1
|
Plešnik H, Rekar Ž, Stevanović S, Virant-Klun I, Imamović Kumalić S, Sladič M, Mazej D, Tratnik JS, Horvat M, Kosjek T. Nontargeted Urinary Profiling Strategy for Endocrine-Disrupting Chemicals in Women with Ovarian Malignancies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8380-8390. [PMID: 40263667 PMCID: PMC12060279 DOI: 10.1021/acs.est.4c13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
Endocrine-disrupting chemicals (EDCs), including known and unknown parent compounds, their metabolites, and transformation products, are pervasive in daily life, posing increasing risks to human health and the environment. This study employed a high-resolution mass spectrometry-based nontargeted screening approach, integrating polar (HILIC) and reversed-phase separations to expand the chemical space coverage and, supported by open-science tools and resources, evaluated urinary chemical profiles to assess internal EDC exposure. Among 106 annotated biomarkers of exposure, six exhibited significantly higher normalized intensities in patients with ovarian malignancies compared to healthy controls (p < 0.05). This suggests their greater exposure to phthalates (diethylhexyl phthalate and diethyl phthalate), pesticides (metolachlor metabolite and 4-nitrophenol), a UV filter (benzophenone-1), and an industrial byproduct (4-methyl-2-nitrophenol). These compounds may interfere with hormonal regulation, potentially contributing to cancer development. While these findings highlight potential differences in internal EDC exposure, the study primarily demonstrates the applicability of nontargeted urinary profiling for chemical exposure assessment. By providing new insights into EDCs burden and its pathological implications, this work contributes to advancing next-generation chemical risk assessment within the European Partnership for the Assessment of Risks from Chemicals initiative and supports the development of preventive strategies to mitigate environmental cancer risks.
Collapse
Affiliation(s)
- Helena Plešnik
- Department
of Environmental Sciences, Jožef
Stefan Institute, 1000 Ljubljana, Slovenia
- Jožef
Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Žan Rekar
- Department
of Environmental Sciences, Jožef
Stefan Institute, 1000 Ljubljana, Slovenia
- Jožef
Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Stefanela Stevanović
- Faculty
of Computer and Information Science, University
of Ljubljana, 1000 Ljubljana, Slovenia
| | - Irma Virant-Klun
- Clinical
Research Centre, University Medical Centre
Ljubljana, 1000 Ljubljana, Slovenia
- Faculty
of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Senka Imamović Kumalić
- Faculty
of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Division
of Obstetrics and Gynecology, University
Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Mateja Sladič
- Faculty
of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Division
of Obstetrics and Gynecology, University
Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Darja Mazej
- Department
of Environmental Sciences, Jožef
Stefan Institute, 1000 Ljubljana, Slovenia
| | - Janja Snoj Tratnik
- Department
of Environmental Sciences, Jožef
Stefan Institute, 1000 Ljubljana, Slovenia
| | - Milena Horvat
- Department
of Environmental Sciences, Jožef
Stefan Institute, 1000 Ljubljana, Slovenia
- Jožef
Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Tina Kosjek
- Department
of Environmental Sciences, Jožef
Stefan Institute, 1000 Ljubljana, Slovenia
- Jožef
Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Marchiandi J, Dagnino S, Zander-Fox D, Green MP, Clarke BO. Characterization of Chemical Exposome in A Paired Human Preconception Pilot Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20352-20365. [PMID: 39508786 DOI: 10.1021/acs.est.4c04356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Parental preconception exposure to synthetic chemicals may have critical influences on fertility and reproduction. Here, we present a robust LC-MS/MS method covering up to 95 diverse xenobiotics in human urine, serum, seminal and follicular fluids to support exposome-wide assessment in reproductive health outcomes. Extraction recoveries of validated analytes ranged from 62% to 137% and limits of quantification from 0.01 to 6.0 ng/mL in all biofluids. We applied the validated method to a preconception cohort of Australian couples (n = 30) receiving fertility treatment. In total, 36 and 38 xenobiotics were detected across the paired biofluids of males and females, respectively, including PFAS, parabens, organic UV-filters, plastic additives, antimicrobials, and other industrial chemicals. Results showed 39% of analytes in males and 37% in females were equally detected in paired serum, urine, and reproductive fluids. The first detection of the sunscreen ingredient avobenzone and the industrial chemical 4-nitrophenol in follicular and seminal fluids suggests they can cross both blood-follicle/testis barriers, indicating potential risks for fertility. Further, the blood-follicle transfer of perfluorobutanoic acid, PFOA, PFHxS, PFOS, and oxybenzone corroborate that serum concentrations can be reliable proxies for assessing exposure within the ovarian microenvironment. In conclusion, we observed significant preconception exposure to multiple endocrine disruptors in couples and identified potential xenobiotics relevant to male and female fertility impairments.
Collapse
Affiliation(s)
- Jaye Marchiandi
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | - Sonia Dagnino
- Transporters in Imaging and Radiotherapy in Oncology (TIRO), School of Medicine, Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Université Côte d'Azur (UCA), 28 Avenue de Valombrose, 06107 Nice, France
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W12 7TA London, U.K
| | - Deirdre Zander-Fox
- Monash IVF Group Pty, Cremorne, Melbourne, Victoria 3121, Australia
- Department of Obstetrics & Gynaecology, Monash University, Clayton, Melbourne, Victoria 3168, Australia
| | - Mark P Green
- Monash IVF Group Pty, Cremorne, Melbourne, Victoria 3121, Australia
- School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
3
|
Mayil Vealan SB, Chinnathambi S. Simultaneous determination of environmental endocrine disruptors bisphenol A and 4-nitrophenol bleached from food-contacting materials using the spin-ladder compound La 2Cu 2O 5 modified glassy carbon electrode. CHEMOSPHERE 2024; 353:141559. [PMID: 38417491 DOI: 10.1016/j.chemosphere.2024.141559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Environmental endocrine-disrupting chemicals, Bisphenol A (BPA) and 4-Nitrophenol (4-NP), pose significant risks to reproductive health in both animals and humans. Here, we introduce the first utilization of the 4-leg spin ladder compound La2Cu2O5 as an electrode material for electrochemical sensor. Nanostructured La2Cu2O5 was synthesized via a straightforward Sol-Gel method and thoroughly characterized using X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and powder X-ray diffraction. La2Cu2O5 nanoparticles modified glassy carbon electrode (GCE) exhibited a significant electrocatalytic activity towards the oxidation of BPA and 4-NP in phosphate buffer saline (pH 7.0). Square wave voltammetry studies revealed lowest detection limits of 3 nM for BPA and 2.6 nM for 4-NP over a wider concentration range of 0.01-500 μM. Notably, this study marks the first utilization of La2Cu2O5 for simultaneous electrochemical detection of BPA and 4-NP, demonstrating its potential in this field. Furthermore, the sensor exhibited good sensitivity, reproducibility, and selectivity towards BPA and 4-NP, even in the presence of similar potential organic and inorganic interferents. Additionally, the newly developed sensor enabled simultaneous quantification of BPA and 4-NP in real samples such as packaged milk, river water, and plastic bottles, achieving recovery rates above 95%. Importantly, our results underscore the leaching of BPA into water from thin and thick plastics at elevated temperatures (40 °C-80 °C), emphasizing the utility of the proposed sensor for rapid and simultaneous detection of BPA and 4-NP in environmental and food matrices.
Collapse
Affiliation(s)
- S B Mayil Vealan
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi-630003, Tamil Nadu, India
| | - Sekar Chinnathambi
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi-630003, Tamil Nadu, India.
| |
Collapse
|
4
|
Abdelmoneim MS, Hafez EE, Dawood MFA, Hammad SF, Ghazy MA. Toxicity of bisphenol A and p-nitrophenol on tomato plants: Morpho-physiological, ionomic profile, and antioxidants/defense-related gene expression studies. Biomol Concepts 2024; 15:bmc-2022-0049. [PMID: 38924751 DOI: 10.1515/bmc-2022-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Bisphenol A (BPA) and p-nitrophenol (PNP) are emerging contaminants of soils due to their wide presence in agricultural and industrial products. Thus, the present study aimed to integrate morpho-physiological, ionic homeostasis, and defense- and antioxidant-related genes in the response of tomato plants to BPA or PNP stress, an area of research that has been scarcely studied. In this work, increasing the levels of BPA and PNP in the soil intensified their drastic effects on the biomass and photosynthetic pigments of tomato plants. Moreover, BPA and PNP induced osmotic stress on tomato plants by reducing soluble sugars and soluble proteins relative to control. The soil contamination with BPA and PNP treatments caused a decline in the levels of macro- and micro-elements in the foliar tissues of tomatoes while simultaneously increasing the contents of non-essential micronutrients. The Fourier transform infrared analysis of the active components in tomato leaves revealed that BPA influenced the presence of certain functional groups, resulting in the absence of some functional groups, while on PNP treatment, there was a shift observed in certain functional groups compared to the control. At the molecular level, BPA and PNP induced an increase in the gene expression of polyphenol oxidase and peroxidase, with the exception of POD gene expression under BPA stress. The expression of the thaumatin-like protein gene increased at the highest level of PNP and a moderate level of BPA without any significant effect of both pollutants on the expression of the tubulin (TUB) gene. The comprehensive analysis of biochemical responses in tomato plants subjected to BPA and PNP stress illustrates valuable insights into the mechanisms underlying tolerance to these pollutants.
Collapse
Affiliation(s)
- Mahmoud S Abdelmoneim
- Biotechnology program, Basic and Applied Science Institute, Egypt-Japan University of Science and Technology (E-JUST), 21934, New Borg El-Arab City, Alexandrina, Egypt
- Botany and Microbiology Department, Faculty of Science, Assiut University, 71515, Assiut, Egypt
| | - Elsayed E Hafez
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), 21934, New Borg El-Arab city, Alexandrina, Egypt
| | - Mona F A Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, 71515, Assiut, Egypt
| | - Sherif F Hammad
- Pharm D program, Egypt-Japan University of Science and Technology (E-JUST), 21934, New Borg El-Arab City, Alexandrina, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, 11795, Ain Helwan, Cairo, Egypt
| | - Mohamed A Ghazy
- Biotechnology program, Basic and Applied Science Institute, Egypt-Japan University of Science and Technology (E-JUST), 21934, New Borg El-Arab City, Alexandrina, Egypt
- Biochemistry Department, Faculty of Science, Ain Shams University, 11566, Cairo, Egypt
| |
Collapse
|
5
|
Castrejón-Godínez ML, Tovar-Sánchez E, Ortiz-Hernández ML, Encarnación-Guevara S, Martínez-Batallar ÁG, Hernández-Ortiz M, Sánchez-Salinas E, Rodríguez A, Mussali-Galante P. Proteomic analysis of Burkholderia zhejiangensis CEIB S4-3 during the methyl parathion degradation process. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105197. [PMID: 36127069 DOI: 10.1016/j.pestbp.2022.105197] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/24/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Methyl parathion is an organophosphorus pesticide widely employed worldwide to control pests in agricultural and domestic environments. However, due to its intensive use, high toxicity, and environmental persistence, methyl parathion is recognized as an important ecosystem and human health threat, causing severe environmental pollution events and numerous human poisoning and deaths each year. Therefore, identifying and characterizing microorganisms capable of fully degrading methyl parathion and its degradation metabolites is a crucial environmental task for the bioremediation of pesticide-polluted sites. Burkholderia zhejiangensis CEIB S4-3 is a bacterial strain isolated from agricultural soils capable of immediately hydrolyzing methyl parathion at a concentration of 50 mg/L and degrading the 100% of the released p-nitrophenol in a 12-hour lapse when cultured in minimal salt medium. In this study, a comparative proteomic analysis was conducted in the presence and absence of methyl parathion to evaluate the biological mechanisms implicated in the methyl parathion biodegradation and resistance by the strain B. zhejiangensis CEIB S4-3. In each treatment, the changes in the protein expression patterns were evaluated at three sampling times, zero, three, and nine hours through the use of two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), and the differentially expressed proteins were identified by mass spectrometry (MALDI-TOF). The proteomic analysis allowed the identification of 72 proteins with differential expression, 35 proteins in the absence of the pesticide, and 37 proteins in the experimental condition in the presence of methyl parathion. The identified proteins are involved in different metabolic processes such as the carbohydrate and amino acids metabolism, carbon metabolism and energy production, fatty acids β-oxidation, and the aromatic compounds catabolism, including enzymes of the both p-nitrophenol degradation pathways (Hydroquinone dioxygenase and Hydroxyquinol 1,2 dioxygenase), as well as the overexpression of proteins implicated in cellular damage defense mechanisms such as the response and protection of the oxidative stress, reactive oxygen species defense, detoxification of xenobiotics, and DNA repair processes. According to these data, B. zhejiangensis CEIB S4-3 overexpress different proteins related to aromatic compounds catabolism and with the p-nitrophenol degradation pathways, the higher expression levels observed in the two subunits of the enzyme Hydroquinone dioxygenase, suggest a preferential use of the Hydroquinone metabolic pathway in the p-nitrophenol degradation process. Moreover the overexpression of several proteins implicated in the oxidative stress response, xenobiotics detoxification, and DNA damage repair reveals the mechanisms employed by B. zhejiangensis CEIB S4-3 to counteract the adverse effects caused by the methyl parathion and p-nitrophenol exposure.
Collapse
Affiliation(s)
- María Luisa Castrejón-Godínez
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos, Mexico
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos, Mexico.
| | - Ma Laura Ortiz-Hernández
- Misión Sustentabilidad México A.C., Priv. Laureles 6, Col. Chamilpa, C.P. 62210 Cuernavaca, Morelos, Mexico
| | - Sergio Encarnación-Guevara
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, C.P. 62210 Cuernavaca, Morelos, Mexico
| | - Ángel Gabriel Martínez-Batallar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, C.P. 62210 Cuernavaca, Morelos, Mexico
| | - Magdalena Hernández-Ortiz
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, C.P. 62210 Cuernavaca, Morelos, Mexico
| | - Enrique Sánchez-Salinas
- Misión Sustentabilidad México A.C., Priv. Laureles 6, Col. Chamilpa, C.P. 62210 Cuernavaca, Morelos, Mexico
| | - Alexis Rodríguez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos, Mexico.
| | - Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
6
|
Levine M. Fluorescence-Based Sensing of Pesticides Using Supramolecular Chemistry. Front Chem 2021; 9:616815. [PMID: 33937184 PMCID: PMC8085505 DOI: 10.3389/fchem.2021.616815] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/11/2021] [Indexed: 01/02/2023] Open
Abstract
The detection of pesticides in real-world environments is a high priority for a broad range of applications, including in areas of public health, environmental remediation, and agricultural sustainability. While many methods for pesticide detection currently exist, the use of supramolecular fluorescence-based methods has significant practical advantages. Herein, we will review the use of fluorescence-based pesticide detection methods, with a particular focus on supramolecular chemistry-based methods. Illustrative examples that show how such methods have achieved success in real-world environments are also included, as are areas highlighted for future research and development.
Collapse
Affiliation(s)
- Mindy Levine
- Ariel University, Department of Chemical Sciences, Ariel, Israel
| |
Collapse
|
7
|
Application of biosynthesized metal nanoparticles in electrochemical sensors. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2021. [DOI: 10.2298/jsc200521077d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recently, the development of eco-friendly, cost-effective and reliable methods for synthesis of metal nanoparticles has drawn a considerable attention. The so-called green synthesis, using mild reaction conditions and natural resources as plant extracts and microorganisms, has established as a convenient, sustainable, cheap and environmentally safe approach for synthesis of a wide range of nanomaterials. Over the past decade, biosynthesis is regarded as an important tool for reducing the harmful effects of traditional nanoparticle synthesis methods commonly used in laboratories and industry. This review emphasizes the significance of biosynthesized metal nanoparticles in the field of electrochemical sensing. There is increasing evidence that green synthesis of nanoparticles provides a new direction in designing of cost-effective, highly sensitive and selective electrode-catalysts applicable in food, clinical and environmental analysis. The article is based on 157 references and provided a detailed overview on the main approaches for green synthesis of metal nanoparticles and their applications in designing of electrochemical sensor devices. Important operational characteristics including sensitivity, dynamic range, limit of detection, as well as data on stability and reproducibility of sensors have also been covered.
Collapse
|