1
|
Petrova E, López-Gay JM, Fahrner M, Leturcq F, de Villartay JP, Barbieux C, Gonschorek P, Tsoi LC, Gudjonsson JE, Schilling O, Hovnanian A. Comparative analyses of Netherton syndrome patients and Spink5 conditional knock-out mice uncover disease-relevant pathways. Commun Biol 2024; 7:152. [PMID: 38316920 PMCID: PMC10844249 DOI: 10.1038/s42003-024-05780-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Netherton syndrome (NS) is a rare skin disease caused by loss-of-function mutations in the serine peptidase inhibitor Kazal type 5 (SPINK5) gene. Disease severity and the lack of efficacious treatments call for a better understanding of NS mechanisms. Here we describe a novel and viable, Spink5 conditional knock-out (cKO) mouse model, allowing to study NS progression. By combining transcriptomics and proteomics, we determine a disease molecular profile common to mouse models and NS patients. Spink5 cKO mice and NS patients share skin barrier and inflammation signatures defined by up-regulation and increased activity of proteases, IL-17, IL-36, and IL-20 family cytokine signaling. Systemic inflammation in Spink5 cKO mice correlates with disease severity and is associated with thymic atrophy and enlargement of lymph nodes and spleen. This systemic inflammation phenotype is marked by neutrophils and IL-17/IL-22 signaling, does not involve primary T cell immunodeficiency and is independent of bacterial infection. By comparing skin transcriptomes and proteomes, we uncover several putative substrates of tissue kallikrein-related proteases (KLKs), demonstrating that KLKs can proteolytically regulate IL-36 pro-inflammatory cytokines. Our study thus provides a conserved molecular framework for NS and reveals a KLK/IL-36 signaling axis, adding new insights into the disease mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- Evgeniya Petrova
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute and University of Paris, Paris, France.
| | - Jesús María López-Gay
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Paris, F-75248, Cedex 05, France
- Sorbonne University, UPMC University Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, Paris, France
| | - Matthias Fahrner
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Freiburg, Germany
| | - Florent Leturcq
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute and University of Paris, Paris, France
| | - Jean-Pierre de Villartay
- Imagine Institute, Laboratory "Genome Dynamics in the Immune System", INSERM UMR 11635, Paris, France
| | - Claire Barbieux
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute and University of Paris, Paris, France
| | - Patrick Gonschorek
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Freiburg, Germany
| | - Alain Hovnanian
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute and University of Paris, Paris, France.
- Department of Genomic Medicine of rare diseases, Necker Hospital for Sick Children, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France.
- University of Paris Cité, Paris, France.
| |
Collapse
|
2
|
Zhang Q, Zhang J, Lei T, Liang Z, Dong X, Sun L, Zhao Y. Sirt6-mediated epigenetic modification of DNA accessibility is essential for Pou2f3-induced thymic tuft cell development. Commun Biol 2022; 5:544. [PMID: 35668088 PMCID: PMC9170729 DOI: 10.1038/s42003-022-03484-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThymic epithelial cells (TECs) are essential for the production of self-tolerant T cells. The newly identified thymic tuft cells are regulated by Pou2f3 and represent important elements for host type 2 immunity. However, epigenetic involvement in thymic tuft cell development remains unclear. We performed single-cell ATAC-seq of medullary TEC (mTEC) and established single-cell chromatin accessibility profiling of mTECs. The results showed that mTEC III cells can be further divided into three groups (Late Aire 1, 2, and 3) and that thymic tuft cells may be derived from Late Aire 2 cells. Pou2f3 is expressed in both Late Aire 2 cells and thymic tuft cells, while Pou2f3-regulated genes are specifically expressed in thymic tuft cells with simultaneous opening of chromatin accessibility, indicating the involvement of epigenetic modification in this process. Using the epigenetic regulator Sirt6-defect mouse model, we found that Sirt6 deletion increased Late Aire 2 cells and decreased thymic tuft cells and Late Aire 3 cells without affecting Pou2f3 expression. However, Sirt6 deletion reduced the chromatin accessibility of Pou2f3-regulated genes in thymic tuft cells, which may be caused by Sirt6–mediated regulation of Hdac9 expression. These data indicate that epigenetic regulation is indispensable for Pou2f3-mediated thymic tuft cell development.
Collapse
|
3
|
Petrova E, Hovnanian A. Advances in understanding of Netherton syndrome and therapeutic implications. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1857724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Evgeniya Petrova
- Laboratory of genetic skin diseases, Université de Paris, Imagine Institute, INSERM UMR1163, Paris, France
| | - Alain Hovnanian
- Laboratory of genetic skin diseases, Université de Paris, Imagine Institute, INSERM UMR1163, Paris, France
- Departement of Genetics, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
4
|
Dhalla F, Baran‐Gale J, Maio S, Chappell L, Holländer GA, Ponting CP. Biologically indeterminate yet ordered promiscuous gene expression in single medullary thymic epithelial cells. EMBO J 2020; 39:e101828. [PMID: 31657037 PMCID: PMC6939203 DOI: 10.15252/embj.2019101828] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
To induce central T-cell tolerance, medullary thymic epithelial cells (mTEC) collectively express most protein-coding genes, thereby presenting an extensive library of tissue-restricted antigens (TRAs). To resolve mTEC diversity and whether promiscuous gene expression (PGE) is stochastic or coordinated, we sequenced transcriptomes of 6,894 single mTEC, enriching for 1,795 rare cells expressing either of two TRAs, TSPAN8 or GP2. Transcriptional heterogeneity allowed partitioning of mTEC into 15 reproducible subpopulations representing distinct maturational trajectories, stages and subtypes, including novel mTEC subsets, such as chemokine-expressing and ciliated TEC, which warrant further characterisation. Unexpectedly, 50 modules of genes were robustly defined each showing patterns of co-expression within individual cells, which were mainly not explicable by chromosomal location, biological pathway or tissue specificity. Further, TSPAN8+ and GP2+ mTEC were randomly dispersed within thymic medullary islands. Consequently, these data support observations that PGE exhibits ordered co-expression, although mechanisms underlying this instruction remain biologically indeterminate. Ordered co-expression and random spatial distribution of a diverse range of TRAs likely enhance their presentation and encounter with passing thymocytes, while maintaining mTEC identity.
Collapse
Affiliation(s)
- Fatima Dhalla
- Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | | | - Stefano Maio
- Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | | | - Georg A Holländer
- Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Chris P Ponting
- MRC Human Genetics UnitMRC IGMMThe University of EdinburghEdinburghUK
- Wellcome Sanger InstituteHinxtonUK
| |
Collapse
|
5
|
Bornstein C, Nevo S, Giladi A, Kadouri N, Pouzolles M, Gerbe F, David E, Machado A, Chuprin A, Tóth B, Goldberg O, Itzkovitz S, Taylor N, Jay P, Zimmermann VS, Abramson J, Amit I. Single-cell mapping of the thymic stroma identifies IL-25-producing tuft epithelial cells. Nature 2018; 559:622-626. [PMID: 30022162 DOI: 10.1038/s41586-018-0346-1] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 06/06/2018] [Indexed: 12/18/2022]
Abstract
T cell development and selection are coordinated in the thymus by a specialized niche of diverse stromal populations1-3. Although much progress has been made over the years in identifying the functions of the different cell types of the thymic stromal compartment, there is no comprehensive characterization of their diversity and heterogeneity. Here we combined massively parallel single-cell RNA-sequencing4,5, spatial mapping, chromatin profiling and gene targeting to characterize de novo the entire stromal compartment of the mouse thymus. We identified dozens of cell states, with thymic epithelial cells (TECs) showing the highest degree of heterogeneity. Our analysis highlights four major medullary TEC (mTEC I-IV) populations, with distinct molecular functions, epigenetic landscapes and lineage regulators. Specifically, mTEC IV constitutes a new and highly divergent TEC lineage with molecular characteristics of the gut chemosensory epithelial tuft cells. Mice deficient in Pou2f3, a master regulator of tuft cells, have complete and specific depletion of mTEC IV cells, which results in increased levels of thymus-resident type-2 innate lymphoid cells. Overall, our study provides a comprehensive characterization of the thymic stroma and identifies a new tuft-like TEC population, which is critical for shaping the immune niche in the thymus.
Collapse
Affiliation(s)
- Chamutal Bornstein
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Shir Nevo
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Giladi
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Kadouri
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Marie Pouzolles
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - François Gerbe
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Alice Machado
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Anna Chuprin
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Beáta Tóth
- Department of Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ori Goldberg
- Department of Pediatrics, Schneider Children's Medical Center, Petach Tikva, Israel
| | - Shalev Itzkovitz
- Department of Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Philippe Jay
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Valérie S Zimmermann
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Jakub Abramson
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
6
|
Chabchoub I, Ayadi L, Mejdoub I, Maalej B, Kamoun T, Boudawara T, Hachicha M. Alopécie, ichtyose congénitale et retard de croissance : pensez au syndrome de Netherton ! Arch Pediatr 2010. [DOI: 10.1016/j.arcped.2010.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Pavlopoulou A, Pampalakis G, Michalopoulos I, Sotiropoulou G. Evolutionary history of tissue kallikreins. PLoS One 2010; 5:e13781. [PMID: 21072173 PMCID: PMC2967472 DOI: 10.1371/journal.pone.0013781] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 10/08/2010] [Indexed: 12/12/2022] Open
Abstract
The gene family of human kallikrein-related peptidases (KLKs) encodes proteins with diverse and pleiotropic functions in normal physiology as well as in disease states. Currently, the most widely known KLK is KLK3 or prostate-specific antigen (PSA) that has applications in clinical diagnosis and monitoring of prostate cancer. The KLK gene family encompasses the largest contiguous cluster of serine proteases in humans which is not interrupted by non-KLK genes. This exceptional and unique characteristic of KLKs makes them ideal for evolutionary studies aiming to infer the direction and timing of gene duplication events. Previous studies on the evolution of KLKs were restricted to mammals and the emergence of KLKs was suggested about 150 million years ago (mya). In order to elucidate the evolutionary history of KLKs, we performed comprehensive phylogenetic analyses of KLK homologous proteins in multiple genomes including those that have been completed recently. Interestingly, we were able to identify novel reptilian, avian and amphibian KLK members which allowed us to trace the emergence of KLKs 330 mya. We suggest that a series of duplication and mutation events gave rise to the KLK gene family. The prominent feature of the KLK family is that it consists of tandemly and uninterruptedly arrayed genes in all species under investigation. The chromosomal co-localization in a single cluster distinguishes KLKs from trypsin and other trypsin-like proteases which are spread in different genetic loci. All the defining features of the KLKs were further found to be conserved in the novel KLK protein sequences. The study of this unique family will further assist in selecting new model organisms for functional studies of proteolytic pathways involving KLKs.
Collapse
Affiliation(s)
- Athanasia Pavlopoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Georgios Pampalakis
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | | | - Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
- * E-mail:
| |
Collapse
|
8
|
Tartaglia-Polcini A, Bonnart C, Micheloni A, Cianfarani F, Andrè A, Zambruno G, Hovnanian A, D'Alessio M. SPINK5, the defective gene in netherton syndrome, encodes multiple LEKTI isoforms derived from alternative pre-mRNA processing. J Invest Dermatol 2006; 126:315-24. [PMID: 16374478 DOI: 10.1038/sj.jid.5700015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The multidomain serine protease inhibitor lymphoepithelial Kazal-type related inhibitor (LEKTI) represents a key regulator of the proteolytic events occurring during epidermal barrier formation and hair development, as attested by the severe autosomal recessive ichthyosiform skin condition Netherton syndrome (NS) caused by mutations in its encoding gene, serine protease inhibitor Kazal-type 5 (SPINK5). Synthesized as a proprotein, LEKTI is rapidly cleaved intracellularly, thus generating a number of potentially bioactive fragments that are secreted. Here, we show that SPINK5 generates three classes of transcripts encoding three different LEKTI isoforms, which differ in their C-terminal portion. In addition to the previously described 15 domain isoform, SPINK5 encodes a shorter LEKTI isoform composed of only the first 13 domains, as well as a longer isoform carrying a 30-amino-acid residue insertion between the 13th and 14th inhibitory domains. We demonstrate that variable amounts of SPINK5 alternative transcripts are detected in all SPINK5 transcriptionally active tissues. Finally, we show that in differentiated cultured human keratinocytes all SPINK5 alternative transcripts are translated into protein and that the LEKTI precursors generate distinct secreted C-terminal proteolytic fragments from a similar cleavage site. Since several data indicate a biological role for the pro-LEKTI-cleaved polypeptides, we hypothesize that the alternative processing of the SPINK5 pre-messenger RNA represents an additional mechanism to further increase the structural and functional diversity of the LEKTI bioactive fragments.
Collapse
|