1
|
Sajjad M, Xue S, Zhou M, Li G, Xu Y, Liu L, Zhu J, Meng Q, Jin Q, Du H, Yao C, Zhong Y. Decoding comparative taste and nutrition regulation in Chinese cabbage via integrated metabolome and transcriptome analysis. Food Res Int 2024; 195:114943. [PMID: 39277221 DOI: 10.1016/j.foodres.2024.114943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Chinese cabbage (Brassica rapa L. ssp. pekinensis) is a widely consumed leafy vegetable known for its various health-beneficial nutrients. Caixin (ET and JY) represent distinct cultivars of Chinese cabbage that exhibit differential consumer preference attributed to variations in taste and nutritional content, with ET being characterized as sweeter and more nutritionally superior compared to JY. However, limited research has been conducted to explore regulation of flavor and nutrition-related quality traits in Chinese cabbage. In this pioneer study, comprehensive trans-meta-analysis was used to compare the metabolic and molecular underpinnings behind unique taste and nutritional profiles of ET and JY. 8-Methylsulfonyloctyl glucosinolates and Uridine 5'-diphospho-D-glucose exhibited the highest correlation coefficient in Pearson meta-meta-association, which modulate flavor and nutrition processes. While DAMs primarily featured L-Homomethionine, saccharic acid, 1,6-Di-O-caffeoyl-β-D-glucose, and Rutin, with notable variations in expression between ET and JY. Conspicuously, DEGs encoding structural enzymes i.e. Glucosinolates (MAM, CYP, UGT), flavonoids (CHS, CHI, F3H) and sucrose (SPS, SPP, SUS) synthases were identified as key players in nutrient and flavor production. Multi-omics conjoint analysis revealed that saccharides, amino acids, ascorbates, flavonoids, organic acids and vitamins were positively correlated with taste and nutrition, and were found to be overexpressed in ET. While aliphatic glucosinolates were abundant in JY compared to ET, they might play a critical role in regulating quality traits. Besides, HPLC and RT-qPCR corroborated multi-omics data reliability. These findings offer novel insights into the mechanisms governing the regulation of taste and nutritional levels in Chinese cabbage.
Collapse
Affiliation(s)
- Muhammad Sajjad
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Shudan Xue
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Meijiang Zhou
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Yingchao Xu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Ling Liu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Jitong Zhu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Qitao Meng
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Qingmin Jin
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Hu Du
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Chunpeng Yao
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Yujuan Zhong
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China.
| |
Collapse
|
2
|
Lomax J, Ford R, Bar I. Multi-omic applications for understanding and enhancing tropical fruit flavour. PLANT MOLECULAR BIOLOGY 2024; 114:83. [PMID: 38972957 PMCID: PMC11228007 DOI: 10.1007/s11103-024-01480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Consumer trends towards nutrient-rich foods are contributing to global increasing demand for tropical fruit. However, commercial cultivars in the breeding pipeline that are tailored to meet market demand are at risk of possessing reduced fruit flavour qualities. This stems from recurrent prioritised selection for superior agronomic traits and not fruit flavour, which may in turn reduce consumer satisfaction. There is realisation that fruit quality traits, inclusive of flavour, must be equally selected for; but currently, there are limited tools and resources available to select for fruit flavour traits, particularly in tropical fruit species. Although sugars, acids, and volatile organic compounds are known to define fruit flavour, the specific combinations of these, that result in defined consumer preferences, remain unknown for many tropical fruit species. To define and include fruit flavour preferences in selective breeding, it is vital to determine the metabolites that underpin them. Then, objective quantitative analysis may be implemented instead of solely relying on human sensory panels. This may lead to the development of selective genetic markers through integrated omics approaches that target biosynthetic pathways of flavour active compounds. In this review, we explore progress in the development of tools to be able to strategically define and select for consumer-preferred flavour profiles in the breeding of new cultivars of tropical fruit species.
Collapse
Affiliation(s)
- Joshua Lomax
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia.
| | - Rebecca Ford
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Ido Bar
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| |
Collapse
|
3
|
Ghosh A, Hasanuzzaman M, Fujita M, Adak MK. Carbon dioxide sensitization delays the postharvest ripening and fatty acids composition of Capsicum fruit by regulating ethylene biosynthesis, malic acid and reactive oxygen species metabolism. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:985-1002. [PMID: 38974358 PMCID: PMC11222363 DOI: 10.1007/s12298-024-01471-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/12/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
Present study would be significant in the sustenance of quality characters for postharvest storage of Capsicum fruit with CO2-sensitization in biocompatible manner. The present experiment describes effects of CO2 sensitization on delaying postharvest ripening through physiological attributes in Capsicum fruit. The experiment was conducted with acidified bicarbonate-derived CO2 exposure for 2 h on Capsicum fruit, kept under white light at 25 °C through 7 days postharvest storage. Initially, fruits responded well to CO2 as recorded sustenance of greenness and integrity of fruit coat resolved through scanning electron micrograph. Loss of water and accumulation of total soluble solids were marginally increased on CO2-sensitized fruit as compared to non-sensitized (control) fruit. The ethylene metabolism biosynthetic genes like CaACC synthase, CaACC oxidase were downregulated on CO2-sensitization. Accompanying ethylene metabolism cellular respiration was downregulated on CO2 induction as compared to control through 7 days of storage. Fruit coat photosynthesis decarboxylating reaction by NADP malic enzyme was upregulated to maintain the reduced carbon accumulation as recorded on 7 days of storage under the same condition. CO2-sensitization effectively reduced the lipid peroxides as oxidative stress products on ripening throughout the storage. Anti-oxidation reaction essentially downregulates the ROS-induced damages of biomolecules that otherwise are highly required for food preservation during postharvest storage. Thus, the major finding is that CO2-sensitization maintains a higher ratio of unsaturated to saturated fatty acids in fruit coat during storage. Tissue-specific downregulation of ROS also maintained the nuclear stability under CO2 exposure. These findings provide basic as well as applied insights for sustaining Capsicum fruit quality with CO2 exposure under postharvest storage. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01471-4.
Collapse
Affiliation(s)
- Arijit Ghosh
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, Nadia, West Bengal 741235 India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795 Japan
| | - M. K. Adak
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, Nadia, West Bengal 741235 India
| |
Collapse
|
4
|
Rossouw GC, Orr R, Bennett D, Bally ISE. The roles of non-structural carbohydrates in fruiting: a review focusing on mango ( Mangifera indica). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23195. [PMID: 38588720 DOI: 10.1071/fp23195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/17/2024] [Indexed: 04/10/2024]
Abstract
Reproductive development of fruiting trees, including mango (Mangifera indica L.), is limited by non-structural carbohydrates. Competition for sugars increases with cropping, and consequently, vegetative growth and replenishment of starch reserves may reduce with high yields, resulting in interannual production variability. While the effect of crop load on photosynthesis and the distribution of starch within the mango tree has been studied, the contribution of starch and sugars to different phases of reproductive development requires attention. This review focuses on mango and examines the roles of non-structural carbohydrates in fruiting trees to clarify the repercussions of crop load on reproductive development. Starch buffers the plant's carbon availability to regulate supply with demand, while sugars provide a direct resource for carbon translocation. Sugar signalling and interactions with phytohormones play a crucial role in flowering, fruit set, growth, ripening and retention, as well as regulating starch, sugar and secondary metabolites in fruit. The balance between the leaf and fruit biomass affects the availability and contributions of starch and sugars to fruiting. Crop load impacts photosynthesis and interactions between sources and sinks. As a result, the onset and rate of reproductive processes are affected, with repercussions for fruit size, composition, and the inter-annual bearing pattern.
Collapse
Affiliation(s)
- Gerhard C Rossouw
- Department of Agriculture and Fisheries, Mareeba Research Facility, Mareeba 4880, Qld, Australia
| | - Ryan Orr
- Department of Agriculture and Fisheries, Mareeba Research Facility, Mareeba 4880, Qld, Australia
| | - Dale Bennett
- Department of Agriculture and Fisheries, Mareeba Research Facility, Mareeba 4880, Qld, Australia
| | - Ian S E Bally
- Department of Agriculture and Fisheries, Mareeba Research Facility, Mareeba 4880, Qld, Australia
| |
Collapse
|
5
|
Gómez-Ollé A, Bullones A, Hormaza JI, Mueller LA, Fernandez-Pozo N. MangoBase: A Genomics Portal and Gene Expression Atlas for Mangifera indica. PLANTS (BASEL, SWITZERLAND) 2023; 12:1273. [PMID: 36986961 PMCID: PMC10058708 DOI: 10.3390/plants12061273] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Mango (Mangifera indica L.) (2n = 40) is a member of the Anacardiaceae family, which was domesticated at least 4000 years ago in Asia. Mangoes are delicious fruits with great nutritional value. They are one of the major fruit crops worldwide, cultivated in more than 100 countries, with a production of more than 40 million tons. Recently the genome sequences of several mango varieties have been released, but there are no bioinformatics platforms dedicated to mango genomics and breeding to host mango omics data. Here, we present MangoBase, a web portal dedicated to mango genomics, which provides multiple interactive bioinformatics tools, sequences, and annotations to analyze, visualize, and download omics data related to mango. Additionally, MangoBase includes a gene expression atlas with 12 datasets and 80 experiments representing some of the most significant mango RNA-seq experiments published to this date. These experiments study mango fruit ripening in several cultivars with different pulp firmness and sweetness or peel coloration, and other experiments also study hot water postharvest treatment, infection with C. gloeosporioides, and the main mango tree organ tissues.
Collapse
Affiliation(s)
- Aynhoa Gómez-Ollé
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM La Mayora-CSIC-UMA), 29010 Málaga, Spain; (A.G.-O.); (A.B.); (J.I.H.)
| | - Amanda Bullones
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM La Mayora-CSIC-UMA), 29010 Málaga, Spain; (A.G.-O.); (A.B.); (J.I.H.)
- Department of Biochemistry and Molecular Biology, Universidad de Málaga (UMA), 29010 Málaga, Spain
| | - Jose I. Hormaza
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM La Mayora-CSIC-UMA), 29010 Málaga, Spain; (A.G.-O.); (A.B.); (J.I.H.)
| | | | - Noe Fernandez-Pozo
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM La Mayora-CSIC-UMA), 29010 Málaga, Spain; (A.G.-O.); (A.B.); (J.I.H.)
| |
Collapse
|
6
|
Wang C, Zhou J, Zhang S, Gao X, Yang Y, Hou J, Chen G, Tang X, Wu J, Yuan L. Combined Metabolome and Transcriptome Analysis Elucidates Sugar Accumulation in Wucai ( Brassica campestris L.). Int J Mol Sci 2023; 24:ijms24054816. [PMID: 36902245 PMCID: PMC10003340 DOI: 10.3390/ijms24054816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Wucai (Brassica campestris L.) is a leafy vegetable that originated in China, its soluble sugars accumulate significantly to improve taste quality during maturation, and it is widely accepted by consumers. In this study, we investigated the soluble sugar content at different developmental stages. Two periods including 34 days after planting (DAP) and 46 DAP, which represent the period prior to and after sugar accumulation, respectively, were selected for metabolomic and transcriptomic profiling. Differentially accumulated metabolites (DAMs) were mainly enriched in the pentose phosphate pathway, galactose metabolism, glycolysis/gluconeogenesis, starch and sucrose metabolism, and fructose and mannose metabolism. By orthogonal projection to latent structures-discriminant s-plot (OPLS-DA S-plot) and MetaboAnalyst analyses, D-galactose and β-D-glucose were identified as the major components of sugar accumulation in wucai. Combined with the transcriptome, the pathway of sugar accumulation and the interact network between 26 DEGs and the two sugars were mapped. CWINV4, CEL1, BGLU16, and BraA03g023380.3C had positive correlations with the accumulation of sugar accumulation in wucai. The lower expression of BraA06g003260.3C, BraA08g002960.3C, BraA05g019040.3C, and BraA05g027230.3C promoted sugar accumulation during the ripening of wucai. These findings provide insights into the mechanisms underlying sugar accumulation during commodity maturity, providing a basis for the breeding of sugar-rich wucai cultivars.
Collapse
Affiliation(s)
- Chenggang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Jiajie Zhou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Shengnan Zhang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Xun Gao
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Yitao Yang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Jinfeng Hou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Guohu Chen
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Xiaoyan Tang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Jianqiang Wu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
- Correspondence: ; Tel./Fax: +86-0551-65786212
| |
Collapse
|
7
|
Yahia EM, de Jesús Ornelas-Paz J, Brecht JK, García-Solís P, Elena Maldonado Celis M. The contribution of mango fruit (Mangifera indica L.) to human nutrition and health. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
8
|
Liu B, Xin Q, Zhang M, Chen J, Lu Q, Zhou X, Li X, Zhang W, Feng W, Pei H, Sun J. Research Progress on Mango Post-Harvest Ripening Physiology and the Regulatory Technologies. Foods 2022; 12:foods12010173. [PMID: 36613389 PMCID: PMC9818659 DOI: 10.3390/foods12010173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Mango (Mangifera indica L.) is an important tropical fruit with a delicate taste, pleasant aroma, and high nutritional value. In recent years, with the promotion of the rural revitalization strategy and the development of the poverty alleviation industry, China has gradually become an important mango producer. However, the short shelf life of mango fruit, the difficulty in regulating the postharvest quality, and the lack of preservation technology are the main problems that need to be solved in China's mango industry. In this paper, the physiological changes and mechanisms of mango during postharvest ripening were summarized, including sugar and acid changes, pigment synthesis and accumulation, and aroma formation and accumulation. The physical, chemical, and biological technologies (such as endogenous phytohormones, temperature, light, chemical preservatives, and edible coatings) commonly used in the regulation of mango postharvest ripening and their action principles were emphatically expounded. The shortcomings of the existing mango postharvest ripening regulation technology and physiological mechanism research were analyzed in order to provide a reference for the industrial application and development of mango postharvest.
Collapse
Affiliation(s)
- Bangdi Liu
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Qi Xin
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Min Zhang
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Jianhu Chen
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Qingchen Lu
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Xinqun Zhou
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Xiangxin Li
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wanli Zhang
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Wei Feng
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Haisheng Pei
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Jing Sun
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Correspondence:
| |
Collapse
|
9
|
Zhang F, Li X, Wu Q, Lu P, Kang Q, Zhao M, Wang A, Dong Q, Sun M, Yang Z, Gao Z. Selenium Application Enhances the Accumulation of Flavones and Anthocyanins in Bread Wheat ( Triticum aestivum L.) Grains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13431-13444. [PMID: 36198089 DOI: 10.1021/acs.jafc.2c04868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Selenium (Se) biofortification in wheat reduces the risk of Se deficiency in humans. Se biofortification increases the concentration of Se and anthocyanins in wheat grains. However, it is unknown whether Se biofortification can enhance flavonoids other than anthocyanins and the mechanism underlying flavonoid accumulation in wheat grains. Here, foliar application of selenite solution in wheat was conducted 10 days after flowering. Metabolite profiling and transcriptome sequencing were performed in Se-treated grains. A significant increase in the total contents of Se, anthocyanins, and flavonoids was observed in Se-treated mature grains. Twenty-seven significantly increased flavonoids were identified in Se-treated immature grains. The significant accumulation of flavones (tricin, tricin derivatives, and chrysoeriol derivatives) was detected, and six anthocyanins, dihydroquercetin (the precursor for anthocyanin biosynthesis) and catechins were also increased. Integrated analysis of metabolites and transcriptome revealed that Se application enhanced the biosynthesis of flavones, dihydroquercetin, anthocyanins, and catechins by increasing the expression levels of seven key structural genes in flavonoid biosynthesis (two TaF3Hs, two TaDFRs, one TaF3'5'H, one TaOMT, and one TaANR). Our findings shed new light on the molecular mechanism underlying the enhancement in flavonoid accumulation by Se supplementation and pave the way for further enhancing the nutritional value of wheat grains.
Collapse
Affiliation(s)
- Fengjie Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Xueyin Li
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Qiangqiang Wu
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Ping Lu
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Qingfang Kang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Mengyao Zhao
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Aiping Wang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Qi Dong
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Min Sun
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Zhenping Yang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Zhiqiang Gao
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
10
|
Feng WM, Liu P, Yan H, Yu G, Zhang S, Jiang S, Shang EX, Qian DW, Duan JA. Investigation of Enzymes in the Phthalide Biosynthetic Pathway in Angelica sinensis Using Integrative Metabolite Profiles and Transcriptome Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:928760. [PMID: 35845641 PMCID: PMC9286521 DOI: 10.3389/fpls.2022.928760] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
The roots of Angelica sinensis (Oliv.) Diels are well known for their efficacy in promoting blood circulation. Although many studies have indicated that phthalides are the main chemical components responsible for the pharmacological properties of A. sinensis, the phthalide biosynthetic pathway and enzymes that transform different phthalides are still poorly understood. We identified 108 potential candidate isoforms for phthalide accumulation using transcriptome and metabolite profile analyses. Then, six enzymes, including phospho-2-dehydro-3-deoxyheptonate aldolase 2, shikimate dehydrogenase, primary amine oxidase, polyphenol oxidase, tyrosine decarboxylase, and shikimate O-hydroxycinnamoyl transferase, were identified and proven to be involved in phthalide accumulation by heterologously expressing these proteins in Escherichia coli. We proposed a possible mechanism underlying phthalide transformation and biosynthetic pathways in A. sinensis based on our findings. The results of our study can provide valuable information for understanding the mechanisms underlying phthalide accumulation and transformation and enable further development of quality control during the cultivation of A. sinensis.
Collapse
Affiliation(s)
- Wei-Meng Feng
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pei Liu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Yan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guang Yu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sen Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu Jiang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Er-Xin Shang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Da-Wei Qian
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Cheng H, Kong W, Tang T, Ren K, Zhang K, Wei H, Lin T. Identification of Key Gene Networks Controlling Soluble Sugar and Organic Acid Metabolism During Oriental Melon Fruit Development by Integrated Analysis of Metabolic and Transcriptomic Analyses. FRONTIERS IN PLANT SCIENCE 2022; 13:830517. [PMID: 35646021 PMCID: PMC9135470 DOI: 10.3389/fpls.2022.830517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Oriental melon (Cucumis melo var. acidulus) is one of the most economically important fruit crops worldwide. To elucidate the molecular basis related to soluble sugar and organic acid metabolism in the fruits of two oriental melon cultivars with different sweetness, we performed integrated metabolomic and transcriptomic analyses of the fruits of 'Tianbao' (A) with high sweetness and 'Xiaocuigua' (B) with low sweetness at different ripening stages. The high accumulation of sucrose, D-glucose, D-(+)-raffinose, and the relatively lower citric acid and malic acid might contribute to the sweet taste of A. By screening the differentially expressed genes (DEGs) and correlation analysis of the DEGs and differentially accumulated metabolites, we deduced that the B cultivar might promote the conversion of glucose and fructose into intermediate compounds for downstream processes such as glycolysis. The tricarboxylic acid (TCA) cycle might also be enhanced compared to A, thus resulting in the differential accumulation of soluble sugars and organic acids, ultimately causing the taste difference between the two oriental melon cultivars. Our finding provides important information for further exploring the metabolic mechanisms of soluble sugars and organic acids in oriental melon.
Collapse
Affiliation(s)
- Hong Cheng
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Weiping Kong
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Taoxia Tang
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Kaili Ren
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Kaili Zhang
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Huxia Wei
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Wu S, Wu D, Song J, Zhang Y, Tan Q, Yang T, Yang J, Wang S, Xu J, Xu W, Liu A. Metabolomic and transcriptomic analyses reveal new insights into the role of abscisic acid in modulating mango fruit ripening. HORTICULTURE RESEARCH 2022; 9:uhac102. [PMID: 35795388 PMCID: PMC9250656 DOI: 10.1093/hr/uhac102] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/18/2022] [Indexed: 05/16/2023]
Abstract
Mango (Mangifera indica L.) is a climacteric tropical fruit consumed around the world. Although ethylene and abscisic acid (ABA) have been considered to be stimulators that trigger mango fruit ripening, their regulation mechanisms in modulating mango fruit ripening remain uncertain. In this study, we performed integrative analyses of metabolome and transcriptome data combined with a series of physiological and experimental analyses in the 'Keitt' mango, and we characterized changes in accumulation of specific metabolites at different stages during fruit development and ripening, which were strongly correlated with transcriptional changes and embodied physiological changes as well as taste formation. Specifically, we found that ABA, rather than ethylene, was highly associated with mango ripening, and exogenous ABA application promoted mango fruit ripening. Transcriptomic analysis identified diverse ripening-related genes involved in sugar and carotenoid biosynthesis and softening-related metabolic processes. Furthermore, networks of ABA- and ripening-related genes (such as MiHY5, MiGBF4, MiABI5, and MibZIP9) were constructed, and the direct regulation by the key ABA-responsive transcription factor MiHY5 of ripening-related genes was experimentally confirmed by a range of evidence. Taken together, our results indicate that ABA plays a key role in directly modulating mango fruit ripening through MiHY5, suggesting the need to reconsider how we understand ABA function in modulating climacteric fruit ripening.
Collapse
Affiliation(s)
- Shibo Wu
- Key Laboratory of Economic plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Wu
- Key Laboratory of Economic plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Song
- Key Laboratory of Economic plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
| | - Yanyu Zhang
- Key Laboratory of Economic plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Tan
- Key Laboratory of Economic plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianquan Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jingya Yang
- Key Laboratory of Economic plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | - Wei Xu
- Corresponding authors. E-mail: , , ,
| | | |
Collapse
|
13
|
Jiang Z, Li R, Tang Y, Cheng Z, Qian M, Li W, Shao Y. Transcriptome Analysis Reveals the Inducing Effect of Bacillus siamensis on Disease Resistance in Postharvest Mango Fruit. Foods 2022; 11:107. [PMID: 35010233 PMCID: PMC8750277 DOI: 10.3390/foods11010107] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022] Open
Abstract
Postharvest anthracnose, caused by the fungus Colletotrichum gloeosporioides, is one of the most important postharvest diseases of mangoes worldwide. Bacillus siamensis (B. siamensis), as a biocontrol bacteria, has significant effects on inhibiting disease and improving the quality of fruits and vegetables. In this study, pre-storage application of B. siamensis significantly induced disease resistance and decreased disease index (DI) of stored mango fruit. To investigate the induction mechanisms of B. siamensis, comparative transcriptome analysis of mango fruit samples during the storage were established. In total, 234,808 unique transcripts were assembled and 56,704 differentially expressed genes (DEGs) were identified by comparative transcriptome analysis. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEGs showed that most of the DEGs involved in plant-pathogen interaction, plant hormone signal transduction, and biosynthesis of resistant substances were enriched. Fourteen DEGs related to disease-resistance were validated by qRT-PCR, which well corresponded to the FPKM value obtained from the transcriptome data. These results indicate that B. siamensis treatment may act to induce disease resistance of mango fruit by affecting multiple pathways. These findings not only reveal the transcriptional regulatory mechanisms that govern postharvest disease, but also develop a biological strategy to maintain quality of post-harvest mango fruit.
Collapse
Affiliation(s)
- Zecheng Jiang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.J.); (Y.T.); (Z.C.)
| | - Rui Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China; (R.L.); (M.Q.)
| | - Yue Tang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.J.); (Y.T.); (Z.C.)
| | - Ziyu Cheng
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.J.); (Y.T.); (Z.C.)
| | - Minjie Qian
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China; (R.L.); (M.Q.)
| | - Wen Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China; (R.L.); (M.Q.)
| | - Yuanzhi Shao
- School of Life Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
14
|
Mathiazhagan M, Chidambara B, Hunashikatti LR, Ravishankar KV. Genomic Approaches for Improvement of Tropical Fruits: Fruit Quality, Shelf Life and Nutrient Content. Genes (Basel) 2021; 12:1881. [PMID: 34946829 PMCID: PMC8701245 DOI: 10.3390/genes12121881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/23/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
The breeding of tropical fruit trees for improving fruit traits is complicated, due to the long juvenile phase, generation cycle, parthenocarpy, polyploidy, polyembryony, heterozygosity and biotic and abiotic factors, as well as a lack of good genomic resources. Many molecular techniques have recently evolved to assist and hasten conventional breeding efforts. Molecular markers linked to fruit development and fruit quality traits such as fruit shape, size, texture, aroma, peel and pulp colour were identified in tropical fruit crops, facilitating Marker-assisted breeding (MAB). An increase in the availability of genome sequences of tropical fruits further aided in the discovery of SNP variants/Indels, QTLs and genes that can ascertain the genetic determinants of fruit characters. Through multi-omics approaches such as genomics, transcriptomics, metabolomics and proteomics, the identification and quantification of transcripts, including non-coding RNAs, involved in sugar metabolism, fruit development and ripening, shelf life, and the biotic and abiotic stress that impacts fruit quality were made possible. Utilizing genomic assisted breeding methods such as genome wide association (GWAS), genomic selection (GS) and genetic modifications using CRISPR/Cas9 and transgenics has paved the way to studying gene function and developing cultivars with desirable fruit traits by overcoming long breeding cycles. Such comprehensive multi-omics approaches related to fruit characters in tropical fruits and their applications in breeding strategies and crop improvement are reviewed, discussed and presented here.
Collapse
Affiliation(s)
| | | | | | - Kundapura V. Ravishankar
- Division of Basic Sciences, ICAR Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru 560089, India; (M.M.); (B.C.); (L.R.H.)
| |
Collapse
|
15
|
Yan H, Zhou H, Luo H, Fan Y, Zhou Z, Chen R, Luo T, Li X, Liu X, Li Y, Qiu L, Wu J. Characterization of full-length transcriptome in Saccharum officinarum and molecular insights into tiller development. BMC PLANT BIOLOGY 2021; 21:228. [PMID: 34022806 PMCID: PMC8140441 DOI: 10.1186/s12870-021-02989-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/27/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Although extensive breeding efforts are ongoing in sugarcane (Saccharum officinarum L.), the average yield is far below the theoretical potential. Tillering is an important component of sugarcane yield, however, the molecular mechanism underlying tiller development is still elusive. The limited genomic data in sugarcane, particularly due to its complex and large genome, has hindered in-depth molecular studies. RESULTS Herein, we generated full-length (FL) transcriptome from developing leaf and tiller bud samples based on PacBio Iso-Seq. In addition, we performed RNA-seq from tiller bud samples at three developmental stages (T0, T1 and T2) to uncover key genes and biological pathways involved in sugarcane tiller development. In total, 30,360 and 20,088 high-quality non-redundant isoforms were identified in leaf and tiller bud samples, respectively, representing 41,109 unique isoforms in sugarcane. Likewise, we identified 1063 and 1037 alternative splicing events identified in leaf and tiller bud samples, respectively. We predicted the presence of coding sequence for 40,343 isoforms, 98% of which was successfully annotated. Comparison with previous FL transcriptomes in sugarcane revealed 2963 unreported isoforms. In addition, we characterized 14,946 SSRs from 11,700 transcripts and 310 lncRNAs. By integrating RNA-seq with the FL transcriptome, 468 and 57 differentially expressed genes (DEG) were identified in T1vsT0 and T2vsT0, respectively. Strong up-regulation of several pyruvate phosphate dikinase and phosphoenolpyruvate carboxylase genes suggests enhanced carbon fixation and protein synthesis to facilitate tiller growth. Similarly, up-regulation of linoleate 9S-lipoxygenase and lipoxygenase genes in the linoleic acid metabolism pathway suggests high synthesis of key oxylipins involved in tiller growth and development. CONCLUSIONS Collectively, we have enriched the genomic data available in sugarcane and provided candidate genes for manipulating tiller formation and development, towards productivity enhancement in sugarcane.
Collapse
Affiliation(s)
- Haifeng Yan
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, East Daxue Road 172, Nanning, 530004, Guangxi, China
| | - Huiwen Zhou
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, East Daxue Road 172, Nanning, 530004, Guangxi, China
| | - Hanmin Luo
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, East Daxue Road 172, Nanning, 530004, Guangxi, China
| | - Yegeng Fan
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, East Daxue Road 172, Nanning, 530004, Guangxi, China
| | - Zhongfeng Zhou
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, East Daxue Road 172, Nanning, 530004, Guangxi, China
| | - Rongfa Chen
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, East Daxue Road 172, Nanning, 530004, Guangxi, China
| | - Ting Luo
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, East Daxue Road 172, Nanning, 530004, Guangxi, China
| | - Xujuan Li
- Sugarcane Research Institute of Yunnan Academy of Agricultural Sciences, East Lingquan Road 172, Kaiyun, 661600, Yunnan, China
| | - Xinlong Liu
- Sugarcane Research Institute of Yunnan Academy of Agricultural Sciences, East Lingquan Road 172, Kaiyun, 661600, Yunnan, China
| | - Yangrui Li
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, East Daxue Road 172, Nanning, 530004, Guangxi, China
| | - Lihang Qiu
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, East Daxue Road 172, Nanning, 530004, Guangxi, China.
| | - Jianming Wu
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, East Daxue Road 172, Nanning, 530004, Guangxi, China.
| |
Collapse
|