1
|
Gunn BM, McNamara RP, Wood L, Taylor S, Devadhasan A, Guo W, Das J, Nilsson A, Shurtleff A, Dubey S, Eichberg M, Suscovich TJ, Saphire EO, Lauffenburger D, Coller BA, Simon JK, Alter G. Antibodies against the Ebola virus soluble glycoprotein are associated with long-term vaccine-mediated protection of non-human primates. Cell Rep 2023; 42:112402. [PMID: 37061918 PMCID: PMC10576837 DOI: 10.1016/j.celrep.2023.112402] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/30/2023] [Accepted: 03/31/2023] [Indexed: 04/17/2023] Open
Abstract
The 2013 Ebola epidemic in Central and West Africa heralded the emergence of wide-spread, highly pathogenic viruses. The successful recombinant vector vaccine against Ebola (rVSVΔG-ZEBOV-GP) will limit future outbreaks, but identifying mechanisms of protection is essential to protect the most vulnerable. Vaccine-induced antibodies are key determinants of vaccine efficacy, yet the mechanism by which vaccine-induced antibodies prevent Ebola infection remains elusive. Here, we exploit a break in long-term vaccine efficacy in non-human primates to identify predictors of protection. Using unbiased humoral profiling that captures neutralization and Fc-mediated functions, we find that antibodies specific for soluble glycoprotein (sGP) drive neutrophil-mediated phagocytosis and predict vaccine-mediated protection. Similarly, we show that protective sGP-specific monoclonal antibodies have elevated neutrophil-mediated phagocytic activity compared with non-protective antibodies, highlighting the importance of sGP in vaccine protection and monoclonal antibody therapeutics against Ebola virus.
Collapse
Affiliation(s)
- Bronwyn M Gunn
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ryan P McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| | - Lianna Wood
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Sabian Taylor
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Wenyu Guo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Jishnu Das
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Avlant Nilsson
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Amy Shurtleff
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | | | | | | | | | - Douglas Lauffenburger
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | | | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| |
Collapse
|
2
|
Bergman J, Schierup MH. Evolutionary dynamics of pseudoautosomal region 1 in humans and great apes. Genome Biol 2022; 23:215. [PMID: 36253794 PMCID: PMC9575207 DOI: 10.1186/s13059-022-02784-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 09/30/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The pseudoautosomal region 1 (PAR1) is a 2.7 Mb telomeric region of human sex chromosomes. PAR1 has a crucial role in ensuring proper segregation of sex chromosomes during male meiosis, exposing it to extreme recombination and mutation processes. We investigate PAR1 evolution using population genomic datasets of extant humans, eight populations of great apes, and two archaic human genome sequences. RESULTS We find that PAR1 is fast evolving and closer to evolutionary nucleotide equilibrium than autosomal telomeres. We detect a difference between substitution patterns and extant diversity in PAR1, mainly driven by the conflict between strong mutation and recombination-associated fixation bias at CpG sites. We detect excess C-to-G mutations in PAR1 of all great apes, specific to the mutagenic effect of male recombination. Despite recent evidence for Y chromosome introgression from humans into Neanderthals, we find that the Neanderthal PAR1 retained similarity to the Denisovan sequence. We find differences between substitution spectra of these archaics suggesting rapid evolution of PAR1 in recent hominin history. Frequency analysis of alleles segregating in females and males provided no evidence for recent sexual antagonism in this region. We study repeat content and double-strand break hotspot regions in PAR1 and find that they may play roles in ensuring the obligate X-Y recombination event during male meiosis. CONCLUSIONS Our study provides an unprecedented quantification of population genetic forces governing PAR1 biology across extant and extinct hominids. PAR1 evolutionary dynamics are predominantly governed by recombination processes with a strong impact on mutation patterns across all species.
Collapse
Affiliation(s)
- Juraj Bergman
- Bioinformatics Research Centre, Aarhus University, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
3
|
Thach B, Samarajeewa N, Li Y, Heng S, Tsai T, Pangestu M, Catt S, Nie G. Podocalyxin molecular characteristics and endometrial expression: high conservation between humans and macaques but divergence in mice†. Biol Reprod 2022; 106:1143-1158. [PMID: 35284933 DOI: 10.1093/biolre/ioac053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/31/2022] [Accepted: 03/03/2022] [Indexed: 11/14/2022] Open
Abstract
Podocalyxin (PODXL) is a newly identified key negative regulator of human endometrial receptivity, specifically down-regulated in the luminal epithelium at receptivity to permit embryo implantation. Here, we bioinformatically compared the molecular characteristics of PODXL among the human, rhesus macaque and mouse, determined by immunohistochemistry and in situ hybridization (mouse tissues) whether endometrial PODXL expression is conserved across the three species, and examined if PODXL inhibits mouse embryo attachment in vitro. The PODXL gene, mRNA and protein sequences showed greater similarities between humans and macaques than with mice. In all species, PODXL was expressed in endometrial luminal/glandular epithelia and endothelia. In macaques (n = 9), luminal PODXL was significantly down-regulated when receptivity is developed, consistent with the pattern found in women. At receptivity PODXL was also reduced in shallow glands, whereas endothelial expression was unchanged across the menstrual cycle. In mice, endometrial PODXL did not vary considerably across the estrous cycle (n = 16); however, around embryo attachment on d4.5 of pregnancy (n = 4), luminal PODXL was greatly reduced especially near the site of embryo attachment. Mouse embryos failed to attach or thrive when co-cultured on a monolayer of Ishikawa cells overexpressing PODXL. Thus, endometrial luminal PODXL expression is down-regulated for embryo implantation in all species examined, and PODXL inhibits mouse embryo implantation. Rhesus macaques share greater conservations with humans than mice in PODXL molecular characteristics and regulation, thus represent a better animal model for functional studies of endometrial PODXL for treatment of human fertility.
Collapse
Affiliation(s)
- Bothidah Thach
- Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, 3800, Australia.,Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
| | - Nirukshi Samarajeewa
- Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Ying Li
- Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Sophea Heng
- Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Tesha Tsai
- Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Mulyoto Pangestu
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, 3800, Australia
| | - Sally Catt
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, 3800, Australia
| | - Guiying Nie
- Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, 3800, Australia.,Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
| |
Collapse
|
4
|
Kazemi M, Aliyari H, Tekieh E, Tavakoli H, Golabi S, Sahraei H, Meftahi GH, Salehi M, Saberi M. The Effect of 12 Hz Extremely Low-frequency Electromagnetic Field on Visual Memory of Male Macaque Monkeys. Basic Clin Neurosci 2022; 13:1-14. [PMID: 36589014 PMCID: PMC9790106 DOI: 10.32598/bcn.2021.724.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/23/2020] [Accepted: 08/04/2020] [Indexed: 01/04/2023] Open
Abstract
Introduction Today, humans live in a world surrounded by electromagnetic fields. Numerous studies have been conducted to discover the biological, physiological, and behavioral effects of electromagnetic fields on humans and animals. Given the biological similarities between monkeys and humans, The present research aimed to examine Visual Memory (VM), hormonal, genomic, and anatomic changes, in the male rhesus macaques exposed to an Extremely Low-Frequency Magnetic Field (ELF-MF). Methods Four male rhesus macaques (Macaca mulatta) were used. For the behavioral tests, the animals should be fasting for 17 hours. For the tests such as visual memory, the animal's cooperation was necessary. Using the radiation protocol, we exposed two monkeys to a 12-Hz electromagnetic field with a magnitude of 0.7 μT (electromagnetic radiation) four hours a day for a month. Before and after the exposure, a visual memory test was conducted using a coated device (visible reward) on a movable stand. Ten milliliters of blood was obtained from the femoral artery of each monkey, and half of it was used to examine cortisol serum levels using the MyBioSource kit (made in the USA). The other half of the blood was used to extract lymphocytes for assaying expressions of Glucocorticoid Receptor (GR) genes before and after radiation using the PCR method. Anatomic studies of the amygdala were carried out based on pre- and post-radiation Magnetic Resonance Imaging (MRI). Results Research results indicated that visual memory in male primates increased significantly after exposure to the 12-Hz frequency. Hormonal analysis at the 12-Hz frequency showed a decrease in cortisol serum levels. However, visual memory and serum cortisol levels did not change considerably in male primates in the control group. There was no considerable amygdala volumetric difference after exposure to the 12-Hz frequency. The expression of the GR genes decreased in the 12-Hz group compared to the control group. Conclusion In short, these results indicated that ELF might benefit memory enhancement because exposure to the 12-HZ ELF can enhance visual memory. This outcome may be due to a decrease in plasma cortisol and or expression of GR genes. Moreover, direct amygdala involvement in this regard cannot be recommended. Highlights The effects of Extremely Low-Frequency Electromagnetic Fields (ELF-EMF) of 12 Hz on monkeys were studied.The results showed a reduction in the serum cortisol levels and the expression of GR genes.The amygdala anatomical area changes were not significant in the experimental group.In the experimental group, visual memory (delay of 30- and 60-s evaluation) improved after exposure to a frequency of 12 Hz. Plain Language Summary Extremely low-frequency electromagnetic fields are among the most important factors affecting humans. This study aimed to determine the fields of 12-Hz frequency on the visual memory changes of male monkeys. The importance of research is due to the cognitive similarity of monkeys to humans. The findings of the research can be attributed to humans. Behavioral, hormonal, genetic, and anatomical studies indicated improvement in visual memory (test monkeys versus control monkeys). This study demonstrates the effect of the 12-Hz frequency on the monkey's visual memory. Researchers can study 12-Hz frequency in other cognitive indices.
Collapse
Affiliation(s)
- Masoomeh Kazemi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamed Aliyari
- Center for Human-Engaged Computing, Kochi University of Technology, Kochi, Japan
| | - Elaheh Tekieh
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hassan Tavakoli
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sahar Golabi
- Department of Medical Physiology, School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Hedayat Sahraei
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Maryam Salehi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Saberi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Oldt RF, Bussey KJ, Settles ML, Fass JN, Roberts JA, Reader JR, Komandoor S, Abrich VA, Kanthaswamy S. MYBPC3 Haplotype Linked to Hypertrophic Cardiomyopathy in Rhesus Macaques ( Macaca mulatta). Comp Med 2020; 70:358-367. [PMID: 32753092 PMCID: PMC7574221 DOI: 10.30802/aalas-cm-19-000108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/13/2020] [Accepted: 02/07/2020] [Indexed: 11/05/2022]
Abstract
In humans, abnormal thickening of the left ventricle of the heart clinically defines hypertrophic cardiomyopathy (HCM), a common inherited cardiovascular disorder that can precede a sudden cardiac death event. The wide range of clinical presentations in HCM obscures genetic variants that may influence an individual's susceptibility to sudden cardiac death. Although exon sequencing of major sarcomere genes can be used to detect high-impact causal mutations, this strategy is successful in only half of patient cases. The incidence of left ventricular hypertrophy (LVH) in a managed research colony of rhesus macaques provides an excellent comparative model in which to explore the genomic etiology of severe HCM and sudden cardiac death. Because no rhesus HCM-associated mutations have been reported, we used a next-generation genotyping assay that targets 7 sarcomeric rhesus genes within 63 genomic sites that are orthologous to human genomic regions known to harbor HCM disease variants. Amplicon sequencing was performed on 52 macaques with confirmed LVH and 42 unrelated, unaffected animals representing both the Indian and Chinese rhesus macaque subspecies. Bias-reduced logistic regression uncovered a risk haplotype in the rhesus MYBPC3 gene, which is frequently disrupted in both human and feline HCM; this haplotype implicates an intronic variant strongly associated with disease in either homozygous or carrier form. Our results highlight that leveraging evolutionary genomic data provides a unique, practical strategy for minimizing population bias in complex disease studies.
Collapse
Affiliation(s)
- Robert F Oldt
- School of Mathematical and Natural Sciences, Arizona State University at the West Campus, Glendale, Arizona; Evolutionary Biology Graduate Program, School of Life Sciences, Arizona State University at the West Campus, Glendale, Arizona;,
| | - Kimberly J Bussey
- School of Mathematical and Natural Sciences, Arizona State University at the West Campus, Glendale, Arizona; BEYOND Center for Fundamental Concepts in Science, Arizona State University at the West Campus, Glendale, Arizona
| | - Matthew L Settles
- Bioinformatics Core, UC Davis Genome Center, University of California, Davis, California
| | - Joseph N Fass
- Bioinformatics Core, UC Davis Genome Center, University of California, Davis, California
| | - Jeffrey A Roberts
- California National Primate Research Center, University of California, Davis, California
| | - J Rachel Reader
- California National Primate Research Center, University of California, Davis, California
| | | | - Victor A Abrich
- Division of Cardiovascular Diseases, Mayo Clinic, Scottsdale, Arizona
| | - Sreetharan Kanthaswamy
- School of Mathematical and Natural Sciences, Arizona State University at the West Campus, Glendale, Arizona; Evolutionary Biology Graduate Program, School of Life Sciences, Arizona State University at the West Campus, Glendale, Arizona; California National Primate Research Center, University of California, Davis, California
| |
Collapse
|
6
|
Kazemi M, Sahraei H, Aliyari H, Tekieh E, Saberi M, Tavacoli H, Meftahi GH, Ghanaati H, Salehi M, Hajnasrollah M. Effects of the Extremely Low Frequency Electromagnetic Fields on NMDA-Receptor Gene Expression and Visual Working Memory in Male Rhesus Macaques. Basic Clin Neurosci 2018; 9:167-176. [PMID: 30034647 PMCID: PMC6037432 DOI: 10.29252/nirp.bcn.9.3.167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Introduction The present research aimed to examine Visual Working Memory (VWM) test scores, as well as hormonal, genomic, and brain anatomic changes in the male rhesus macaques exposed to Extremely Low Frequency Magnetic Field (ELF-MF). Methods Four monkeys were exposed to two different ELF-MF frequencies: 1 Hz (control) and 12 Hz (experiment) with 0.7 μT (magnitude) 4 h/d for 30 consecutive days. Before and after the exposure, VWM test was conducted using a coated devise on a movable stand. About 10 mL of the animals' blood was obtained from their femoral vain and used to evaluate their melatonin concentration. Blood lymphocytes were used for assaying the expressions of N-Methyl-D-aspartate NMDA-receptor genes expression before and after ELF exposure. Anatomical changes of hippocampus size were also assessed using MRI images. Results Results indicated that VWM scores in primates exposed to 12 Hz frequency ELF increased significantly. Plasma melatonin level was also increased in these animals. However, these variables did not change in the animals exposed to 1 Hz ELF. At last, expression of the NMDA receptors increased at exposure to 12 Hz frequency. However, hippocampal volume did not increase significantly in the animals exposed to both frequencies. Conclusion In short, these results indicate that ELF (12 Hz) may have a beneficial value for memory enhancement (indicated by the increase in VWM scores). This may be due to an increase in plasma melatonin and or expression of NMDA glutamate receptors. However, direct involvement of the hippocampus in this process needs more research.
Collapse
Affiliation(s)
- Masoomeh Kazemi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hedayat Sahraei
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamed Aliyari
- Faculty of Electrical, Biomedical and Mechatronics Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
| | - Elaheh Tekieh
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Saberi
- Department of Pharmacology, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hassan Tavacoli
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Hossein Ghanaati
- Medical Imaging Centre, Imam Khomeini University Hospital, Tehran, Iran
| | - Maryam Salehi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Hajnasrollah
- Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| |
Collapse
|
7
|
Zhang X, Kadir KA, Quintanilla-Zariñan LF, Villano J, Houghton P, Du H, Singh B, Smith DG. Distribution and prevalence of malaria parasites among long-tailed macaques (Macaca fascicularis) in regional populations across Southeast Asia. Malar J 2016; 15:450. [PMID: 27590474 PMCID: PMC5010671 DOI: 10.1186/s12936-016-1494-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/16/2016] [Indexed: 12/17/2022] Open
Abstract
Background Plasmodium knowlesi and Plasmodium cynomolgi are two malaria parasites naturally transmissible between humans and wild macaque through mosquito vectors, while Plasmodium inui can be experimentally transmitted from macaques to humans. One of their major natural hosts, the long-tailed macaque (Macaca fascicularis), is host to two other species of Plasmodium (Plasmodium fieldi and Plasmodium coatneyi) and is widely distributed in Southeast Asia. This study aims to determine the distribution of wild macaques infected with malarial parasites by examining samples derived from seven populations in five countries across Southeast Asia. Methods Plasmodium knowlesi, P. cynomolgi, P. coatneyi, P. inui and P. fieldi, were detected using nested PCR assays in DNA samples from 276 wild-caught long-tailed macaques. These samples had been derived from macaques captured at seven locations, two each in the Philippines (n = 68) and Indonesia (n = 70), and one each in Cambodia (n = 54), Singapore (n = 40) and Laos (n = 44). The results were compared with previous studies of malaria parasites in long-tailed macaques from other locations in Southeast Asia. Fisher exact test and Chi square test were used to examine the geographic bias of the distribution of Plasmodium species in the macaque populations. Results Out of 276 samples tested, 177 were Plasmodium-positive, with P. cynomolgi being the most common and widely distributed among all long-tailed macaque populations (53.3 %) and occurring in all populations examined, followed by P. coatneyi (20.4 %), P. inui (12.3 %), P. fieldi (3.4 %) and P. knowlesi (0.4 %). One P. knowlesi infection was detected in a macaque from Laos, representing the first documented case of P. knowlesi in wildlife in Laos. Chi square test showed three of the five parasites (P. knowlesi, P. coatneyi, P. cynomolgi) with significant bias in prevalence towards macaques from Malaysian Borneo, Cambodia, and Southern Sumatra, respectively. Conclusions The prevalence of malaria parasites, including those that are transmissible to humans, varied among all sampled regional populations of long-tailed macaques in Southeast Asia. The new discovery of P. knowlesi infection in Laos, and the high prevalence of P. cynomolgi infections in wild macaques in general, indicate the strong need of public advocacy in related countries.
Collapse
Affiliation(s)
- Xinjun Zhang
- Department of Anthropology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Khamisah Abdul Kadir
- Malaria Research Centre, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | | | - Jason Villano
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA
| | - Paul Houghton
- Primate Products, Inc., PO Box 1588, Immokalee, FL, 34143, USA
| | - Hongli Du
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - Balbir Singh
- Malaria Research Centre, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - David Glenn Smith
- Department of Anthropology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
8
|
Gene expression and TB pathogenesis in rhesus macaques: TR4, CD40, CD40L, FAS (CD95), and TNF are host genetic markers in peripheral blood mononuclear cells that are associated with severity of TB lesions. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2015; 36:396-409. [PMID: 26483316 PMCID: PMC9924821 DOI: 10.1016/j.meegid.2015.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 12/16/2022]
Abstract
Tuberculosis (TB) pathologic lesions in rhesus macaques resemble those in humans. The expression levels of several host TB candidate genes in the peripheral blood mononuclear cells (PBMCs) of six rhesus macaques experimentally infected with Mycobacterium tuberculosis were quantified pre-infection and at several dates post-infection. Quantitative measures of TB histopathology in the lungs including: granuloma count, granuloma size, volume of granulomatous and non-granulomatous lesions, and direct bacterial load, were used as the outcomes of a multi-level Bayesian regression model in which expression levels of host genes at various dates were used as predictors. The results indicate that the expression levels of TR4, CD40, CD40L, FAS (CD95) and TNF in PBMC were associated with quantitative measures of the severity of TB histopathologic lesions in the lungs of the study animals. Moreover, no reliable association between the expression levels of IFNE in PBMCs and the severity of TB lesions in the lungs of the study animals was found. In conclusion, PBMC expression profiles derived from the above-listed host genes might be appropriate biomarkers for probabilistic diagnosis and/or prognosis of TB severity in rhesus macaques.
Collapse
|
9
|
Ng J, Fass JN, Durbin-Johnson B, Smith DG, Kanthaswamy S. Identifying rhesus macaque gene orthologs using heterospecific human CNV probes. GENOMICS DATA 2015; 6:202-7. [PMID: 26697375 PMCID: PMC4664757 DOI: 10.1016/j.gdata.2015.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/12/2015] [Indexed: 12/14/2022]
Abstract
We used the Affymetrix(®) Genome-Wide Human SNP Array 6.0 to identify heterospecific markers and compare copy number and structural genomic variation between humans and rhesus macaques. Over 200,000 human copy number variation (CNV) probes were mapped to a Chinese and an Indian rhesus macaque sample. Observed genomic rearrangements and synteny were in agreement with the results of a previously published genomic comparison between humans and rhesus macaques. Comparisons between each of the two rhesus macaques and humans yielded 206 regions with copy numbers that differed by at least two fold in the Indian rhesus macaque and human, 32 in the Chinese rhesus macaque and human, and 147 in both rhesus macaques. The detailed genomic map and preliminary CNV data are useful for better understanding genetic variation in rhesus macaques, identifying derived changes in human CNVs that may have evolved by selection, and determining the suitability of rhesus macaques as human models for particular biomedical studies.
Collapse
Affiliation(s)
- Jillian Ng
- Molecular Anthropology Laboratory, Department of Anthropology, University of California, Davis, CA, USA
| | - Joseph N. Fass
- Genome Center Bioinformatics Core, University of California, Davis, CA, USA
| | | | - David Glenn Smith
- Molecular Anthropology Laboratory, Department of Anthropology, University of California, Davis, CA, USA
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Sree Kanthaswamy
- California National Primate Research Center, University of California, Davis, CA, USA
- School of Mathematics and Natural Sciences, Arizona State University (ASU) at the West Campus, Glendale, AZ, USA
| |
Collapse
|
10
|
Widdig A, Kessler MJ, Bercovitch FB, Berard JD, Duggleby C, Nürnberg P, Rawlins RG, Sauermann U, Wang Q, Krawczak M, Schmidtke J. Genetic studies on the Cayo Santiago rhesus macaques: A review of 40 years of research. Am J Primatol 2015; 78:44-62. [PMID: 26031601 DOI: 10.1002/ajp.22424] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 04/17/2015] [Accepted: 04/19/2015] [Indexed: 01/17/2023]
Abstract
Genetic studies not only contribute substantially to our current understanding of the natural variation in behavior and health in many species, they also provide the basis of numerous in vivo models of human traits. Despite the many challenges posed by the high level of biological and social complexity, a long lifespan and difficult access in the field, genetic studies of primates are particularly rewarding because of the close evolutionary relatedness of these species to humans. The free-ranging rhesus macaque (Macaca mulatta) population on Cayo Santiago (CS), Puerto Rico, provides a unique resource in this respect because several of the abovementioned caveats are of either minor importance there, or lacking altogether, thereby allowing long-term genetic research in a primate population under constant surveillance since 1956. This review summarizes more than 40 years of genetic research carried out on CS, from early blood group typing and the genetic characterization of skeletal material via population-wide paternity testing with DNA fingerprints and short tandem repeats (STRs) to the analysis of the highly polymorphic DQB1 locus within the major histocompatibility complex (MHC). The results of the paternity studies also facilitated subsequent studies of male dominance and other factors influencing male reproductive success, of male reproductive skew, paternal kin bias, and mechanisms of paternal kin recognition. More recently, the CS macaques have been the subjects of functional genetic and gene expression analyses and have played an important role in behavioral and quantitative genetic studies. In addition, the CS colony has been used as a natural model for human adult-onset macular degeneration, glaucoma, and circadian rhythm disorder. Our review finishes off with a discussion of potential future directions of research on CS, including the transition from STRs to single nucleotide polymorphism (SNP) typing and whole genome sequencing.
Collapse
Affiliation(s)
- Anja Widdig
- Research Group of Behavioural Ecology, Institute of Biology, University of Leipzig, Leipzig, Germany.,Junior Research Group of Primate Kin Selection, Department of Primatology, Max-Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Caribbean Primate Research Center, University of Puerto Rico, Punta Santiago, Puerto Rico
| | - Matthew J Kessler
- Caribbean Primate Research Center, University of Puerto Rico, Punta Santiago, Puerto Rico.,Division of Laboratory Animal Resources, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia
| | - Fred B Bercovitch
- Primate Research Institute & Wildlife Research Center, Kyoto University, Inuyama, Aichi, Japan
| | - John D Berard
- Department of Veterans Affairs, Greater Los Angeles Health Care System, North Hills, California
| | - Christine Duggleby
- Department of Anthropology, State University of New York at Buffalo, Buffalo, New York
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Köln, Germany
| | - Richard G Rawlins
- Caribbean Primate Research Center, University of Puerto Rico, Punta Santiago, Puerto Rico
| | - Ulrike Sauermann
- Unit of Infection Models, German Primate Center, Göttingen, Germany
| | - Qian Wang
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Texas
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Jörg Schmidtke
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
11
|
Ng J, Trask JS, Smith DG, Kanthaswamy S. Heterospecific SNP diversity in humans and rhesus macaque (Macaca mulatta). J Med Primatol 2015; 44:194-201. [PMID: 25963897 DOI: 10.1111/jmp.12174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Conservation of single nucleotide polymorphisms (SNPs) between human and other primates (i.e., heterospecific SNPs) in candidate genes can be used to assess the utility of those organisms as models for human biomedical research. METHODS A total of 59,691 heterospecific SNPs in 22 rhesus macaques and 20 humans were analyzed for human trait associations and 4207 heterospecific SNPs biallelic in both taxa were compared for genetic variation. RESULTS Variation comparisons at the 4207 SNPs showed that humans were more genetically diverse than rhesus macaques with observed and expected heterozygosities of 0.337 and 0.323 vs. 0.119 and 0.102, and minor allele frequencies of 0.239 and 0.063, respectively. In total, 431 of the 59,691 heterospecific SNPs are reportedly associated with human-specific traits. CONCLUSION While comparisons between human and rhesus macaque genomes are plausible, functional studies of heterospecific SNPs are necessary to determine whether rhesus macaque alleles are associated with the same phenotypes as their corresponding human alleles.
Collapse
Affiliation(s)
- Jillian Ng
- Molecular Anthropology Laboratory, Department of Anthropology, University of California, Davis, CA, USA
| | - Jessica Satkoski Trask
- Molecular Anthropology Laboratory, Department of Anthropology, University of California, Davis, CA, USA.,California National Primate Research Center, University of California, Davis, CA, USA
| | - David Glenn Smith
- Molecular Anthropology Laboratory, Department of Anthropology, University of California, Davis, CA, USA.,California National Primate Research Center, University of California, Davis, CA, USA
| | - Sree Kanthaswamy
- Molecular Anthropology Laboratory, Department of Anthropology, University of California, Davis, CA, USA.,California National Primate Research Center, University of California, Davis, CA, USA.,School of Mathematics and Natural Sciences, Arizona State University (ASU) at the West Campus, Glendale, AZ, USA.,Department of Environmental Toxicology, University of California, Davis, CA, USA
| |
Collapse
|
12
|
New frontiers in the study of human cultural and genetic evolution. Curr Opin Genet Dev 2014; 29:103-9. [PMID: 25218864 DOI: 10.1016/j.gde.2014.08.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 02/01/2023]
Abstract
In this review, we discuss the dynamic linkages between culture and the genetic evolution of the human species. We begin by briefly describing the framework of gene-culture coevolutionary (or dual-inheritance) models for human evolutionary change. Until recently, the literature on gene-culture coevolution was composed primarily of mathematical models and formalized theory describing the complex dynamics underlying human behavior, adaptation, and technological evolution, but had little empirical support concerning genetics. The rapid progress in the fields of molecular genetics and genomics, however, is now providing the kinds of data needed to produce rich empirical support for gene-culture coevolutionary models. We briefly outline how theoretical and methodological progress in genome sciences has provided ways for the strength of selection on genes to be evaluated, and then outline how evidence of selection on several key genes can be directly linked to human cultural practices. We then describe some exciting new directions in the empirical study of gene-culture coevolution, and conclude with a discussion of the role of gene-culture evolutionary models in the future integration of medical, biological, and social sciences.
Collapse
|