1
|
Ghosh D, Guin A, Kumar A, Das A, Paul S. Comprehensive insights of etiological drivers of hepatocellular carcinoma: Fostering targeted nano delivery to anti-cancer regimes. Biochim Biophys Acta Rev Cancer 2025; 1880:189318. [PMID: 40222420 DOI: 10.1016/j.bbcan.2025.189318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/05/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Hepatocellular carcinoma (HCC) stands as one of the most prevalent and deadliest malignancies on a global scale. Its complex pathogenesis arises from multifactorial etiologies, including viral infections, metabolic syndromes, and environmental carcinogens, all of which drive genetic and molecular aberrations in hepatocytes. This intricate condition is associated with multiple causative factors, resulting in the abnormal activation of various cellular and molecular pathways. Given that HCC frequently manifests within the context of a compromised or cirrhotic liver, coupled with the tendency of late-stage diagnoses, the overall prognosis tends to be unfavorable. Systemic therapy, especially conventional cytotoxic drugs, generally proves ineffective. Despite advancements in therapeutic interventions, conventional treatments such as chemotherapy often exhibit limited efficacy and substantial systemic toxicity. In this context, nanomedicine, particularly lipid-based nanoparticles (LNPs), has emerged as a promising strategy for enhancing drug delivery specificity and reducing adverse effects. This review provides a comprehensive overview of the molecular and metabolic underpinnings of HCC. Furthermore, we explored the role of lipid-based nano-formulations including liposomes, solid lipid nanoparticles, and nanostructured lipid carriers in targeted drug delivery for HCC. We have highlighted recent advances in LNP-based delivery approaches, FDA-approved drugs, and surface modification strategies to improve liver-specific delivery and therapeutic efficacy. It will provide a comprehensive summary of various treatment strategies, recent clinical advances, receptor-targeting strategies and the role of lipid composition in cellular uptake. The review concludes with a critical assessment of existing challenges and future prospects in nanomedicines-driven HCC therapy.
Collapse
Affiliation(s)
- Dipanjan Ghosh
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Aharna Guin
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, Andhra Pradesh, India
| | - Aryan Kumar
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, Andhra Pradesh, India
| | - Amlan Das
- Department of Microbiology & Department of Biochemistry, Royal School of Biosciences, The Assam Royal Global University, Guwahati 781035, Assam, India.
| | - Santanu Paul
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, Andhra Pradesh, India.
| |
Collapse
|
2
|
Ekpenyong BB, Ubi GM, Kooffreh ME, Umoyen AJ, James CS, Ettah IA, Etangetuk NA, Effiom BE, Okpechi PA, Ejue BP, Ambo OA. Tumor protein 53 gene polymorphism, demographic attributes and associated risk factors among liver cancer patients in Calabar, Nigeria. BMC Cancer 2025; 25:430. [PMID: 40065269 PMCID: PMC11892161 DOI: 10.1186/s12885-025-13803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Mutations in the TP53 gene had been attributed to the development of liver cancer. Hepatocellular carcinoma (HCC) and liver tumour are liver diseases having high mortality rates in several populations. There is no information on the TP53 gene polymorphism among liver diseases patients in Calabar, Nigeria. This study investigated the genetic polymorphism of TP53 among HCC and liver tumour in Calabar. This research was carried out in the University of Calabar Teaching Hospital, Calabar. Blood samples were collected from 35 clinically diagnosed hepatocellular carcinoma and 10 tumour patients and 10 healthy controls. DNA was extracted from all blood samples and Polymerase Chain Reaction (PCR) was performed using specific primers. The PCR amplicons were digested using Hae III restriction enzyme and the genotypic and allelic frequencies was determined. Demographic data among participants showed that males were 68.9% (31), females (31.1%; 14), sex ratio (2.2: 0.5), mean age was 41.51 ± 2.13 years with an odds ratio of 1.25. The distribution of participants according to marital status were 33(73.3%), 10(22.2%), and 2(4.4%) for married, single, and widowed respectively. The participants were from different extractions with varied representations of Yakurr (22.2%, 10), Efik (20%, 9), Boki (13.3%, 6), Ogoja (13.3%, 6), Annang (8.8%, 4), Ibibio (2.2%, 1) and Igbo (2.2%, 1) and respectively. Approximately, 64.7% (30) of the chronic liver diseases were from the Central and Northern part of Cross River State. The risk factors were HCV infection, HBsAg+, alcoholism, smoking, consumption of groundnuts that may have been contaminated with aflatoxin and family history of the disease. PCR product yielded 254 bp and digested PCR product showed homozygous TT mutation (27), heterozygous GT mutation (17) and homozygous GG wild type (1) in cases. The overall TP53 gene mutation frequency was 46.32% (44). The frequency of G allele, T allele, GG, GT and TT were 0.21, 0.79, 0.04, 0.33 and 0.62 respectively among cases, while GG (wild type) was only detected among controls in the study population. The genotypic and allelic frequencies conform to Hardy-Weinberg equilibrium meaning that the forces of evolution were not acting on the locus. There were significant differences in the genotypic proportions of the TP53 gene polymorphism among patients and controls. This study on the TP53 gene polymorphism will serve as baseline information on the molecular etiology of hepatocellular carcinoma and liver tumour in Cross River State.
Collapse
Affiliation(s)
- Blessing B Ekpenyong
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
- Department of Plant Science and Biotechnology, University of Cross River State, Calabar, Nigeria
| | - Godwin M Ubi
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria.
| | - M E Kooffreh
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Anthony J Umoyen
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Cecilia S James
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Ivon A Ettah
- Department of Science Laboratory Technology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Nseabasi A Etangetuk
- Department of Science Laboratory Technology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Bassey E Effiom
- Department of Guidance and Counseling, Faculty of Education, University of Calabar, Calabar, Nigeria
| | - Philip A Okpechi
- Department of Guidance and Counseling, Faculty of Education, University of Calabar, Calabar, Nigeria
| | - Bassey P Ejue
- Department of Guidance and Counseling, Faculty of Education, University of Calabar, Calabar, Nigeria
| | - Ogar A Ambo
- Department of Guidance and Counseling, Faculty of Education, University of Calabar, Calabar, Nigeria
| |
Collapse
|
3
|
Hwang YJ, Lee Y, Yu SJ, Hong SK, Yi NJ, Choi Y, Lee H, Chung W, Kim H. Correlation between CTNNB1 mutation status and tumour phenotype in hepatitis B virus-related hepatocellular carcinoma. Histopathology 2025; 86:547-558. [PMID: 39526926 DOI: 10.1111/his.15363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/26/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
AIMS The frequency of CTNNB1 mutation, one of the most frequent genetic events in hepatocellular carcinoma (HCC), is lower in Asian countries and in hepatitis B virus (HBV)-related HCCs. In this study, we evaluated the prevalence and types of CTNNB1-mutation in HBV-related HCC and correlated the molecular status with the histomorphological and immunohistochemical features. METHODS AND RESULTS A total of 108 consecutive cases of treatment-naïve, surgically resected HBV-related HCCs were selected. Targeted sequencing for CTNNB1 exons 3, 7 and 8 was performed, and the results were correlated with the expression pattern of glutamine synthetase (GS), nuclear β-catenin expression status and the histomorphological characteristics of the tumour. CTNNB1 mutations were identified in 13% of HBV-related HCCs; of these cases, mutations were found in D32-S37 (7%), T41 (4%) and S45 (2%) of exon 3. None of the HCCs demonstrated alterations in exons 7 and 8. CTNNB1 mutation was strongly associated with diffuse strong GS expression (P < 0.001), nuclear β-catenin expression (P < 0.001) and the classic CTNNB1 morphology (P = 0.038). Diffuse strong GS expression was observed in 78.6% of the CTNNB1-mutated HCCs, and nuclear β-catenin expression was identified in 64.3% of these cases. The classic CTNNB1 morphology was observed in 57% of all CTNNB1-mutated HCCs. Furthermore, programmed death-ligand 1 (PD-L1) was less frequently expressed in HCCs with classic CTNNB1 morphology. CONCLUSIONS CTNNB1 mutation was observed in 13% of HBV-related HCCs in this Korean cohort, and was associated with diffuse strong GS expression, nuclear β-catenin expression and classic CTNNB1 morphology.
Collapse
Affiliation(s)
- Yoon Jung Hwang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yangkyu Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine; Biomedical Research Institute, Center for Medical Innovation, Seoul National University Hospital, Seoul, Korea
| | - Suk Kyun Hong
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Nam-Joon Yi
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - YoungRok Choi
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyejung Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Wonju Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Haeryoung Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
4
|
Zheng J, Wang S, Xia L, Sun Z, Chan KM, Bernards R, Qin W, Chen J, Xia Q, Jin H. Hepatocellular carcinoma: signaling pathways and therapeutic advances. Signal Transduct Target Ther 2025; 10:35. [PMID: 39915447 PMCID: PMC11802921 DOI: 10.1038/s41392-024-02075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 02/09/2025] Open
Abstract
Liver cancer represents a major global health concern, with projections indicating that the number of new cases could surpass 1 million annually by 2025. Hepatocellular carcinoma (HCC) constitutes around 90% of liver cancer cases and is primarily linked to factors incluidng aflatoxin, hepatitis B (HBV) and C (HCV), and metabolic disorders. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Therefore, HCC patients usually present with tumors in advanced and incurable stages. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of HCC. Beyond the frequently altered and therapeutically targeted receptor tyrosine kinase (RTK) pathways in HCC, pathways involved in cell differentiation, telomere regulation, epigenetic modification and stress response also provide therapeutic potential. Investigating the key signaling pathways and their inhibitors is pivotal for achieving therapeutic advancements in the management of HCC. At present, the primary therapeutic approaches for advanced HCC are tyrosine kinase inhibitors (TKI), immune checkpoint inhibitors (ICI), and combination regimens. New trials are investigating combination therapies involving ICIs and TKIs or anti-VEGF (endothelial growth factor) therapies, as well as combinations of two immunotherapy regimens. The outcomes of these trials are expected to revolutionize HCC management across all stages. Here, we provide here a comprehensive review of cellular signaling pathways, their therapeutic potential, evidence derived from late-stage clinical trials in HCC and discuss the concepts underlying earlier clinical trials, biomarker identification, and the development of more effective therapeutics for HCC.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Siying Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhen Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
5
|
Zorina ES, Naryzhny SN. Biomarkers of hepatocellular carcinoma: status and prospects. BIOMEDITSINSKAIA KHIMIIA 2025; 71:7-18. [PMID: 40045719 DOI: 10.18097/pbmcr1543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Hepatocellular carcinoma (HCC) also known as hepatocellular cancer is one of the most common and aggressive types of primary malignant liver neoplasms. This type of cancer accounts for up to 90% of all primary liver tumors and is the third leading cause of cancer death worldwide. Despite the advances in modern medicine, diagnostics and treatment of HCC remain challenging, especially in the later stages, when the patient's prognosis significantly worsens and treatment options are very limited. More than half a century has passed since Yu.S. Tatarinov discovered embryo-specific α-globulin in the blood of people with primary liver cancer in 1963, which was later called alpha-fetoprotein (AFP), but unfortunately, the number of specific and sensitive biomarkers for HCC remains very limited. In this regard, many scientific papers are devoted to the search and study of potential HCC biomarkers, which are essential for early diagnostics, prognosis, and development of new therapeutic strategies. Proteomic studies represent one of the promising approaches to investigate both molecular mechanisms of HCC occurrence and HCC biomarkers. Identification of specific protein profiles characteristic of tumor cells can contribute to the identification of new biomarkers that can be used not only for early detection of the disease, but also for monitoring its progression, assessing the response to therapy and predicting the clinical outcome. This review discusses current achievements in the search for potential biomarkers of HCC, as well as the prospects for their clinical use.
Collapse
Affiliation(s)
- E S Zorina
- Institute of Biomedical Chemistry, Moscow, Russia
| | - S N Naryzhny
- Petersburg Institute of Nuclear Physics B.P. Konstantinova National Research Center "Kurchatov Institute", Gatchina, Leningrad Region, Russia
| |
Collapse
|
6
|
Sun Y, Shi G, Yang J, Zhou CZ, Peng C, Luo YH, Pan Y, Wang RQ. Deciphering the heterogeneity and plasticity of the tumor microenvironment in liver cancer provides insights for prognosis. Front Pharmacol 2025; 16:1495280. [PMID: 39950116 PMCID: PMC11821625 DOI: 10.3389/fphar.2025.1495280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Liver cancer exhibits diverse molecular characteristics and distinct immune cell infiltration patterns, which significantly influence patient outcomes. In this study, we thoroughly examined the liver cancer tumor environment by analyzing data from 419,866 individual cells across nine datasets involving 99 patients. By categorizing patients into different groups based on their immune cell profiles, including immune deficiency, B cells-enriched, T cells-enriched and macrophages-enriched, we better understood how these cells change in various patient subgroups. Our investigation of liver metastases from intestinal cancer uncovered a group of mast cells that might promote metastasis through pathways like inositol phosphate metabolism. Using genomic and clinical data from The Cancer Genome Atlas, we identified specific cell components linked to tumor characteristics and genetics. Our detailed study of cancer-associated fibroblasts (CAFs) revealed how they adapt and acquire new functions in the tissue environment, highlighting their flexibility. Additionally, we found a significant connection between CAF-related genes and the prognosis of hepatocellular carcinoma patients. This research provides valuable insights into the makeup of the liver cancer tumor environment and its profound impact on patient outcomes, offering fresh perspectives for managing this challenging disease.
Collapse
Affiliation(s)
- Yihao Sun
- Department of Pharmacy, Zhuhai People’s Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Guojuan Shi
- Department of Nephrology, Zhuhai People’s Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Jian Yang
- Department of Respiratory and Critical Care Medicine, Zhuhai People’s Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Chun-Zhong Zhou
- Department of Pharmacy, Zhuhai People’s Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Chuhan Peng
- Canyon Crest Academy, San Diego, CA, United States
| | - Yu-Hong Luo
- Department of Pharmacy, Zhuhai People’s Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Ying Pan
- Department of Oncology, Zhuhai People’s Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Rui-Qi Wang
- Department of Pharmacy, Zhuhai People’s Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| |
Collapse
|
7
|
Tu J, Wang B, Wang X, Huo K, Hu W, Zhang R, Li J, Zhu S, Liang Q, Han S. Current status and new directions for hepatocellular carcinoma diagnosis. LIVER RESEARCH 2024; 8:218-236. [PMID: 39958920 PMCID: PMC11771281 DOI: 10.1016/j.livres.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/17/2024] [Accepted: 12/01/2024] [Indexed: 02/18/2025]
Abstract
Liver cancer ranks as the sixth most common cancer globally, with hepatocellular carcinoma (HCC) accounting for approximately 75%-85% of cases. Most patients present with moderately advanced disease, while those with advanced HCC face limited and ineffective treatment options. Despite diagnostic efforts, no ideal tumor marker exists to date, highlighting the urgent clinical need for improved early detection of HCC. A key research objective is the development of assays that target specific pathways involved in HCC progression. This review explores the pathological origin and development of HCC, providing insights into the mechanistic rationale, clinical statistics, and the advantages and limitations of commonly used diagnostic tumor markers. Additionally, it discusses the potential of emerging biomarkers for early diagnosis and offers a brief overview of relevant assay methodologies. This review aims to summarize existing markers and investigate new ones, providing a basis for subsequent research.
Collapse
Affiliation(s)
- Jinqi Tu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Bo Wang
- Animal Experimental Center, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaoming Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Kugeng Huo
- Cyagen Biosciences (Guangzhou) Inc., Guangzhou, Guangdong, China
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Rongli Zhang
- Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Shijie Zhu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Shuxin Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| |
Collapse
|
8
|
Huang J, Sun M, Wang M, Yu A, Zheng H, Bu C, Zhou J, Zhang Y, Qiao Y, Hu Z. Establishment and characterization of a highly metastatic hepatocellular carcinoma cell line. Bioengineered 2024; 15:2296775. [PMID: 38184822 PMCID: PMC10773622 DOI: 10.1080/21655979.2023.2296775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
The prevalence of alcohol-related hepatocellular carcinoma (HCC) has been increasing during the last decade. Cancer research requires cell lines suitable for both in vitro and in vivo assays. However, there is a lack of cell lines with a high in vivo metastatic capacity for this HCC subtype. Herein, a new HCC cell line was established, named HCC-ZJ, using cells from a patient diagnosed with alcohol-related HCC. The karyotype of HCC-ZJ was 46, XY, del (p11.2). Whole-exome sequencing identified several genetic variations in HCC-Z that occur frequently in alcohol-associated HCC, such as mutations in TERT, CTNNB1, ARID1A, CDKN2A, SMARCA2, and HGF. Cell counting kit-8 assays, colony formation assays, and Transwell assays were performed to evaluate the proliferation, migration, and sensitivity to sorafenib and lenvatinib of HCC-Z in vitro. HCC-ZJ showed a robust proliferation rate, a weak foci-forming ability, a strong migration capacity, and a moderate invasion tendency in vitro. Finally, the tumorigenicity and metastatic capacity of HCC-Z were evaluated using a subcutaneous xenograft model, an orthotopic xenograft model, and a tail-veil injection model. HCCZJ exhibited strong tumorigenicity in the subcutaneous xenograft and orthotopic tumor models. Moreover, HCC-ZJ spontaneously formed pulmonary metastases in the orthotopic tumor model. In summary, a new HCC cell line derived from a patient with alcohol-related HCC was established, which showed a high metastatic capacity and could be applied for in vitro and in vivo experiments during pre-clinical research.Highlights• An alcohol-related HCC cell line, HCC-ZJ, was established• HCC-ZJ was applicable for in vitro functional experiment and gene editing• HCC-ZJ was applicable for in vivo tumor growth and spontaneous metastasis models.
Collapse
Affiliation(s)
- Jiacheng Huang
- Department of Hepatobiliary and Pancreatic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Mengqing Sun
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Menglan Wang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Anning Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Huilin Zheng
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Chiwen Bu
- Department of General Surgery, People’s Hospital of Guanyun County, Lianyungang, China
| | - Jie Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiting Qiao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenhua Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
9
|
Thu Nguyen T, Van Tran K, Cam Ho T, Xuan Nguyen H, Trong Nguyen T. A systematic analysis with the hierarchical cluster analysis strategy on the complex interaction of TERT and CTNNB1 somatic mutations in Vietnamese hepatocellular carcinoma patients. Gene 2024; 927:148646. [PMID: 38851365 DOI: 10.1016/j.gene.2024.148646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Telomerase reverse transcriptase (TERT) and β-catenin (CTNNB1) mutations may occur following the hepatocellular carcinoma (HCC) pathway signal. We conducted a Hierarchical cluster analysis study on 408 patients diagnosed with HCC by pathological surgery, identifying TERT promoter and CTNNB1 exon 3 mutations by sequencing. The overall preclinical characteristics, cumulative cut-point values, and the factors associated with these somatic mutations were analyzed in uni/multidimensional scaling model. HBV(+) HCV(-) HCC male patients who were older than 62.74 years old and have TERT promoter mutation as well as AFP > 489.78 ng/ml got a higher risk of HCC grade more than two from 27 % to 200 % with p < 0.05 (RR are from 1.27 [1.09-1.47] to 3.06 [2.04-4.61]). This mutation was a good indicator of grade 2 risk (HR = 0.37 [2.72-0.16], β = -1.00, p = 0.019). TERT promoter and CTNNB1 exon 3 mutations independently influenced tumor size and tumor site status in grade 3 and HBV(-) HCV (-) male HCC patients, where the hazard rates, respectively, were 0.28 [0.09-0.89], 0.023 [0.0023-0.23] and 0.06 [0.012-0.32] (β < 0 and p < 0.01). These two mutations inversely impacted each other the tumor sites status, especially in male HCC patients with grade 2 without B, C hepatitis virus (RRCTNNB1 exon 3 mutate - TERT promoter wildtype = 1.12 [1.04-1.20], p < 0.05). Consequently, the mutations in TERT promoter and CTNNB1 exon 3 may synchronize with other factors or independently impact the hepatocarcinogenesis and are important indicators for HCC prognostic in male patients with very high AFP levels or with moderately as well as poorly differentiated in tumor. Our results serve as the basis for further studies to understand the impact of different factors on the outcome of HCC, especially in monitoring and assessing the cancer risk of patients infect HBV and carry mutations.
Collapse
Affiliation(s)
- Thuy Thu Nguyen
- Center for Gene and Protein Research, Hanoi Medical University, 116177 Hanoi, Viet Nam
| | - Khanh Van Tran
- Center for Gene and Protein Research, Hanoi Medical University, 116177 Hanoi, Viet Nam
| | - Tu Cam Ho
- Center for Gene and Protein Research, Hanoi Medical University, 116177 Hanoi, Viet Nam; Institute of Virology, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Hau Xuan Nguyen
- Department of Oncology, Hanoi Medical University, 116177 Hanoi, Viet Nam
| | - Tue Trong Nguyen
- Medical Laboratory Department, Hanoi Medical University, 116177 Hanoi, Viet Nam; Clinical Laboratory Department, Hanoi Medical University Hospital, 116177 Hanoi, Viet Nam.
| |
Collapse
|
10
|
Chi XX, Ye P, Cao NQ, Hwang WL, Cha JH, Hung MC, Hsu KW, Yan XW, Yang WH. PPIH as a poor prognostic factor increases cell proliferation and m6A RNA methylation in hepatocellular carcinoma. Am J Cancer Res 2024; 14:3733-3756. [PMID: 39267679 PMCID: PMC11387852 DOI: 10.62347/nzij5785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
RNA-binding proteins (RBPs) play a crucial role in the biological processes of liver hepatocellular carcinoma (LIHC). Peptidyl-prolyl cis-trans isomerase H (PPIH), an RBP, possesses prolyl isomerase activity and functions as a protein chaperone. The relationship between PPIH and LIHC has not yet been fully elucidated. This study elucidated potential mechanisms through which PPIH affects the prognosis of LIHC. Bioinformatics analysis and in vitro experiments revealed that PPIH expression was higher in LIHC tissues than in normal tissues. PPIH was identified as an independent prognostic factor, with high PPIH expression being associated with worse prognoses. Moreover, PPIH increased the m6A RNA methylation level and promoted cell proliferation by modulating DNA replication and the expression of cell cycle-related genes in LIHC cells. Bioinformatics analysis also revealed that PPIH expression increased immune cell infiltration and the expression of immune checkpoint proteins. Collectively, these findings indicate that PPIH might promote LIHC progression by enhancing the m6A RNA methylation level, increasing cell proliferation, and altering the tumor immune microenvironment. Our study demonstrates that PPIH, as a poor prognostic factor, may lead to LIHC malignancy through multiple pathways. Further in-depth research on this topic is warranted.
Collapse
Affiliation(s)
- Xiao-Xia Chi
- Affiliated Cancer Hospital and Institute, Guangzhou Medical University Guangzhou 510095, Guangdong, China
- Department of Family Medicine, The University of Hong Kong-Shenzhen Hospital Shenzhen 518053, Guangdong, China
| | - Peng Ye
- Infection Medicine Research Institute of Panyu District, The Affiliated Panyu Central Hospital of Guangzhou Medical University Guangzhou 511400, Guangdong, China
| | - Neng-Qi Cao
- Department of General Surgery, Nanjing Lishui People's Hospital Nanjing 211200, Jiangsu, China
| | - Wei-Lun Hwang
- Department of Biotechnology and Laboratory Science in Medicine, and Cancer Progression Research Center, National Yang Ming Chiao Tung University Taipei 112304, Taiwan
| | - Jong-Ho Cha
- Department of Biomedical Science and Engineering, Graduate School, Inha University Incheon 22212, The Republic of Korea
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University Taichung 406040, Taiwan
| | - Kai-Wen Hsu
- Institute of Translational Medicine and New Drug Development, China Medical University Taichung 404328, Taiwan
| | - Xiu-Wen Yan
- Affiliated Cancer Hospital and Institute, Guangzhou Medical University Guangzhou 510095, Guangdong, China
| | - Wen-Hao Yang
- Graduate Institute of Cell Biology, and Cancer Biology and Precision Therapeutics Center, China Medical University Taichung 404327, Taiwan
| |
Collapse
|
11
|
Cao LQ, Xie Y, Fleishman JS, Liu X, Chen ZS. Hepatocellular carcinoma and lipid metabolism: Novel targets and therapeutic strategies. Cancer Lett 2024; 597:217061. [PMID: 38876384 DOI: 10.1016/j.canlet.2024.217061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Hepatocellular carcinoma (HCC) is an increasingly prevalent disease that is associated with high and continually rising mortality rates. Lipid metabolism holds a crucial role in the pathogenesis of HCC, in which abnormalities pertaining to the delicate balance of lipid synthesis, breakdown, and storage, predispose for the pathogenesis of the nonalcoholic fatty liver disease (NAFLD), a disease precursor to HCC. If caught early enough, HCC treatment may be curative. In later stages, treatment is only halting the inevitable outcome of death, boldly prompting for novel drug discovery to provide a fighting chance for this patient population. In this review, we begin by providing a summary of current local and systemic treatments against HCC. From such we discuss hepatic lipid metabolism and highlight novel targets that are ripe for anti-cancer drug discovery. Lastly, we provide a targeted summary of current known risk factors for HCC pathogenesis, providing key insights that will be essential for rationalizing future development of anti-HCC therapeutics.
Collapse
Affiliation(s)
- Lu-Qi Cao
- Institute for Biotechnology, St. John's University, New York, NY, 11439, USA; College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Yuhao Xie
- College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Joshua S Fleishman
- College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Xuan Liu
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518034, China.
| | - Zhe-Sheng Chen
- Institute for Biotechnology, St. John's University, New York, NY, 11439, USA; College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA.
| |
Collapse
|
12
|
Ahmed AMA, Rahman MA, Sharmen F, Reza ASMA, Islam MS, Rashid MM, Rafi MKJ, Siddiqui TA, Ezaj MMA, Saha S, Uddin MN, Alelwani W. Ultra-high-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry-characterized extract of Aerides odorata Lour alleviates paracetamol-induced hepatotoxicity in animal model evidenced by biochemical, molecular, and computational studies. Animal Model Exp Med 2024; 7:497-522. [PMID: 38979669 PMCID: PMC11369029 DOI: 10.1002/ame2.12452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/25/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Many kinds of orchids have significant health benefits although adequate research on their biological functions is yet to be carried out. This study investigated the paracetamol-induced liver damage-protecting effect of epiphytic Aerides odorata methanol extract (AODE). METHODS The protective effects of AODE were studied by analyzing its effect on liver function parameters, messenger RNA (mRNA) expression, and tissue histopathological architecture. The results were confirmed by ligand-receptor interaction of molecular docking and multitarget interaction of network pharmacological analyses. RESULTS AODE significantly (p < 0.05) minimized the dose-dependent increase in acid phosphatase, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, γ-glutamyl transferase, lactate dehydrogenase, and total bilirubin compared to the reference drug silymarin. Malondialdehyde level decreased, and the antioxidant genes catalase (CAT), superoxide dismutase (SOD), β-actin, paraoxonase-1 (PON1), and phosphofructokinase-1 (PFK-1) were upregulated in AODE-treated paracetamol-intoxicated rats. A total of 376 compounds comprising phenols and flavonoids were identified using ultra-high-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-qTOF-MS). The online toxicity assessment using SwissADME and admetSAR exhibited drug-like, nontoxic, and potential pharmacological properties. Additionally, in silico analysis showed that isoacteoside, one of the identified compounds, exhibited the best docking score (-11.42) with the liver protein human pituitary adenylate cyclase-1 (Protein Data Bank ID: 3N94). Furthermore, network pharmacology analysis identified the top 10 hub genes, namely AKT1 (protein kinase B), CTNNB1 (catenin beta-1), SRC (proto-oncogene c-Src), TNF (tumor necrosis factor), EGFR (epidermal growth factor receptor), HSP90AA1 (heat shock protein 90α), MAPK3 (mitogen-activated protein kinase 3), STAT3 (signal transducer and activator of transcription 3), CASP3 (caspase protein), and ESR1 (estrogen receptor 1), which are responsible for hepatoprotective activity. CONCLUSION The findings demonstrate that AODE could be a novel hepatoprotective target in drug-induced liver damage with a further single compound-based animal study.
Collapse
Affiliation(s)
- A. M. Abu Ahmed
- Department of Genetic Engineering and BiotechnologyUniversity of ChittagongChittagongBangladesh
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| | - Md. Atiar Rahman
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| | - Farjana Sharmen
- Department of Genetic Engineering and BiotechnologyUniversity of ChittagongChittagongBangladesh
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| | - A. S. M. Ali Reza
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
- Department of PharmacyInternational Islami University ChittagongChittagongBangladesh
| | - Md. Shahidul Islam
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| | - Md. Mamunur Rashid
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| | - Md. Khalid Juhani Rafi
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| | - Tanvir Ahmed Siddiqui
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| | - Md. Muzahid Ahmed Ezaj
- Department of Genetic Engineering and BiotechnologyUniversity of ChittagongChittagongBangladesh
| | - Srabonti Saha
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| | - Md. Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial ResearchDhakaBangladesh
| | - Walla Alelwani
- Department of Biochemistry, College of ScienceUniversity of JeddahJeddahSaudi Arabia
| |
Collapse
|
13
|
Chen C, Wang C, Li Y, Jiang S, Yu N, Zhou G. Prognosis and chemotherapy drug sensitivity in liver hepatocellular carcinoma through a disulfidptosis-related lncRNA signature. Sci Rep 2024; 14:7157. [PMID: 38531953 DOI: 10.1038/s41598-024-57954-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/23/2024] [Indexed: 03/28/2024] Open
Abstract
Disulfidptosis, a new type of regulated cell death associated with the actin cytoskeleton, provides a new therapeutic tool for cancers. The direct relationship between disulfidptosis-related lncRNAs(DRLs) in liver hepatocellular carcinoma(HCC) remains unclear. We acquired transcriptomic data, corresponding clinical data, and tumor mutation data of HCC from the TCGA database. First of all, DRLs were determined through correlation analysis. Then, a prognostic model containing six DRLs was created by adopting univariate Cox regression, LASSO algorithm and multivariate Cox regression analysis. Based on the model, 424 HCC patients were divided into high- and low-risk groups. Next, we structured ROC curves and PCA through combining the model and clinical data. Enrichment analysis and immune infiltration analysis were adopted to further explore the relationship between the model and prognosis. In addition, we explored the relationship between the model and tumor mutation burden (TMB). There were significant differences between high- and low- risk groups, and patients in the high-risk group showed poor prognosis. Enrichment analysis suggested that metabolic progress was obviously different between the two groups. According to the analysis of immune infiltration, there were several differences in immune cells, function, and checkpoints. Patients with high-risk and high TMB demonstrated the least favorable prognosis. The two risk groups both manifested visiblly in chemotherapy drug sensitivity. To sum up, we set up a DRL-based signature and that may provide a predictable value for the prognosis and use of chemotherapy drugs for HCC patients.
Collapse
Affiliation(s)
- Chao Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Chaoyang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yi Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Shanshan Jiang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ningjun Yu
- Department of Radiology, Sichuan Science Hospital, Mianyang, 621022, Sichuan, China
| | - Guofeng Zhou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
14
|
Yan Q, Li D, Jia S, Yang J, Ma J. Novel gene-based therapeutic approaches for the management of hepatic complications in diabetes: Reviewing recent advances. J Diabetes Complications 2024; 38:108688. [PMID: 38281457 DOI: 10.1016/j.jdiacomp.2024.108688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/22/2023] [Accepted: 01/07/2024] [Indexed: 01/30/2024]
Abstract
Diabetes mellitus is a chronic metabolic disorder marked by hyperglycemia and systemic complications, including hepatic dysfunction, significantly contributing to disease progression and morbidity. This article reviews recent advances in gene-based therapeutic strategies targeting hepatic complications in diabetes, offering a promising approach for precision medicine by addressing underlying molecular mechanisms. Traditional treatments for hepatic complications in diabetes often manage symptoms rather than molecular causes, showing limited efficacy. Gene-based therapies are poised to correct dysfunctional pathways and restore hepatic function. Fundamental gene therapy approaches include gene silencing via small interfering RNAs (siRNAs) to target hepatic glucose production, lipid metabolism, and inflammation. Viral vectors can restore insulin sensitivity and reduce oxidative stress in diabetic livers. Genome editing, especially CRISPR-Cas9, allows the precise modification of disease-associated genes, offering immense potential for hepatic complication treatment. Strategies using CRISPR-Cas9 to enhance insulin receptor expression and modulate aberrant lipid regulatory genes are explored. Safety challenges in gene-based therapies, such as off-target effects and immune responses, are discussed. Advances in nanoparticle-based delivery systems and targeted gene editing techniques offer solutions to enhance specificity and minimize adverse effects. In conclusion, gene-based therapeutic approaches are a transformative direction in managing hepatic complications in diabetes. Further research is needed to optimize efficacy, safety, and long-term outcomes. Nevertheless, these innovative strategies promise to improve the lives of individuals with diabetes by addressing hepatic dysfunction's genetic root causes.
Collapse
Affiliation(s)
- Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Dongfu Li
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Shengnan Jia
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Junling Yang
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
15
|
Fathy A, Abdelrazek MA, Attallah AM, Abouzid A, El-Far M. Hepatitis C virus may accelerate breast cancer progression by increasing mutant p53 and c-Myc oncoproteins circulating levels. Breast Cancer 2024; 31:116-123. [PMID: 37973687 PMCID: PMC10764473 DOI: 10.1007/s12282-023-01519-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Hepatitis C virus (HCV) was reported to relate to polymorphous and frequent extrahepatic manifestation. Despite the limited studies, HCV viral oncoproteins may be implicated in breast cancer (BC) tumor aggressiveness. In a trial to elucidate a mechanistic link, this study aimed to investigate a mutant p53 and c-Myc oncoprotein expression levels in BC patients with and without HCV infection. METHODS A total of 215 BC patients (119 infected and 96 non-infected with HCV) were collected. ELISA was used for detection of anti-HCV antibodies, mutant p53, c-Myc, HCV-NS4, CEA, CA 125, and CA-15.3. RESULTS HCV infection was related to BC late stages, lymph-node invasion, distant metastasis, high grades, and large size. HCV-infected patients had a significantly (P < 0.05) higher WBCs, ALT and AST activity, bilirubin CEA, CA125 and CA15.3 levels, and reduced hemoglobin, albumin, and RBCs count. Regardless of tumor severity, HCV infection was associated with significant elevated levels of mutant p53 (22.5 ± 3.5 µg/mL; 1.9-fold increase) and c-Myc (21.4 ± 1.8 µg/mL; 1.5-fold increase). Among HCV-infected patients, elevated levels of p53 and c-Myc were significantly correlated with elevated tumor markers (CEA, CA 125, and CA15.3) and HCV-NS4 levels. CONCLUSIONS This study concluded that HCV infection may be accompanied with BC severity behavior and this may be owing to elevated expression of mutant p53 and c-Myc oncoproteins.
Collapse
Affiliation(s)
- Amira Fathy
- Research and Development Department, Biotechnology Research Center, New Damietta, Egypt
| | - Mohamed A Abdelrazek
- Research and Development Department, Biotechnology Research Center, New Damietta, Egypt.
| | | | - Amr Abouzid
- Surgical Oncology Department, Mansoura Oncology Centre, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Far
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
16
|
Kim HR, Seo CW, Kim J. The value of CDC42 effector protein 2 as a novel prognostic biomarker in liver hepatocellular carcinoma: a comprehensive data analysis. Osong Public Health Res Perspect 2023; 14:451-467. [PMID: 38204425 PMCID: PMC10788419 DOI: 10.24171/j.phrp.2023.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/18/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The prognostic significance of CDC42 effector protein 2 (CDC42EP2) and its association with tumor-infiltrating immune cells (TIICs) have not been explored in liver hepatocellular carcinoma (LIHC). This study aims to assess the potential prognostic value of CDC42EP2 by conducting a comprehensive analysis of online databases pertaining to LIHC. METHODS We evaluated the potential of CDC42EP2 as a prognostic biomarker by utilizing online databases such as TIMER, GEPIA2, KM, OSlihc, HPA, and LinkedOmics. RESULTS In LIHC, we observed that the mRNA and protein expression of CDC42EP2 were upregulated compared to normal tissues. Upregulated CDC42EP2 expression was associated with a worse prognosis based on the clinicopathological characteristics of patients with LIHC. Furthermore, CDC42EP2 was positively associated with TIICs. In the co-expression and functional enrichment analyses of CDC42EP2, 11,416 genes showed positive associations with CDC42EP2 while 8,008 genes showed negative associations. CDC42EP2-related co-expression genes were involved in protein localization to the endoplasmic reticulum, translational initiation, and RNA catabolic processes in gene set enrichment analysis-Gene Ontology (GSEAGO), and regulated the ribosome, spliceosome, and primary immune deficiency in the GSEAKyoto Encyclopedia of Genes and Genomes (KEGG) pathway. In a survival map, 23 and 17 genes that exhibited positive associations with CDC42EP2 showed a significant hazard ratio (HR) for overall survival and disease-free survival, respectively. CONCLUSION Our findings demonstrated that CDC42EP2 is a novel prognostic biomarker and a potential tumor immune therapeutic target in patients with LIHC.
Collapse
Affiliation(s)
- Hye-Ran Kim
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| | - Choong Won Seo
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| | - Jongwan Kim
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| |
Collapse
|
17
|
Lu G, Lin J, Song G, Chen M. Prognostic significance of CTNNB1 mutation in hepatocellular carcinoma: a systematic review and meta-analysis. Aging (Albany NY) 2023; 15:9759-9778. [PMID: 37733676 PMCID: PMC10564414 DOI: 10.18632/aging.205047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUNDS Hepatocellular Carcinoma (HCC) is one of the most common malignant cancers in humans and has a high fatality rate. In recent years, researchers have verified that the Wnt/β-catenin signaling pathway affects the clinicopathological features and prognosis of patients with HCC. Although many studies have investigated the relationship between Wnt/β-catenin signaling pathway and HCC, the prognostic value of β-catenin in HCC remains inconclusive. CTNNB1 (Catenin Beta-1) is an important factor in the Wnt/β-catenin signaling pathway. However, no consensus has been reached on the clinical and prognostic significance of CTNNB1 mutations in HCCs. METHODS Eligible studies and relevant data were obtained from PubMed, Web of Science, Elsevier, Cochrane Library, Ovid, and Embase databases. The correlation between CTNNB1 mutations and clinical/prognosis of patients were evaluated. A fixed- or random-effects model was used to calculate pooled odds ratios (OR) and 95% confidence intervals (CI). RESULTS Seventeen studies matched the selection criteria, and 1828 patients were included. This meta-analysis demonstrated that patients with HCC with CTNNB1 mutations had favorable clinicopathological features and survival. The combined ORs of 1-, 3- and 5-year overall survival were0.52 (n = 6 studies, 95% CI: 0.34-0.81, Z = 2.89, P =0.004, 0.28 (n =6 studies, 95% CI: 0.18-0.42, Z = 6.03, P<0.00001), -0.22 (n = 6 studies, 95% CI: 0.37-0.06, Z = 2.78, P = 0.005), respectively. Additionally, CTNNB1 mutation might be significantly associated with differentiation (OR = 0.54, 95% CI:0.36-0.81, Z = 2.98, P = 0.003), TMN stages (Tumor, Node, Metastasis staging classification) (OR = -0.25, 95% CI:-0.33--0.18, Z = 6.60, P<0.00001), liver cirrhosis (OR = 0.21, 95% CI:0.11-0.39, Z = 4.94, P< = 0.00001), and HBV (Hepatitis B Virus) infection (OR = 0.44, 95% CI:0.31-0.64, Z = 4.37, P<0.0001), but not with tumor size, metastasis, vascular invasion, and HCV infection. CONCLUSIONS CTNNB1 mutation can serve as an indicator of favorable prognosis as well as a novel target for treatment in HCC.
Collapse
Affiliation(s)
- Genlin Lu
- Department of General Surgery, Longyou People’s Hospital Affiliated with Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Quzhou 324400, China
| | - Jian Lin
- Department of General Surgery, Longyou People’s Hospital Affiliated with Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Quzhou 324400, China
| | - Guoqiang Song
- Department of Pulmonary, Department of Cancer Center, Changxing Hospital of Traditional Chinese Medicine, Huzhou 313100, China
| | - Min Chen
- Department of General Surgery, Longyou People’s Hospital Affiliated with Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Quzhou 324400, China
| |
Collapse
|
18
|
Bakrania A, To J, Zheng G, Bhat M. Targeting Wnt-β-Catenin Signaling Pathway for Hepatocellular Carcinoma Nanomedicine. GASTRO HEP ADVANCES 2023; 2:948-963. [PMID: 39130774 PMCID: PMC11307499 DOI: 10.1016/j.gastha.2023.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/17/2023] [Indexed: 08/13/2024]
Abstract
Hepatocellular carcinoma (HCC) represents a high-fatality cancer with a 5-year survival of 22%. The Wnt/β-catenin signaling pathway presents as one of the most upregulated pathways in HCC. However, it has so far not been targetable in the clinical setting. Therefore, studying new targets of this signaling cascade from a therapeutic aspect could enable reversal, delay, or prevention of hepatocarcinogenesis. Although enormous advancement has been achieved in HCC research and its therapeutic management, since HCC often occurs in the context of other liver diseases such as cirrhosis leading to liver dysfunction and/or impaired drug metabolism, the current therapies face the challenge of safely and effectively delivering drugs to the HCC tumor site. In this review, we discuss how a targeted nano drug delivery system could help minimize the off-target toxicities of conventional HCC therapies as well as enhance treatment efficacy. We also put forward the current challenges in HCC nanomedicine along with some potential therapeutic targets from the Wnt/β-catenin signaling pathway that could be used for HCC therapy. Overall, this review will provide an insight to the current advances, limitations and how HCC nanomedicine could change the landscape of some of the undruggable targets in the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Anita Bakrania
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jeffrey To
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mamatha Bhat
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Division of Gastroenterology, Department of Medicine, University Health Network and University of Toronto, Toronto, Ontario, Canada
- Department of Medical Sciences, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Kim Y, Ahn B, Yoon S, Lee G, Kim D, Chun SM, Kim HR, Jang SJ, Hwang HS. An oncogenic CTNNB1 mutation is predictive of post-operative recurrence-free survival in an EGFR-mutant lung adenocarcinoma. PLoS One 2023; 18:e0287256. [PMID: 37347751 PMCID: PMC10286999 DOI: 10.1371/journal.pone.0287256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023] Open
Abstract
The Wnt/β-catenin pathway is known to be frequently dysregulated in various human malignancies. Alterations in the genes encoding the components of Wnt/β-catenin pathway have also been described in lung adenocarcinoma. Notably however, the clinical impacts of Wnt/β-catenin pathway alterations in lung adenocarcinoma have not been fully evaluated to date. We here investigated the prognostic implications of single gene variations in 174 cases of surgically resected lung adenocarcinoma tested using targeted next-generation sequencing. Screening of the prognostic impact of single gene alterations identified an association between CTNNB1 mutation and poor recurrence-free survival in EGFR-mutant LUADs. Based on these results, the entire cohort was stratified into three groups in accordance with the mutational status of Wnt/β-catenin pathway genes (i.e. oncogenic CTNNB1 mutation [CTNNB1-ONC], other Wnt/β-catenin pathway gene mutations [Wnt/β-catenin-OTHER], and wild type for Wnt/β-catenin pathway genes [Wnt/β-catenin-WT]). The clinicopathologic characteristics and survival outcomes of these groups were then compared. Oncogenic CTNNB1 and other Wnt/β-catenin pathway gene mutations were identified in 10 (5.7%) and 14 cases (8.0%), respectively. The CTNNB1-ONC group cases displayed histopathologic features of conventional non-mucinous adenocarcinoma with no significant differences from those of the other groups. Using β-catenin immunohistochemistry, we found that the CTNNB1-ONC group displayed aberrant nuclear staining more frequently, but only in 60% of the samples. The LUADs harboring a CTNNB1-ONC exhibited significantly poorer RFS outcomes than the other groups, regardless of the β-catenin IHC status. This was a pronounced finding in the EGFR-mutant LUADs only in subgroup analysis, which was then confirmed by multivariate analysis. Nevertheless, no significant OS differences between these Wnt/β-catenin groups were evident. Hence, oncogenic CTNNB1 mutations may be found in about 6% of lung adenocarcinomas and may predict post-operative recurrence in EGFR-mutant LUADs. Aberrant nuclear β-catenin staining on IHC appears to be insufficient as a surrogate marker of an oncogenic CTNNB1 mutation.
Collapse
Affiliation(s)
- Yeseul Kim
- Department of Pathology, Korea University College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Bokyung Ahn
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Shinkyo Yoon
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Goeun Lee
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Deokhoon Kim
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sung-Min Chun
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hyeong-Ryul Kim
- Department of Thoracic and Cardiovascular Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Se Jin Jang
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hee Sang Hwang
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
20
|
Zhu H, Yu H, Zhou H, Zhu W, Wang X. Elevated Nuclear PHGDH Synergistically Functions with cMyc to Reshape the Immune Microenvironment of Liver Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205818. [PMID: 37078828 PMCID: PMC10265107 DOI: 10.1002/advs.202205818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/07/2023] [Indexed: 05/03/2023]
Abstract
Herein, we observed that nuclear localization of phosphoglycerate dehydrogenase (PHGDH) is associated with poor prognosis in liver cancer, and Phgdh is required for liver cancer progression in a mouse model. Unexpectedly, impairment of Phgdh enzyme activity exerts a slight effect in a liver cancer model. In liver cancer cells, the aspartate kinase-chorismate mutase-tyrA prephenate dehydrogenase (ACT) domain of PHGDH binds nuclear cMyc to form a transactivation axis, PHGDH/p300/cMyc/AF9, which drives chemokine CXCL1 and IL8 gene expression. Then, CXCL1 and IL8 promote neutrophil recruitment and enhance tumor-associated macrophage (TAM) filtration in the liver, thereby advancing liver cancer. Forced cytosolic localization of PHGDH or destruction of the PHGDH/cMyc interaction abolishes the oncogenic function of nuclear PHGDH. Depletion of neutrophils by neutralizing antibodies greatly hampers TAM filtration. These findings reveal a nonmetabolic role of PHGDH with altered cellular localization and suggest a promising drug target for liver cancer therapy by targeting the nonmetabolic region of PHGDH.
Collapse
Affiliation(s)
- Hongwen Zhu
- CAS Key Laboratory of Receptor ResearchState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Hua Yu
- Precise Genome Engineering CenterSchool of Life SciencesGuangzhou UniversityGuangzhou510006China
| | - Hu Zhou
- CAS Key Laboratory of Receptor ResearchState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Wencheng Zhu
- Institute of NeuroscienceState Key Laboratory of NeuroscienceCAS Center for Excellence in Brain Science and Intelligence TechnologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031China
| | - Xiongjun Wang
- Precise Genome Engineering CenterSchool of Life SciencesGuangzhou UniversityGuangzhou510006China
| |
Collapse
|
21
|
Zhang H, Xu Z, Gao H, Zhang Q. Systematic analysis on the mechanism of Zhizi-Bopi decoction against hepatitis B via network pharmacology and molecular docking. Biotechnol Lett 2023; 45:463-478. [PMID: 36807721 DOI: 10.1007/s10529-023-03359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/28/2022] [Accepted: 01/26/2023] [Indexed: 02/21/2023]
Abstract
PURPOSE Zhizi-Bopi decoction (ZZBPD) is a classic herbal formula with wide clinical applications in treating liver diseases including hepatitis B. However, the mechanism needs to be elucidated. METHODS Chemical components of ZZBPD were identified by ultra-high-performance liquid chromatography coupled with time-of-flight mass spectrometry (UHPLC-TOF-MS). Then we used network pharmacology to identify their potential targets. Network construction, coupled with protein-protein interaction and enrichment analysis was used to identify representative components and core targets. Finally, molecular docking simulation was conducted to further refine the drug-target interaction. RESULTS One hundred and forty-eight active compounds were identified in ZZBPD, targeting 779 genes/proteins, among which 174 were related to hepatitis B. ZZBPD mainly influences the progression of hepatitis B through the hepatitis B pathway (hsa05161) via core anti-HBV targets (AKT1, PIK3CA, PIK3R1, SRC, TNF, MAPK1, and MAPK3). Enrichment analysis indicated that ZZBPD can also potentially regulate lipid metabolism and enhance cell survival. Molecular docking suggested that the representative active compounds can bind to the core anti-HBV targets with high affinity. CONCLUSION The potential molecular mechanisms of ZZBPD in hepatitis B treatment were identified using network pharmacology and molecular docking approaches. The results serve as an important basis for the modernization of ZZBPD.
Collapse
Affiliation(s)
- He Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, No. 4655, University Road, Changqing District, Ji'nan, 250355, Shandong Province, China
| | - Zhouyi Xu
- School of Aerospace Engineering, Xiamen University, Xiamen, 361000, China
| | - Haojun Gao
- New Zhonglu Traditional Chinese Medicine Hospital, Ji'nan, 250011, China
| | - Qinyuan Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, No. 4655, University Road, Changqing District, Ji'nan, 250355, Shandong Province, China.
| |
Collapse
|
22
|
Meng GX, Yang CC, Yan LJ, Yang YF, Yan YC, Hong JG, Chen ZQ, Dong ZR, Li T. The somatic mutational landscape and role of the ARID1A gene in hepatocellular carcinoma. Heliyon 2023; 9:e14307. [PMID: 36950649 PMCID: PMC10025035 DOI: 10.1016/j.heliyon.2023.e14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is one of the most common malignant tumours worldwide. Clarification of the somatic mutational landscape of important genes could reveal new therapeutic targets and facilitate individualized therapeutic approaches for HCC patients. The mutation and expression changes in the ARID1A gene in HCC remain controversial. Methods First, cBioPortal was used to visualize genetic alterations and DNA copy number alterations (CNAs) in ARID1A. The relationships between ARID1A mutation status and HCC patient clinicopathological features and overall survival (OS) were also determined. Then, a meta-analysis was performed to evaluate the effect of ARID1A mutation or expression on the prognosis of HCC patients. Finally, the role of ARID1A in HCC progression was verified by in vitro experiments. Results ARID1A mutation was detected in 9.35% (33/353) of sequenced HCC cases, and ARID1A mutation decreased ARID1A mRNA expression. Patients with ARID1A alterations presented worse OS than those without ARID1A alterations. Meta-analysis and human HCC tissue microarray (TMA) analysis revealed that HCC patients with low ARID1A expression had worse OS and relapse-free survival (RFS), and low ARID1A expression was negatively correlated with tumour size. Then, ARID1A gain-of-function and loss-of-function experiments demonstrated the tumour suppressor role of ARID1A in HCC in vitro. In terms of the mechanism, we found that ARID1A could inhibit HCC progression by regulating retinoblastoma-like 1 (RBL1) expression via the JNK/FOXO3 pathway. Conclusions ARID1A can be considered a potential prognostic biomarker and candidate therapeutic target for HCC.
Collapse
Affiliation(s)
- Guang-Xiao Meng
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Chun-Cheng Yang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Lun-Jie Yan
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Ya-Fei Yang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yu-Chuan Yan
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Jian-Guo Hong
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Zhi-Qiang Chen
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, 250000, China
| |
Collapse
|
23
|
Gomez K, Schiavoni G, Nam Y, Reynier JB, Khamnei C, Aitken M, Palmieri G, Cossu A, Levine A, van Noesel C, Falini B, Pasqualucci L, Tiacci E, Rabadan R. Genomic landscape of virus-associated cancers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.14.23285775. [PMID: 36824731 PMCID: PMC9949223 DOI: 10.1101/2023.02.14.23285775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It has been estimated that 15%-20% of human cancers are attributable to infections, mostly by carcinogenic viruses. The incidence varies worldwide, with a majority affecting developing countries. Here, we present a comparative analysis of virus-positive and virus-negative tumors in nine cancers linked to five viruses. We find that virus-positive tumors occur more frequently in males and show geographical disparities in incidence. Genomic analysis of 1,658 tumors reveals virus-positive tumors exhibit distinct mutation signatures and driver gene mutations and possess a lower somatic mutation burden compared to virus-negative tumors of the same cancer type. For example, compared to the respective virus-negative counterparts, virus-positive cases across different cancer histologies had less often mutations of TP53 and deletions of 9p21.3/ CDKN2 A- CDKN1A ; Epstein-Barr virus-positive (EBV+) gastric cancer had more frequent mutations of EIF4A1 and ARID1A and less marked mismatch repair deficiency signatures; and EBV-positive cHL had fewer somatic genetic lesions of JAK-STAT, NF-κB, PI3K-AKT and HLA-I genes and a less pronounced activity of the aberrant somatic hypermutation signature. In cHL, we also identify germline homozygosity in HLA class I as a potential risk factor for the development of EBV-positive Hodgkin lymphoma. Finally, an analysis of clinical trials of PD-(L)1 inhibitors in four virus-associated cancers suggested an association of viral infection with higher response rate in patients receiving such treatments, which was particularly evident in gastric cancer and head and neck squamous cell carcinoma. These results illustrate the epidemiological, genetic, prognostic, and therapeutic trends across virus-associated malignancies.
Collapse
|
24
|
Shen J, Sun W, Liu J, Li J, Li Y, Gao Y. Metabolism-related signatures is correlated with poor prognosis and immune infiltration in hepatocellular carcinoma via multi-omics analysis and basic experiments. Front Oncol 2023; 13:1130094. [PMID: 36860325 PMCID: PMC9969091 DOI: 10.3389/fonc.2023.1130094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Background Metabolism is an ordered series of biological processes that occur in an organism. Altered cellular metabolism is often closely associated with the development of cancer. The aim of this research was to construct a model by multiple metabolism-related molecules to diagnose and assess the prognosis of patients. Method WGCNA analysis was used to screen out differential genes. GO, KEGG are used to explore potential pathways and mechanisms. The lasso regression model was used to filter out the best indicators to construct the model. Single-sample GSEA (ssGSEA) assess immune cells abundance, immune terms in different Metabolism Index (MBI) groups. Human tissues and cells were used to verify the expression of key genes. Result WGCNA clustering grouped genes into 5 modules, of which 90 genes from the MEbrown module were selected for subsequent analysis. GO analysis was found that BP mainly has mitotic nuclear division, while KEGG pathway is enriched to Cell cycle, Cellular senescence. Mutation analysis revealed that the frequency of TP53 mutations was much higher in samples from the high MBI group than in the low MBI group. Immunoassay revealed that patients with higher MBI have higher macrophage and Regulatory T cells (Treg) abundance, while NK cells were lowly expressed in the high MBI group. RT-qPCR and immunohistochemistry (IHC) revealed that the hub genes expression is higher in cancer tissues. The expression in hepatocellular carcinoma cells was also much higher than that in normal hepatocytes. Conclusion In conclusion, a metabolism-related model was constructed that can be used to estimate the prognosis of hepatocellular carcinoma, and the clinical treatment of different hepatocellular carcinoma patients with medications was guided.
Collapse
Affiliation(s)
| | | | | | - Jiali Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ying Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | | |
Collapse
|
25
|
Da BL, Suchman KI, Lau L, Rabiee A, He AR, Shetty K, Yu H, Wong LL, Amdur RL, Crawford JM, Fox SS, Grimaldi GM, Shah PK, Weinstein J, Bernstein D, Satapathy SK, Chambwe N, Xiang X, Mishra L. Pathogenesis to management of hepatocellular carcinoma. Genes Cancer 2022; 13:72-87. [PMID: 36533190 PMCID: PMC9746873 DOI: 10.18632/genesandcancer.226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer whose incidence continues to rise in many parts of the world due to a concomitant rise in many associated risk factors, such as alcohol use and obesity. Although early-stage HCC can be potentially curable through liver resection, liver-directed therapies, or transplantation, patients usually present with intermediate to advanced disease, which continues to be associated with a poor prognosis. This is because HCC is a cancer with significant complexities, including substantial clinical, histopathologic, and genomic heterogeneity. However, the scientific community has made a major effort to better characterize HCC in those aspects via utilizing tissue sampling and histological classification, whole genome sequencing, and developing viable animal models. These efforts ultimately aim to develop clinically relevant biomarkers and discover molecular targets for new therapies. For example, until recently, there was only one approved systemic therapy for advanced or metastatic HCC in the form of sorafenib. Through these efforts, several additional targeted therapies have gained approval in the United States, although much progress remains to be desired. This review will focus on the link between characterizing the pathogenesis of HCC with current and future HCC management.
Collapse
Affiliation(s)
- Ben L. Da
- Department of Internal Medicine, Division of Hepatology, Sandra Atlas Bass Center for Liver Diseases and Transplantation, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Manhasset, NY 11030, USA
| | - Kelly I. Suchman
- Department of Internal Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Manhasset, NY 11030, USA
| | - Lawrence Lau
- Department of Surgery, North Shore University Hospital, Northwell Health, Manhasset, NY 11030, USA
| | - Atoosa Rabiee
- Department of Gastroenterology and Hepatology, VA Medical Center, Washington, DC 20422, USA
| | - Aiwu Ruth He
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Kirti Shetty
- Division of Gastroenterology and Hepatology, University of Maryland, Baltimore, MD 21201, USA
| | - Herbert Yu
- Department of Epidemiology, University of Hawaii Cancer Center, Honolulu, HI 96813-5516, USA
| | - Linda L. Wong
- Department of Surgery, University of Hawaii, Honolulu, HI 96813-5516, USA
| | - Richard L. Amdur
- Quantitative Intelligence, The Institutes for Health Systems Science and Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 10022, USA
| | - James M. Crawford
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Sharon S. Fox
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Gregory M. Grimaldi
- Department of Radiology, Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA
| | - Priya K. Shah
- Department of Radiology, Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA
| | - Jonathan Weinstein
- Division of Vascular and Interventional Radiology, Department of Radiology, Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA
| | - David Bernstein
- Department of Internal Medicine, Division of Hepatology, Sandra Atlas Bass Center for Liver Diseases and Transplantation, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Manhasset, NY 11030, USA
| | - Sanjaya K. Satapathy
- Department of Internal Medicine, Division of Hepatology, Sandra Atlas Bass Center for Liver Diseases and Transplantation, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Manhasset, NY 11030, USA
| | - Nyasha Chambwe
- The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Xiyan Xiang
- The Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research and Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY 11030, USA
| | - Lopa Mishra
- The Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research and Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY 11030, USA
| |
Collapse
|
26
|
Abdel-Wahed MA, Amer EMAR, Mahmoud RM, Montasser IF, Massoud YM, Hamdy P, Hassan SHZ. CTNNB1 polymorphism (rs121913407) in circulating tumor DNA (ctDNA) in Egyptian hepatocellular carcinoma patients. EGYPTIAN LIVER JOURNAL 2022; 12:42. [DOI: 10.1186/s43066-022-00204-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/10/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Hepatocellular carcinoma (HCC) represents the sixth most common cancer worldwide and the fourth in Egypt. Persistent inflammation and specific somatic mutations in driving genes play a major role in the development of HCC. One of these somatic mutations is CTNNB1 mutations with subsequent activation of β-catenin in HCC, associated with a risk of malignant transformation. In this study, we investigate the clinical utility of peripheral blood circulating tumor DNA (ctDNA) CTNNB1 (rs121913407) in HCC patients compared to pathological chronic hepatitis C virus (HCV) patients and healthy controls.
Methods
Our study is a case-control study at the Ain Shams Centre for Organ Transplantation, Ain Shams University Hospitals, enrolling twenty-eight adult HCC patients (twelve early HCC patients and sixteen advanced HCC patients), ten patients with chronic hepatitis C as a disease control group, and ten healthy controls. We collected plasma and stored at −80 °C. We detected mutations in the gene locus CTNNB1 rs121913407 by real-time PCR.
Results
All of our studied cases (early and advanced HCC) in addition to HCV and healthy control groups were CTNNB1 wild (TT) genotype. There was statistical significant difference between early and late cases of HCC as regards AFP and AST.
Conclusions
None of our recruited subjects showed CTNNB1 rs121913407 gene mutation. Further studies on larger number of patients are needed to clarify and confirm the clinical utility of CTNNB1 single-nucleotide polymorphism in the pathogenesis of HCC related to HCV in Egyptian population.
Collapse
|
27
|
Suter P, Dazert E, Kuipers J, Ng CKY, Boldanova T, Hall MN, Heim MH, Beerenwinkel N. Multi-omics subtyping of hepatocellular carcinoma patients using a Bayesian network mixture model. PLoS Comput Biol 2022; 18:e1009767. [PMID: 36067230 PMCID: PMC9481159 DOI: 10.1371/journal.pcbi.1009767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/16/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
Comprehensive molecular characterization of cancer subtypes is essential for predicting clinical outcomes and searching for personalized treatments. We present bnClustOmics, a statistical model and computational tool for multi-omics unsupervised clustering, which serves a dual purpose: Clustering patient samples based on a Bayesian network mixture model and learning the networks of omics variables representing these clusters. The discovered networks encode interactions among all omics variables and provide a molecular characterization of each patient subgroup. We conducted simulation studies that demonstrated the advantages of our approach compared to other clustering methods in the case where the generative model is a mixture of Bayesian networks. We applied bnClustOmics to a hepatocellular carcinoma (HCC) dataset comprising genome (mutation and copy number), transcriptome, proteome, and phosphoproteome data. We identified three main HCC subtypes together with molecular characteristics, some of which are associated with survival even when adjusting for the clinical stage. Cluster-specific networks shed light on the links between genotypes and molecular phenotypes of samples within their respective clusters and suggest targets for personalized treatments.
Collapse
Affiliation(s)
- Polina Suter
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Eva Dazert
- Biozentrum, University of Basel, Basel, Switzerland
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Charlotte K. Y. Ng
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tuyana Boldanova
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Markus H. Heim
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Gastroenterology and Hepatology, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
28
|
Tornesello ML, Tornesello AL, Starita N, Cerasuolo A, Izzo F, Buonaguro L, Buonaguro FM. Telomerase: a good target in hepatocellular carcinoma? An overview of relevant preclinical data. Expert Opin Ther Targets 2022; 26:767-780. [PMID: 36369706 DOI: 10.1080/14728222.2022.2147062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
INTRODUCTION The expression of telomerase reverse transcriptase (TERT) in liver is restricted to rare cells, that are able to replace senescent hepatocytes and regenerate tissue in response to hepatic damage, while becoming extinguished in differentiated progeny cells. TERT gene is permanently activated in liver neoplasms from the very early stage of the hepatocarcinogenesis mainly through the accumulation of genetic alterations, virus-related insertional mutagenesis and somatic mutations in the TERT promoter region. Several lines of evidence suggest that telomerase, beyond the canonical function of telomeres elongation, has multiple oncogenic activities in cancer cells and may represent a promising therapeutic target in hepatocellular carcinoma (HCC). AREAS COVERED We review the mechanisms of activation of telomerase in HCC, the canonical and non-canonical functions of TERT as well as experimental strategies to directly target telomerase or to inhibit pathways associated with telomerase activity. EXPERT OPINION TERT holoenzyme and telomerase components represent promising therapeutic targets in the treatment of liver malignancies. Several chemical agents and natural products known to alter telomerase activity are under evaluation for their potency to inhibit telomeres attrition in cirrhosis and TERT function in liver cancer. Therefore, this review outlines the current strategies pursued to suppress the multiple mechanisms of the major telomerase components in liver cancer.
Collapse
Affiliation(s)
- Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Napoli, Italy
| | - Anna Lucia Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Napoli, Italy
| | - Noemy Starita
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Napoli, Italy
| | - Andrea Cerasuolo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Napoli, Italy
| | - Francesco Izzo
- Hepatobiliary Surgical Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Luigi Buonaguro
- Innovative Immunological Models Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Napoli, Italy
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Napoli, Italy
| |
Collapse
|
29
|
Ambrozkiewicz F, Trailin A, Červenková L, Vaclavikova R, Hanicinec V, Allah MAO, Palek R, Třeška V, Daum O, Tonar Z, Liška V, Hemminki K. CTNNB1 mutations, TERT polymorphism and CD8+ cell densities in resected hepatocellular carcinoma are associated with longer time to recurrence. BMC Cancer 2022; 22:884. [PMID: 35962322 PMCID: PMC9375422 DOI: 10.1186/s12885-022-09989-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/08/2022] [Indexed: 12/27/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a fatal disease characterized by early genetic alterations in telomerase reverse transcriptase promoter (TERTp) and β-catenin (CTNNB1) genes and immune cell activation in the tumor microenvironment. As a novel approach, we wanted to assess patient survival influenced by combined presence of mutations and densities of CD8+ cytotoxic T cells. Methods Tissue samples were obtained from 67 HCC patients who had undergone resection. We analysed CD8+ T cells density, TERTp mutations, rs2853669 polymorphism, and CTNNB1 mutations. These variables were evaluated for time to recurrence (TTR) and disease free survival (DFS). Results TERTp mutations were found in 75.8% and CTNNB1 mutations in 35.6% of the patients. TERTp mutations were not associated with survival but polymorphism rs2853669 in TERTp was associated with improved TTR and DFS. CTNNB1 mutations were associated with improving TTR. High density of CD8+ T-lymphocytes in tumor center and invasive margin correlated with longer TTR and DFS. Combined genetic and immune factors further improved survival showing higher predictive values. E.g., combining CTNNB1 mutations and high density of CD8+ T-lymphocytes in tumor center yielded HRs of 0.12 (0.03–0.52), p = 0.005 for TTR and 0.25 (0.09–0.74), p = 0.01 for DFS. Conclusion The results outline a novel integrative approach for prognostication through combining independent predictive factors from genetic and immune cell profiles. However, larger studies are needed to explore multiple cell types in the tumor microenvironment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09989-0.
Collapse
Affiliation(s)
- Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center,Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic.
| | - Andriy Trailin
- Laboratory of Translational Cancer Genomics, Biomedical Center,Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| | - Lenka Červenková
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic.,Department of Pathology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague, 10, Czech Republic
| | - Radka Vaclavikova
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Toxicogenomics Unit, National Institute of Public Health in Prague, Prague, Czech Republic
| | - Vojtech Hanicinec
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Mohammad Al Obeed Allah
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Richard Palek
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic.,Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej 16 Svobody 80, 323 00, Pilsen, Czech Republic
| | - Vladislav Třeška
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej 16 Svobody 80, 323 00, Pilsen, Czech Republic
| | - Ondrej Daum
- Sikl's Institute of Pathology, Faculty of Medicine and Teaching Hospital in Plzen, Charles University, Plzen, Czech Republic.,Bioptická laboratoř s.r.o., Mikulášské nám, 4, 326 00, Pilsen, Czech Republic
| | - Zbyněk Tonar
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66, Pilsen, Czech Republic.,Laboratory of Quantitative Histology, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| | - Václav Liška
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic.,Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej 16 Svobody 80, 323 00, Pilsen, Czech Republic
| | - Kari Hemminki
- Laboratory of Translational Cancer Genomics, Biomedical Center,Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic.,Department of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
30
|
Liu JF, Wu Y, Yang YH, Wu SF, Liu S, Xu P, Yang JT. Phosphoproteome profiling of mouse liver during normal aging. Proteome Sci 2022; 20:12. [PMID: 35932011 PMCID: PMC9354360 DOI: 10.1186/s12953-022-00194-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/24/2022] [Indexed: 03/18/2025] Open
Abstract
Background Aging is a complex biological process accompanied by a time-dependent functional decline that affects most living organisms. Omics studies help to comprehensively understand the mechanism of aging and discover potential intervention methods. Old mice are frequently obese with a fatty liver. Methods We applied mass spectrometry-based phosphoproteomics to obtain a global phosphorylation profile of the liver in mice aged 2 or 18 months. MaxQuant was used for quantitative analysis and PCA was used for unsupervised clustering. Results Through phosphoproteome analysis, a total of 5,685 phosphosites in 2,335 proteins were filtered for quantitative analysis. PCA analysis of both the phosphoproteome and transcriptome data could distinguish young and old mice. However, from kinase prediction, kinase-substrate interaction analysis, and KEGG functional enrichment analysis done with phosphoproteome data, we observed high phosphorylation of fatty acid biosynthesis, β-oxidation, and potential secretory processes, together with low phosphorylation of the Egfr-Sos1-Araf/Braf-Map2k1-Mapk1 pathway and Ctnnb1 during aging. Proteins with differentially expressed phosphosites seemed more directly related to the aging-associated fatty liver phenotype than the differentially expressed transcripts. The phosphoproteome may reveal distinctive biological functions that are lost in the transcriptome. Conclusions In summary, we constructed a phosphorylation-associated network in the mouse liver during normal aging, which may help to discover novel antiaging strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12953-022-00194-2. The first phosphoproteome profiling of mouse livers during normal aging. A total of 5,685 phosphosites in 2,335 proteins were quantified in this study. A phosphorylation-regulated pathway network was constructed. Metabolism, secretion, and the cell cycle might be dysregulated during normal aging.
Collapse
Affiliation(s)
- Jiang-Feng Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yue Wu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.,School of Statistics and Data Science, Nankai University, Tianjin, 300071, China
| | - Ye-Hong Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Song-Feng Wu
- State Key Laboratory of ProteomicsResearch Unit of Proteomics & ResearchDevelopment of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Shu Liu
- State Key Laboratory of ProteomicsResearch Unit of Proteomics & ResearchDevelopment of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Ping Xu
- State Key Laboratory of ProteomicsResearch Unit of Proteomics & ResearchDevelopment of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China.
| | - Jun-Tao Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
31
|
Gunady EF, Ware KE, Hoskinson Plumlee S, Devos N, Corcoran D, Prinz J, Misetic H, Ciccarelli FD, Harrison TM, Thorne JL, Schopler R, Everitt JI, Eward WC, Somarelli JA. Exome sequencing of hepatocellular carcinoma in lemurs identifies potential cancer drivers: A pilot study. Evol Med Public Health 2022; 10:221-230. [PMID: 35557512 PMCID: PMC9086584 DOI: 10.1093/emph/eoac016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/17/2022] [Indexed: 11/24/2022] Open
Abstract
Background and objectives Hepatocellular carcinoma occurs frequently in prosimians, but the cause of these liver cancers in this group is unknown. Characterizing the genetic changes associated with hepatocellular carcinoma in prosimians may point to possible causes, treatments and methods of prevention, aiding conservation efforts that are particularly crucial to the survival of endangered lemurs. Although genomic studies of cancer in non-human primates have been hampered by a lack of tools, recent studies have demonstrated the efficacy of using human exome capture reagents across primates. Methodology In this proof-of-principle study, we applied human exome capture reagents to tumor-normal pairs from five lemurs with hepatocellular carcinoma to characterize the mutational landscape of this disease in lemurs. Results Several genes implicated in human hepatocellular carcinoma, including ARID1A, TP53 and CTNNB1, were mutated in multiple lemurs, and analysis of cancer driver genes mutated in these samples identified enrichment of genes involved with TP53 degradation and regulation. In addition to these similarities with human hepatocellular carcinoma, we also noted unique features, including six genes that contain mutations in all five lemurs. Interestingly, these genes are infrequently mutated in human hepatocellular carcinoma, suggesting potential differences in the etiology and/or progression of this cancer in lemurs and humans. Conclusions and implications Collectively, this pilot study suggests that human exome capture reagents are a promising tool for genomic studies of cancer in lemurs and other non-human primates. Lay Summary Hepatocellular carcinoma occurs frequently in prosimians, but the cause of these liver cancers is unknown. In this proof-of-principle study, we applied human DNA sequencing tools to tumor-normal pairs from five lemurs with hepatocellular carcinoma and compared the lemur mutation profiles to those of human hepatocellular carcinomas.
Collapse
Affiliation(s)
- Ella F Gunady
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Kathryn E Ware
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Nicolas Devos
- Duke Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - David Corcoran
- Duke Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Joseph Prinz
- Duke Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Hrvoje Misetic
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 1UL, UK
| | - Francesca D Ciccarelli
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 1UL, UK
| | - Tara M Harrison
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA
- Exotic Species Cancer Research Alliance, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jeffrey L Thorne
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | | | - Jeffrey I Everitt
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| | - William C Eward
- Department of Orthopaedics, Duke University Medical Center, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| | - Jason A Somarelli
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| |
Collapse
|
32
|
ARID1A expression in hepatocellular carcinoma and relation to tumor recurrence after microwave ablation. Clin Exp Hepatol 2022; 8:49-59. [PMID: 35415261 PMCID: PMC8984801 DOI: 10.5114/ceh.2022.114172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
Aim of the study AT-rich interactive domain 1A (ARID1A) is a subunit of the switch/sucrose non-fermentable chromatin remodeling complex, which is commonly mutated in human cancers. The clinical and pathological significance of ARID1A alteration in hepatocellular carcinoma (HCC) has not yet been clarified. The present study aimed to evaluate the clinical significance of the ARID1A gene signature in HCC and its relation to the likelihood of tumor recurrence after microwave ablation (MWA). Material and methods This study included 50 patients with cirrhotic HCC of Barcelona Clinic Liver Cancer stages 0/A eligible for MWA. Tumor and peri-tumor biopsies were obtained just prior to MWA and assessed for tumor pathological grade and ARID1A expression by immunohistochemistry. Patients were followed for one year after complete tumor ablation to detect any recurrence. Results Tumor size (MCp = 0.010) and α-fetoprotein level (p = 0.013) can effectively predict the response to MWA. Nuclear expression of ARID1A was significantly lower in HCC compared to the corresponding peri-tumor cirrhotic liver tissues (p = 0.002), but no significant difference in ARID1A cytoplasmic expression was found. Nuclear ARID1A expression level in HCC showed a significantly negative relation to tumor size (MCp = 0.006), pathological grade (MCp = 0.046) and post-MWA tumor recurrence (FEp = 0.041). Conclusions ARID1A loss may enhance HCC aggressiveness and post-MWA tumor recurrence. ARID1A could be a potential target to select HCC patients for future therapies.
Collapse
|
33
|
Dong X, Song S, Li Y, Fan Y, Wang L, Wang R, Huo L, Scott A, Xu Y, Pizzi MP, Ma L, Wang Y, Jin J, Zhao W, Yao X, Johnson R, Wang L, Wang Z, Peng G, Ajani JA. Loss of ARID1A activates mTOR signaling and SOX9 in gastric adenocarcinoma-rationale for targeting ARID1A deficiency. Gut 2022; 71:467-478. [PMID: 33785559 PMCID: PMC9724309 DOI: 10.1136/gutjnl-2020-322660] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/20/2021] [Accepted: 03/02/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Gastric adenocarcinoma (GAC) is a lethal disease with limited therapeutic options. Genetic alterations in chromatin remodelling gene AT-rich interactive domain 1A (ARID1A) and mTOR pathway activation occur frequently in GAC. Targeting the mechanistic target of rapamycin (mTOR) pathway in unselected patients has failed to show survival benefit. A deeper understanding of GAC might identify a subset that can benefit from mTOR inhibition. METHODS Genomic alterations in ARID1A were analysed in GAC. Mouse gastric epithelial cells from CK19-Cre-Arid1Afl/fl and wild-type mice were used to determine the activation of oncogenic genes due to loss of Arid1A. Functional studies were performed to determine the significance of loss of ARID1A and the sensitivity of ARID1A-deficient cancer cells to mTOR inhibition in GAC. RESULTS More than 30% of GAC cases had alterations (mutations or deletions) of ARID1A and ARID1A expression was negatively associated with phosphorylation of S6 and SOX9 in GAC tissues and patient-derived xenografts (PDXs). Activation of mTOR signalling (increased pS6) and SOX9 nuclear expression were strongly increased in Arid1A-/- mouse gastric tissues which could be curtailed by RAD001, an mTOR inhibitor. Knockdown of ARID1A in GAC cell lines increased pS6 and nuclear SOX9 and increased sensitivity to an mTOR inhibitor which was further amplified by its combination with fluorouracil both in vitro and in vivo in PDXs. CONCLUSIONS The loss of ARID1A activates pS6 and SOX9 in GAC, which can be effectively targeted by an mTOR inhibitor. Therefore, our studies suggest a new therapeutic strategy of clinically targeting the mTOR pathway in patients with GAC with ARID1A deficiency.
Collapse
Affiliation(s)
- Xiaochuan Dong
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030;,Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuan Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030;,Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001, P.R. China
| | - Yibo Fan
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Lulu Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Ruiping Wang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Longfei Huo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Ailing Scott
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Yan Xu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030;,Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001, P.R. China
| | - Melissa Pool Pizzi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Lang Ma
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Ying Wang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Jiankang Jin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Wei Zhao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Xiaodan Yao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Randy Johnson
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Linghua Wang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001, P.R. China
| | - Guang Peng
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Jaffer A. Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030;,Corresponding authors: Shumei Song, MD, Ph.D, Department of Gastrointestinal Medical Oncology, Unit 426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009; phone: 713-834-6144; fax: 713-745-1163; . Jaffer A. Ajani, MD, Department of Gastrointestinal Medical Oncology, Unit 426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009; phone: 713-792-3685; fax: 713-792-8864;
| |
Collapse
|
34
|
AlGabbani Q. Mutations in TP53 and PIK3CA genes in hepatocellular carcinoma patients are associated with chronic Schistosomiasis. Saudi J Biol Sci 2022; 29:848-853. [PMID: 35197752 PMCID: PMC8847977 DOI: 10.1016/j.sjbs.2021.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/29/2021] [Accepted: 10/05/2021] [Indexed: 11/12/2022] Open
Abstract
The purpose of this study was to evaluate the genetic variation of the PIK3CA gene and the histopathological changes in liver tissue of patients with chronic Schistosomiasis to predict hepatocellular carcinoma. In this retrospective, the study samples were taken from 20 patients, divided into chronic schistosomiasis infected group of people (S) and chronic schistosomiasis uninfected group of people (C). The liver tissue biopsy samples for histological examinations were obtained only from chronic Schistosomiasis patients (n = 9). The blood samples were obtained from groups S and C for the mutational analysis of the PIK3CA and TP53 genes. The results suggest that the patients diagnosed with chronic Schistosomiasis were 9 (55%), and healthy patients without Schistosomiasis were 11 (45%). Histological results found that proliferation of fibrosis was observed in the hepatocytes of schistosomiasis patients. A total of 8 mutations (5 male, 3 female) were detected in PIK3CA and TP53 genes. Including 1634 A > G substitution mutations in PIK3CA, which was the only mutation found in males and females among the 8 mutations, accounting 22.22%. PIK3CA gene mutations were found more predominant in male groups as compared to other TP53 gene mutations. In conclusion, this study found that patients with chronic Schistosomiasis are at risk of PIK3CA gene mutations, eventually leading to hepatocytes fibrosis and liver cancer.
Collapse
Affiliation(s)
- Qwait AlGabbani
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
35
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021; 22:13135. [PMID: 34884942 PMCID: PMC8658661 DOI: 10.3390/ijms222313135;select dbms_pipe.receive_message(chr(115)||chr(108)||chr(113)||chr(84),5) from dual--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
36
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021; 22:13135. [PMID: 34884942 PMCID: PMC8658661 DOI: 10.3390/ijms222313135;select dbms_pipe.receive_message(chr(80)||chr(106)||chr(79)||chr(120),5) from dual--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
37
|
Arzumanian VA, Kiseleva OI, Poverennaya EV. The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021; 22:13135. [PMID: 34884942 PMCID: PMC8658661 DOI: 10.3390/ijms222313135] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
38
|
Liu Z, Sun J, Li C, Xu L, Liu J. MKL1 regulates hepatocellular carcinoma cell proliferation, migration and apoptosis via the COMPASS complex and NF-κB signaling. BMC Cancer 2021; 21:1184. [PMID: 34742274 PMCID: PMC8571910 DOI: 10.1186/s12885-021-08185-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Background Histone modification plays essential roles in hepatocellular carcinoma (HCC) pathogenesis, but the regulatory mechanisms remain poorly understood. In this study, we aimed to analyze the roles of Megakaryoblastic leukemia 1 (MKL1) and its regulation of COMPASS (complex of proteins associated with Set1) in HCC cells. Methods MKL1 expression in clinical tissues and cell lines were detected by bioinformatics, qRT-PCR and western blot. MKL1 expression in HCC cells were silenced with siRNA, followed by cell proliferation evaluation via Edu staining and colony formation, migration and invasion using the Transwell system, and apoptosis by Hoechst staining. HCC cell tumorigenesis was assessed by cancer cell line-based xenograft model, combined with H&E staining and IHC assays. Results MKL1 expression was elevated in HCC cells and clinical tissues which was correlated with poor prognosis. MKL1 silencing significantly repressed proliferation, migration, invasion and colony formation but enhanced apoptosis in HepG2 and Huh-7 cells. MKL1 silencing also inhibited COMPASS components and p65 protein expression in HepG2 and Huh-7 cells. HepG2 cell tumorigenesis in nude mice was severely impaired by MKL1 knockdown, resulted into suppressed Ki67 expression and cell proliferation. Conclusion MKL1 promotes HCC pathogenesis by regulating hepatic cell proliferation, migration and apoptosis via the COMPASS complex and NF-κB signaling. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08185-w.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Hepatobiliary and Pancreatic Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiuzheng Sun
- Department of Hepatobiliary and Pancreatic Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuanzhi Li
- Department of Hepatobiliary and Pancreatic Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liyou Xu
- Department of Hepatobiliary and Pancreatic Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jun Liu
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China. .,Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
39
|
Lin SY, Chang TT, Steffen JD, Chen S, Jain S, Song W, Lin YJ, Su YH. Detection of CTNNB1 Hotspot Mutations in Cell-Free DNA from the Urine of Hepatocellular Carcinoma Patients. Diagnostics (Basel) 2021; 11:1475. [PMID: 34441409 PMCID: PMC8393790 DOI: 10.3390/diagnostics11081475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide. The beta-catenin gene, CTNNB1, is among the most frequently mutated in HCC tissues. However, mutational analysis of HCC tumors is hampered by the difficulty of obtaining tissue samples using traditional biopsy. Here, we explored the feasibility of detecting tumor-derived CTNNB1 mutations in cell-free DNA (cfDNA) extracted from the urine of HCC patients. Using a short amplicon qPCR assay targeting HCC mutational hotspot CTNNB1 codons 32-37 (exon 3), we detected CTNNB1 mutations in 25% (18/73) of HCC tissues and 24% (15/62) of pre-operative HCC urine samples in two independent cohorts. Among the CTNNB1-mutation-positive patients with available matched pre- and post-operative urine (n = 13), nine showed apparent elimination (n = 7) or severalfold reduction (n = 2) of the mutation in urine following tumor resection. Four of the seven patients with no detectable mutations in postoperative urine remained recurrence-free within five years after surgery. In contrast, all six patients with mutation-positive in post-operative urine recurred, including the two with reduced mutation levels. This is the first report of association between the presence of CTNNB1 mutations in pre- and post-operative urine cfDNA and HCC recurrence with implications for minimum residual disease detection.
Collapse
Affiliation(s)
- Selena Y. Lin
- JBS Science, Inc., Doylestown, PA 18902, USA; (S.Y.L.); (J.D.S.); (S.C.); (S.J.); (W.S.)
| | - Ting-Tsung Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Jamin D. Steffen
- JBS Science, Inc., Doylestown, PA 18902, USA; (S.Y.L.); (J.D.S.); (S.C.); (S.J.); (W.S.)
| | - Sitong Chen
- JBS Science, Inc., Doylestown, PA 18902, USA; (S.Y.L.); (J.D.S.); (S.C.); (S.J.); (W.S.)
| | - Surbhi Jain
- JBS Science, Inc., Doylestown, PA 18902, USA; (S.Y.L.); (J.D.S.); (S.C.); (S.J.); (W.S.)
| | - Wei Song
- JBS Science, Inc., Doylestown, PA 18902, USA; (S.Y.L.); (J.D.S.); (S.C.); (S.J.); (W.S.)
| | - Yih-Jyh Lin
- Department of Surgery, National Cheng Kung University Medical College and Hospital, Tainan 701, Taiwan
| | - Ying-Hsiu Su
- The Baruch S. Blumberg Research Institute, Doylestown, PA 18902, USA
| |
Collapse
|
40
|
Sonkar A, Kumar P, Gautam A, Maity B, Saha S. New Scope of Targeted Therapies in Lung Carcinoma. Mini Rev Med Chem 2021; 22:629-639. [PMID: 34353252 DOI: 10.2174/1389557521666210805104714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/30/2020] [Accepted: 04/27/2021] [Indexed: 11/22/2022]
Abstract
Lung cancer (LC) is the leading cause of cancer deaths worldwide. Recent research has also shown LC as a genomic disease, causing somatic mutations in patients. Tests related to mutational analysis and genome profiles have lately expanded significantly in the genetics/genomics field of LC. This review summarizes the current knowledge about different signalling pathways of LC based on the clinical impact of molecular targets. It describes the main molecular pathways and changes involved in the development, progression, and cellular breakdown of LC and the molecular changes. This review focuses on approved and targeted experimental therapies such as immunotherapy and clinical trials that examine the different targeted approaches to treating LC. We aimto clarify the differences in the extent of various genetic mutations in several areas for LC patients. Targeted molecular therapies for LC can be continued with advanced racial differences in genetic changes, which have a significant impact on the choice of drug treatment and our understanding of the profile of drug susceptibility/resistance. The most relevant genes described in this review are EGFR, KRAS, MET, BRAF, PIK3CA, STK11, ERBB3, PTEN, and RB1. Combined research efforts in this field are required to understand the genetic difference in LC outcomes in the future.
Collapse
Affiliation(s)
- Archana Sonkar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025. India
| | - Pranesh Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025. India
| | - Anurag Gautam
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025. India
| | - Biswanath Maity
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh. India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025. India
| |
Collapse
|
41
|
Pezzuto F, Izzo F, De Luca P, Biffali E, Buonaguro L, Tatangelo F, Buonaguro FM, Tornesello ML. Clinical Significance of Telomerase Reverse-Transcriptase Promoter Mutations in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:3771. [PMID: 34359670 PMCID: PMC8345216 DOI: 10.3390/cancers13153771] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
Telomerase reactivation during hepatocarcinogenesis is recurrently caused by two point mutations occurring most frequently at the nucleotide -124 (95%) and occasionally at the nucleotide -146 (<5%) upstream of the TERT translational start site in hepatocellular carcinoma (HCC). In this study, we designed a droplet digital PCR (ddPCR) assay to detect TERT promoter (TERTp) nucleotide change G>A at position -124 and to quantify the mutant allele frequency (MAF) in 121 primary liver cancers, including 114 HCC along with 23 autologous cirrhotic tissues, five cholangiocarcinoma (CC), and two hepato-cholangiocarcinoma (HCC-CC). All cases were evaluated for tumour markers such as α-fetoprotein (AFP), carbohydrate antigen 19-9 (CA19-9), and carcinoembryonic antigen (CEA). We compared the sensitivity of ddPCR and Sanger sequencing and investigated the prognostic relevance of TERTp mutations. The TERTp G>A transition was identified in 63.6% and 52.1% of HCC samples by ddPCR and Sanger sequencing, respectively. One out of 23 (4.3%) peri-tumour tissues tested positive only by ddPCR. One out of five CC (20%) and none of the HCC-CC were found concordantly mutated by the two methods. The TERTp MAF ranged from 2% to 66%, and the large majority (85.5%) of mutated samples showed a value above 20%. A statistically significant correlation was found between TERTp mutation and tumour size (p = 0.048), while an inverse correlation was observed with CA19-9 levels (p = 0.0105). Moreover, HCC patients with TERTp -124A had reduced survival. In conclusion, the single nucleotide variation G>A at position -124 in TERTp, detected either by ddPCR or by Sanger sequencing, showed a remarkable high frequency in HCC. Such mutation is associated with lower levels of CA19-9 and reduced survival in HCC patients suggesting that the TERTp status may represent a distinct signature of liver cancer subgroups.
Collapse
Affiliation(s)
- Francesca Pezzuto
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (F.P.); (F.M.B.)
| | - Francesco Izzo
- Hepatobiliary Surgery Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131 Napoli, Italy;
| | - Pasquale De Luca
- Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80122 Napoli, Italy; (P.D.L.); (E.B.)
| | - Elio Biffali
- Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80122 Napoli, Italy; (P.D.L.); (E.B.)
| | - Luigi Buonaguro
- Cancer Immunoregulation Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Fabiana Tatangelo
- Department of Pathology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131 Napoli, Italy;
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (F.P.); (F.M.B.)
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (F.P.); (F.M.B.)
| |
Collapse
|
42
|
Mutant p53-reactivating compound APR-246 synergizes with asparaginase in inducing growth suppression in acute lymphoblastic leukemia cells. Cell Death Dis 2021; 12:709. [PMID: 34267184 PMCID: PMC8282662 DOI: 10.1038/s41419-021-03988-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Asparaginase depletes extracellular asparagine in the blood and is an important treatment for acute lymphoblastic leukemia (ALL) due to asparagine auxotrophy of ALL blasts. Unfortunately, resistance occurs and has been linked to expression of the enzyme asparagine synthetase (ASNS), which generates asparagine from intracellular sources. Although TP53 is the most frequently mutated gene in cancer overall, TP53 mutations are rare in ALL. However, TP53 mutation is associated with poor therapy response and occurs at higher frequency in relapsed ALL. The mutant p53-reactivating compound APR-246 (Eprenetapopt/PRIMA-1Met) is currently being tested in phase II and III clinical trials in several hematological malignancies with mutant TP53. Here we present CEllular Thermal Shift Assay (CETSA) data indicating that ASNS is a direct or indirect target of APR-246 via the active product methylene quinuclidinone (MQ). Furthermore, combination treatment with asparaginase and APR-246 resulted in synergistic growth suppression in ALL cell lines. Our results thus suggest a potential novel treatment strategy for ALL.
Collapse
|
43
|
Determining the Traditional Chinese Medicine (TCM) Syndrome with the Best Prognosis of HBV-Related HCC and Exploring the Related Mechanism Using Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9991533. [PMID: 34306165 PMCID: PMC8263254 DOI: 10.1155/2021/9991533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 02/08/2023]
Abstract
Background In traditional Chinese medicine (TCM), TCM syndrome is a key guideline, and Chinese materia medicas are widely used to treat hepatitis B virus- (HBV-) related hepatocellular carcinoma (HCC) according to different TCM syndromes. However, the prognostic value of TCM syndromes in HBV-related HCC patients has never been studied. Methods A retrospective cohort of HBV-related HCC patients at Shenzhen Traditional Chinese Medicine Hospital from December 2005 to October 2017 was analyzed. The prognostic value of TCM syndromes in HBV-related HCC patients was assessed by Kaplan–Meier survival curves and Cox analysis, and the TCM syndrome with the best prognosis of HBV-related HCC patients was determined. To further study the relevant mechanisms, key Chinese materia medicas (KCMMs) for the TCM syndrome with the best prognosis were summarized, and network pharmacology was also performed. Results A total of 207 HBV-related HCC patients were included in this research, and we found that HBV-related HCC patients with TCM excess syndrome had better OS. Then, a total of eight KCMMs for TCM excess syndrome were identified, whose crucial ingredients included quercetin, beta-sitosterol, kaempferol, luteolin, and XH-14, and KCMMs could play a therapeutic role through MAPK, JAK-STAT, Wnt, Hippo, and other pathways. Moreover, TP53, SRC, STAT3, MAPK3, PIK3R1, HRAS, VEGFA, HSP90AA1, EGFR, and JAK2 were determined as the key targets. Conclusion We propose a new research method of “prognosis of TCM syndromes-KCMMs-network pharmacology” to reveal the prognostic value of TCM syndromes and the potential mechanism by which TCM syndromes affect prognosis.
Collapse
|
44
|
Kumari S, Arora M, Singh J, Kadian LK, Yadav R, Chauhan SS, Chopra A. Molecular Associations and Clinical Significance of RAPs in Hepatocellular Carcinoma. Front Mol Biosci 2021; 8:677979. [PMID: 34235179 PMCID: PMC8255377 DOI: 10.3389/fmolb.2021.677979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive gastrointestinal malignancy with a high rate of mortality. Multiple studies have individually recognized members of RAP gene family as critical regulators of tumor progression in several cancers, including hepatocellular carcinoma. These studies suffer numerous limitations including a small sample size and lack of analysis of various clinicopathological and molecular features. In the current study, we utilized authoritative multi-omics databases to determine the association of RAP gene family expression and detailed molecular and clinicopathological features in hepatocellular carcinoma (HCC). All five RAP genes were observed to harbor dysregulated expression in HCC compared to normal liver tissues. RAP2A exhibited strongest ability to differentiate tumors from the normal tissues. RAP2A expression was associated with progressive tumor grade, TP53 and CTNNB1 mutation status. Additionally, RAP2A expression was associated with the alteration of its copy numbers and DNA methylation. RAP2A also emerged as an independent marker for patient prognosis. Further, pathway analysis revealed that RAP2A expression is correlated with tumor-infiltrating immune cell composition and oncogenic molecular pathways, such as cell cycle and cellular metabolism.
Collapse
Affiliation(s)
- Sarita Kumari
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Mohit Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Jay Singh
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Lokesh K Kadian
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rajni Yadav
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam S Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Anita Chopra
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
45
|
Unique Features of Hepatitis B Virus-Related Hepatocellular Carcinoma in Pathogenesis and Clinical Significance. Cancers (Basel) 2021; 13:cancers13102454. [PMID: 34070067 PMCID: PMC8158142 DOI: 10.3390/cancers13102454] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatitis B virus (HBV) infection is the major risk factor for hepatocellular carcinoma (HCC). Understanding the unique features for HBV-induced HCC can shed new light on the unmet needs in its early diagnosis and effective therapy. During decades of chronic hepatitis B, hepatocytes undergoing repeated damage and regeneration accumulate genetic changes predisposing to HCC development. In addition to traditional mutations in viral and cellular oncogenes, HBV integration into the cell chromosomes is an alternative genetic change contributing to hepatocarcinogenesis. A striking male dominance in HBV-related HCC further highlights an interaction between androgen sex hormone and viral factors, which contributes to the gender difference via stimulating viral replication and activation of oncogenes preferentially in male patients. Meanwhile, a novel circulating tumor biomarker generated by HBV integration shows great potential for the early diagnosis of HCC. These unique HBV-induced hepatocarcinogenic mechanisms provide new insights for the future development of superior diagnosis and treatment strategies. Abstract Hepatitis B virus (HBV) infection is one of the important risk factors for hepatocellular carcinoma (HCC) worldwide, accounting for around 50% of cases. Chronic hepatitis B infection generates an inflammatory microenvironment, in which hepatocytes undergoing repeated cycles of damage and regeneration accumulate genetic mutations predisposing them to cancer. A striking male dominance in HBV-related HCC highlights the influence of sex hormones which interact with viral factors to influence carcinogenesis. HBV is also considered an oncogenic virus since its X and surface mutant proteins showed tumorigenic activity in mouse models. The other unique mechanism is the insertional mutagenesis by integration of HBV genome into hepatocyte chromosomes to activate oncogenes. HCC survival largely depends on tumor stages at diagnosis and effective treatment. However, early diagnosis by the conventional protein biomarkers achieves limited success. A new biomarker, the circulating virus–host chimera DNA from HBV integration sites in HCC, provides a liquid biopsy approach for monitoring the tumor load in the majority of HBV–HCC patients. To maximize the efficacy of new immunotherapies or molecular target therapies, it requires better classification of HCC based on the tumor microenvironment and specific carcinogenic pathways. An in-depth study may benefit both the diagnosis and treatment of HBV-related HCC.
Collapse
|
46
|
Lin Z, Miao D, Xu Q, Wang X, Yu F. A novel focal adhesion related gene signature for prognostic prediction in hepatocellular carcinoma. Aging (Albany NY) 2021; 13:10724-10748. [PMID: 33850056 PMCID: PMC8064231 DOI: 10.18632/aging.202871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/14/2021] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous disease. Reduced expression of focal adhesion is considered as an important prerequisite for tumor cell invasion and metastasis. However, the prognostic value of focal adhesion related genes in HCC remains to be further determined. In this study, RNA expression profiles were downloaded from public databases. A five focal adhesion related gene signature model was established by the least absolute shrinkage and selection operator Cox regression analysis, which categorized patients into high- and low-risk groups. Multivariate Cox regression analysis showed that the risk score was an independent predictor for overall survival. Single-sample gene set enrichment analysis revealed that immune status was different between the two risk groups, and tumor-related pathways were enriched in high-risk group. The risk score was significantly associated with tumor grade, tumor stage, immune scores, and immune infiltrate types. Pearson correlation showed that the expression level of prognostic genes was associated with anti-tumor drug sensitivity. Besides, the mRNA and protein expression of prognostic genes was significantly different between HCC tissues and adjacent non-tumorous tissues in our separate cohort. Taken together, a novel focal adhesion related gene signature can be used for prognostic prediction in HCC, which may be a therapeutic alternative.
Collapse
Affiliation(s)
- Zhuo Lin
- Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, Zhejiang, China
| | - Dan Miao
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qian Xu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Wang
- Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, Zhejiang, China
| | - Fujun Yu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
47
|
Wang S, Shi H, Liu T, Li M, Zhou S, Qiu X, Wang Z, Hu W, Guo W, Chen X, Guo H, Shi X, Shi J, Zang Y, Cao J, Wu L. Mutation profile and its correlation with clinicopathology in Chinese hepatocellular carcinoma patients. Hepatobiliary Surg Nutr 2021; 10:172-179. [PMID: 33898558 DOI: 10.21037/hbsn.2019.09.17] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common causes of cancer worldwide. Although many studies have focused on oncogene characteristics, the genomic landscape of Chinese HCC patients has not been fully clarified. Methods A total of 165 HCC patients, including 146 males and 19 females, were enrolled. The median age was 55 years (range, 27-78 years). Corresponding clinical and pathological information was collected for further analysis. A total of 168 tumor tissues from these patients were selected for next-generation sequencing (NGS)-based 450 panel gene sequencing. Genomic alterations including single nucleotide variations (SNV), short and long insertions and deletions (InDels), copy number variations, and gene rearrangements were analyzed. Tumor mutational burden (TMB) was measured by an algorithm developed in-house. The top quartile of HCC was classified as TMB high. Results A total of 1,004 genomic alterations were detected from 258 genes in 168 HCC tissues. TMB values were identified in 160 HCC specimens, with a median TMB of 5.4 Muts/Mb (range, 0-28.4 Muts/Mb) and a 75% TMB of 7.7 Muts/Mb. The most commonly mutated genes were TP53, TERT, CTNNB1, AXIN1, RB1, TSC2, CCND1, ARID1A, and FGF19. SNV was the most common mutation type and C:G>T:A and guanine transformation were the most common SNVs. Compared to wild-type patients, the proportion of Edmondson grade III-IV and microvascular invasion was significantly higher in TP53 mutated patients (P<0.05). The proportion of tumors invading the hepatic capsule was significantly higher in TERT mutated patients (P<0.05). The proportion of Edmondson grade I-II, alpha fetoprotein (AFP) <25 µmg/L, and those without a history of hepatitis B was significantly higher in CTNNB1 mutated patients (P<0.05). CTNNB1 mutations were associated with TMB high in HCC patients (P<0.05). Based on correlation analysis, the mutation of TP53 was independently correlated with microvascular invasion (P=0.002, OR =3.096) and Edmondson grade III-IV (P=0.008, OR =2.613). The mutation of TERT was independently correlated with tumor invasion of the liver capsule (P=0.001, OR =3.030), and the mutation of CTNNB1 was independently correlated with AFP (<25 µmg/L) (P=0.009, OR =3.414). Conclusions The most frequently mutated genes of HCC patients in China were TP53, TERT, and CTNNB1, which mainly lead to the occurrence and development of HCC by regulating the P53 pathway, Wnt pathway, and telomere repair pathway. There were more patients with microvascular invasion and Edmondson III-IV grade in TP53 mutated patients and more patients with hepatic capsule invasion in TERT mutated patients, while in CTNNB1 mutated patients, there were more patients with Edmondson I-II grade, AFP <25 µmg/L, and a non-hepatitis B background. Also, the TMB values were significantly higher in CTNNB1 mutated patients than in wild type patients.
Collapse
Affiliation(s)
- Shuo Wang
- Liver Disease Center, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huasheng Shi
- Liver Disease Center, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Liu
- Liver Disease Center, Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Hepatobiliary Surgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Manjiang Li
- Liver Disease Center, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Sanshun Zhou
- Liver Disease Center, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuan Qiu
- Liver Disease Center, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zusen Wang
- Department of Hepatobiliary & Pancreatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weiyu Hu
- Department of Hepatobiliary & Pancreatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weidong Guo
- Department of Hepatobiliary & Pancreatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | | | | | | | | | - Yunjin Zang
- Liver Disease Center, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingyu Cao
- Department of Hepatobiliary & Pancreatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liqun Wu
- Liver Disease Center, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
48
|
Yan Y, Luo YH, Zheng DF, Mu T, Wu ZJ. Integrating transcriptomes and somatic mutations to identify RNA methylation regulators as a prognostic marker in hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2021; 20:34-45. [PMID: 32563589 DOI: 10.1016/j.hbpd.2020.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/29/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND RNA methylation modifying plays an important role in the occurrence and progression of a range of human cancers including hepatocellular carcinoma (HCC), which is characterized by a mass of genetic and epigenetic alterations. However, the treatment targeting these alterations is limited. METHODS We used comprehensive bioinformatics analysis to analyze the correlation between cancer-associated RNA methylation regulators and HCC malignant features in network datasets. RESULTS We identified two HCC subgroups (cluster 1 and 2), which had clearly distinct clinicopathological, biofunctional and prognostic characteristics, by consensus clustering. The cluster 2 subgroup correlated with malignancy of the primary tumor, higher tumor stage, higher histopathological grade and higher frequency of TP53 mutation, as well as with shorter survival when compared with cluster 1. Gene enrichment indicated that the cluster 2 correlated to the tumor malignancy signaling and biological processes. Based on these findings, an 11-gene risk signature was built, which not only was an independent prognostic marker but also had an excellent power to predict the tumor features. CONCLUSIONS Our study indicated that RNA methylation regulators are vital for HCC malignant progression and provide an important evidence for RNA methylation, methylation regulators are actionable targets for anticancer drug discovery.
Collapse
Affiliation(s)
- Yue Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yun-Hai Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dao-Feng Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tong Mu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhong-Jun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
49
|
Zhan YT, Li L, Zeng TT, Zhou NN, Guan XY, Li Y. SNRPB-mediated RNA splicing drives tumor cell proliferation and stemness in hepatocellular carcinoma. Aging (Albany NY) 2020; 13:537-554. [PMID: 33289700 PMCID: PMC7834993 DOI: 10.18632/aging.202164] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading malignant diseases worldwide, but therapeutic targets for HCC are lacking. Here, we characterized a significant upregulation of Small Nuclear Ribonucleoprotein Polypeptides B and B1 (SNRPB) in HCC via qRT-PCR, western blotting, tissue microarray and public database analyses. Increased SNRPB expression was positively associated with adjacent organ invasion, tumor size, serum AFP level and poor HCC patient survival. Next, we transfected SNRPB into HCC cells to construct SNRPB-overexpressing cell lines, and short hairpin RNA targeting SNRPB was used to silence SNRPB in HCC cells. Functional studies showed that SNRPB overexpression could promote HCC cell malignant proliferation and stemness maintenance. Inversely, SNRPB knockdown in HCC cells caused inverse effects. Importantly, analysis of alternative splicing by RNA sequencing revealed that SNRPB promoted the formation of AKT3-204 and LDHA-220 splice variants, which activated the Akt pathway and aerobic glycolysis in HCC cells. In conclusion, SNRPB could serve as a prognostic predictor for patients with HCC, and it promotes HCC progression by inducing metabolic reprogramming.
Collapse
Affiliation(s)
- Yu-Ting Zhan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Lei Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China.,Department of Clinical Oncology, The University of Hong Kong, Hong Kong 852, P. R. China
| | - Ting-Ting Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Ning-Ning Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China.,Department of Clinical Oncology, The University of Hong Kong, Hong Kong 852, P. R. China
| | - Yan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| |
Collapse
|
50
|
Pogostemon cablin Triggered ROS-Induced DNA Damage to Arrest Cell Cycle Progression and Induce Apoptosis on Human Hepatocellular Carcinoma In Vitro and In Vivo. Molecules 2020; 25:molecules25235639. [PMID: 33266043 PMCID: PMC7731310 DOI: 10.3390/molecules25235639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
The purpose of the study was to elucidate the anti-hepatoma effects and mechanisms of Pogostemon cablin essential oils (PPa extract) in vitro and in vivo. PPa extract exhibited an inhibitory effect on hepatocellular carcinoma (HCC) cells and was less cytotoxic to normal cells, especially normal liver cells, than it was to HCC cells, exerting a good selective index. Additionally, PPa extract inhibited HCC cell growth by blocking the cell cycle at the G0/G1 phase via p53 dependent or independent pathway to down regulated cell cycle regulators. Moreover, PPa extract induced the FAS-FASL-caspase-8 system to activate the extrinsic apoptosis pathway, and it increased the bax/bcl-2 ratio and reduced ΔΨm to activate the intrinsic apoptosis pathway that might be due to lots of reactive oxygen species (ROS) production which was induced by PPa extract. In addition, PPa extract presented to the potential to act synergistically with sorafenib to effectively inhibit HCC cell proliferation through the Akt/mTOR pathway and reduce regrowth of HCC cells. In an animal model, PPa extract suppressed HCC tumor growth and prolonged lifespan by reducing the VEGF/VEGFR axis and inducing tumor cell apoptosis in vivo. Ultimately, PPa extract demonstrated nearly no or low system-wide, physiological, or pathological toxicity in vivo. In conclusion, PPa extract effectively inhibited HCC cell growth through inducing cell cycle arrest and activating apoptosis in vitro and in vivo. Furthermore, PPa extract exhibits less toxicity toward normal cells and organs than it does toward HCC cells, which might lead to fewer side effects in clinical applications. PPa extract may be developed into a clinical drug to suppress tumor growth or functional food to prevent HCC initiation or chemoprotection of HCC recurrence.
Collapse
|