodon variegatus), a eurythermal salt marsh and estuarine species of eastern North America, exposed for 14 d to temperatures of 27 °C or 37 °C. Males and females at 37 °C had lower gonadosomatic index (GSI) values compared to fish at 27 °C, and females at 37 °C had fewer spawning capable eggs and lower circulating 17β-estradiol (E2). Gene transcripts encoding gonadotropin-inhibitory hormone (gnih) and gonadotropin-releasing hormone-3 (gnrh3) were higher in relative abundance in the hypothalamus of both sexes at 37 °C. While pituitary mRNAs for the β-subunits of follicle-stimulating hormone (fshβ) and luteinizing hormone (lhβ) were lowered only in males at 37 °C, Fsh and Lh receptor mRNA levels in the gonads were at lower relative levels in both the ovary and testis of fish at 37 °C. Females at 37 °C also showed reduced ovarian mRNA levels for steroid acute regulatory protein (star), P450 side-chain cleavage enzyme (cyp11a1), 3β-hydroxysteroid dehydrogenase (3βhsd), 17β-hydroxysteroid dehydrogenase (hsd17β3), and ovarian aromatase (cyp19a1a). Females at the higher 37 °C temperature also had a lower liver expression of mRNAs encoding estrogen receptor α (esr1) and several vitellogenin and choriogenin genes, but elevated mRNA levels for hepatic sex hormone-binding globulin (shbg). Our results substantiate prior findings that exposure of fish to high temperature can inhibit gonadal steroidogenesis and oogenesis, and point to declines in reproductive performance emerging from alterations at several levels of HPG axis signaling including increased hypothalamic Gnih expression, depressed gonadal steroidogenesis, and reduced egg yolk and egg envelope protein production in the liver.
Collapse
Affiliation(s)
- Samantha L Bock
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Michelle I Chow
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Kristy L Forsgren
- Department of Biological Science, California State University, Fullerton, CA, 92831, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA.
| |
Collapse
|
7
|
Rodrigues MS, Fallah HP, Zanardini M, Malafaia G, Habibi HR, Nóbrega RH. Interaction between thyroid hormones and gonadotropin inhibitory hormone in ex vivo culture of zebrafish testis: An approach to study multifactorial control of spermatogenesis. Mol Cell Endocrinol 2021; 532:111331. [PMID: 34038752 DOI: 10.1016/j.mce.2021.111331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022]
Abstract
Reproduction is under multifactorial control of neurohormones, pituitary gonadotropins, as well as of local gonadal signaling systems including sex steroids, growth factors and non-coding RNAs. Among the factors, gonadotropin-inhibitory hormone (Gnih) is a novel RFamide neuropeptide which directly modulates gonadotropin synthesis and release from pituitary, and in the gonads, Gnih mediated inhibitory actions on gonadotropin response of zebrafish spermatogenesis. Thyroid hormones are peripheral hormones which are also known to interact with reproductive axis, in particular, regulating testicular development and function. This study investigated the interaction between Gnih and thyroid hormones in zebrafish spermatogenesis using in vivo and ex vivo approaches. Three experimental groups were established: "control" (non-treated fish), "methimazole" and "methimazole + T4". Fish were exposed to goitrogen methimazole for 3 weeks; T4 (100 μg/L) was added in the water from the second week only in the "reversal treatment" group. After exposure, testes were dissected out and immediately incubated in Leibovitz's L-15 culture medium containing hCG, Gnih or hCG + Gnih for 7 days. Germ cell cysts and haploid cell population were evaluated by histomorphometry and flow cytometry, respectively. Our results showed that hypothyroidism affected germ cell development in basal and gonadotropin-induced spermatogenesis, in particular, meiosis and spermiogenesis. Hypothyroid testes showed lower amount of spermatozoa, and decreased potency of hCG. We also showed that goitrogen treatment nullified the inhibitory actions of Gnih on the gonadotropin-induced spermatogenesis. This study provided evidences that thyroid hormones are important regulatory factors for hCG- and Gnih-mediated functions in zebrafish spermatogenesis.
Collapse
Affiliation(s)
- Maira S Rodrigues
- Aquaculture Program (CAUNESP), São Paulo State University (UNESP), 14884-900, Jaboticabal, São Paulo, Brazil; Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada; Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970, Botucatu, São Paulo, Brazil
| | - Hamideh P Fallah
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Maya Zanardini
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Guilherme Malafaia
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970, Botucatu, São Paulo, Brazil; Biological Research Laboratory, Goiano Federal Institution, Urata Campus, Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, Goiás, Brazil
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| | - Rafael H Nóbrega
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970, Botucatu, São Paulo, Brazil.
| |
Collapse
|
8
|
Ohga H, Matsuyama M. Effects of LPXRFamide peptides on chub mackerel gonadotropin secretion. Biol Reprod 2021; 105:1179-1188. [PMID: 34198332 DOI: 10.1093/biolre/ioab130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 12/21/2022] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH), a neuropeptide, suppresses gonadotropin (GTH) secretion in birds and mammals. In fish, the GnIH homolog LPXRFamide (LPXRFa) produces mature peptides with species-dependent effects on sexual reproduction. Here, we investigated the effects of LPXRFa on GTH secretion in the chub mackerel (cm; Scomber japonicus). We cloned cmlpxrfa (603 bp) and cmlpxrfa-r (1,416 bp). Additionally, we isolated lpxrfa from the bluefin tuna (Thunnus orientalis) to confirm the conservation of the LPXRFa mature sequence. Phylogenetic analysis showed that the LPXRFa precursor protein produces three mature peptides, LPXRFa-1, -2, and - 3, in both species. Reverse transcription-quantitative PCR revealed that cmlpxrfa is expressed in the hypothalamus and thalamus and midbrain (T.MB), and sexual differences were observed. Receptor expression was observed in the pre-optic area, hypothalamus, T.MB, and pituitary. Female hypothalamic lpxrfa expression did not change during puberty. Reporter gene assay showed that LPXRFa induced receptor activation via the CRE and SRE signaling pathways. However, in the presence of forskolin, an intracellular cyclic AMP enhancer, none of the LPXRFa could suppress receptor activity. The in vitro bioassay results showed that gonadotropin-releasing hormone-1 (GnRH1) had no effect on follicle-stimulating hormone (FSH) secretion, whereas the three LPXRFa significantly increased FSH secretion in pituitary cells from male chub mackerel. Contrarily, GnRH1 and three LPXRFa significantly increased luteinizing hormone (LH) secretion. The in vivo administration of LPXRFa had no effect on fshb and lhb expression in pre-pubertal and mature male chub mackerel. Overall, cmLPXRFa lacks the ability to suppress GTH secretion but can promote GTH secretion.
Collapse
Affiliation(s)
- Hirofumi Ohga
- Aqua-Bioresource Innovation Center (ABRIC) Karatsu satellite, Kyushu University, Saga 847-0132, Japan
| | | |
Collapse
|