1
|
Yang H, Li Y, Zhu W, Feng X, Xin H, Chen H, Zhang G, Zuo M, Cong B, Shi W. SAT1/ALOX15 Signaling Pathway Is Involved in Ferroptosis After Skeletal Muscle Contusion. Int J Mol Sci 2024; 25:11317. [PMID: 39457099 PMCID: PMC11508450 DOI: 10.3390/ijms252011317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Skeletal muscle contusion (SMC) is common in daily life and clinical practice, but the molecular mechanisms underlying SMC healing are unclear. Ferroptosis, a regulated cell death type, has gained attention recently. We observed iron overload in skeletal muscle following contusion through HE and Perls staining. Abnormal iron levels are highly likely to induce ferroptosis. Therefore, we aimed to explore whether iron overload after contusion leads to ferroptosis in skeletal muscle and the underlying mechanisms, which will help us understand the effects of iron abnormalities on skeletal muscle repair. Initially, we searched SMC gene expression profiles from the GEO database and used bioinformatics analysis to reveal ferroptosis occurrence. Then, we identified the gene sat1 plays an important role in this process. We further established a rat SMC model and treated rats with ferroptosis inhibitors (Ferrostatin-1, Deferoxamine). Our findings confirmed iron overload from SMC can lead to ferroptosis in rats. We also demonstrated that SAT1 can regulate ferroptosis by affecting ALOX15. Moreover, we constructed a ferroptosis L6 cell model and found that SAT1 knockdown significantly inhibited ALOX15 expression and reduced cellular lipid peroxidation. In conclusion, these results indicated ferroptosis can occur following SMC, and SAT1, as a key regulator, affects skeletal muscle injury healing by mediating high ALOX15 expression, which in turn regulates lipid peroxidation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bin Cong
- Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; (H.Y.); (Y.L.); (W.Z.); (X.F.); (H.X.); (H.C.); (G.Z.); (M.Z.)
| | - Weibo Shi
- Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; (H.Y.); (Y.L.); (W.Z.); (X.F.); (H.X.); (H.C.); (G.Z.); (M.Z.)
| |
Collapse
|
2
|
Mao J, Li HM, Huang Z. Comprehensive analysis of the expression and prognosis for cyclin-dependent protein kinase family in osteosarcoma. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-24. [PMID: 39357043 DOI: 10.1080/15257770.2024.2410957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND AND OBJECTIVE Cyclin-dependent protein kinases (CDKs) have been suggested as prospective therapeutic targets because they control processes vital to the survival and growth of cancer cells. However, research on the varied CDK expression profiles and prognostic factors in osteosarcoma is still lacking. METHODS The osteosarcoma microRNA (GSE65071) and gene expression profiles were retrieved from the Gene Expression Omnibus (GEO) database (GSE42352). A substantial variation in prognosis was discovered in CDKs using the TARGET database. Cytoscape was used to construct the miRNAs-CDKs network, and functional and pathway enrichment analyses were completed. It was looked at how immune checkpoint genes, m6A-related genes, and CDKs interact. RESULTS In patients with osteosarcoma compared to normal samples, CDK1-5, CDK18, CDK16, and CDK17 gene expression levels were considerably greater, whereas CDK7-9, CDK11B, CDK16, and CDK20 gene expression levels were significantly lower. Patients with osteosarcoma who had low CDK3 and 18 gene levels or high CDK6, 9 gene levels were predicted to have a favorable prognosis and a long-life expectancy. Immune checkpoint genes, m6A-related gene expression, and CDKs expression all showed some connection. Finally, a network of crucial CDKs and miRNAs was constructed. CONCLUSION According to our research, CDK3, 6, 9, and 18 have been identified as possible therapeutic targets for osteosarcoma, and CDKs may have a role in controlling m6A mutations in tumor cells as well as immune checkpoint regulation.
Collapse
Affiliation(s)
- Jianshui Mao
- Department of Orthopedics, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, P R China
| | - Hui-Min Li
- Department of Orthopedics, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, P R China
| | - Zhidan Huang
- Department of Orthopedics, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, P R China
| |
Collapse
|
3
|
Li HM, Che X, Tong Z, Wei W, Teng C. A Novel Role for Protein Tyrosine Phosphatase 1B in Alleviating Chondrocyte Senescence. ACS OMEGA 2024; 9:27017-27029. [PMID: 38947824 PMCID: PMC11209688 DOI: 10.1021/acsomega.3c10313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
Osteoarthritis (OA) is a kind of arthritis that impairs movement and causes joint discomfort. Recent research has demonstrated a connection between cellular senescence and the degenerative processes of OA chondrocytes. In yeast and human cells, protein tyrosine phosphatase 1B (PTP1B) knockdown prolongs longevity; however, the function of PTP1B in chondrocyte senescence has not been investigated. The goal of the current investigation was to evaluate PTP1B's contribution to human OA chondrocyte senescence. The function of PTP1B and cellular senescence in the onset of OA was investigated and confirmed by using a combination of bioinformatics techniques, clinical samples, and in vitro experimental procedures. The RNA sequencing data pertinent to the OA were obtained using the Gene Expression Omnibus database. Function enrichment analysis, protein-protein correlation analysis, the construction of the correlation regulatory network, and an investigation into possible connections between PTP1B and cellular senescence in OA were all carried out using various bioinformatic techniques. Compared with healthy cartilage, PTP1B expression was increased in OA cartilage. According to a Pearson correlation study, cellular senescence-related genes, including MAP2K1 and ABL1, were highly correlated with PTP1B expression levels in senescent chondrocytes. Furthermore, in vitro tests confirmed that PTP1B knockdown slowed cartilage degradation and prevented chondrocyte senescence in OA. In conclusion, we showed that PTP1B knockdown prevented the senescence of chondrocytes and prevented cartilage degradation in OA. These findings offer a fresh perspective on the pathophysiology of OA, opening up new avenues for OA clinical diagnosis and targeted treatment.
Collapse
Affiliation(s)
- Hui-Min Li
- Department
of Orthopedics, the Fourth Affiliated Hospital of School of Medicine,
and International School of Medicine, International Institutes of
Medicine, Zhejiang University, Yiwu, Zhejiang 322000, PR China
| | - Xianda Che
- Department
of Orthopedics, The Second Hospital of Shanxi
Medical University, Taiyuan, Shanxi 030001, PR China
| | - Zhicheng Tong
- Department
of Orthopedics, the Fourth Affiliated Hospital of School of Medicine,
and International School of Medicine, International Institutes of
Medicine, Zhejiang University, Yiwu, Zhejiang 322000, PR China
| | - Wei Wei
- Department
of Orthopedics, the Fourth Affiliated Hospital of School of Medicine,
and International School of Medicine, International Institutes of
Medicine, Zhejiang University, Yiwu, Zhejiang 322000, PR China
- Key
Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang
Province, Zhejiang University School of
Medicine, Hangzhou, Zhejiang 310000, PR China
| | - Chong Teng
- Department
of Orthopedics, the Fourth Affiliated Hospital of School of Medicine,
and International School of Medicine, International Institutes of
Medicine, Zhejiang University, Yiwu, Zhejiang 322000, PR China
| |
Collapse
|
4
|
Li HM, Wang C, Liu Q, Tong Z, Song B, Wei W, Teng C. Correlation between Mitochondria-Associated Endoplasmic Reticulum Membrane-Related Genes and Cellular Senescence-Related Genes in Osteoarthritis. ACS OMEGA 2024; 9:19169-19181. [PMID: 38708239 PMCID: PMC11064197 DOI: 10.1021/acsomega.3c10316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND The role of mitochondria-associated endoplasmic reticulum membrane (MAM) formation in the development of osteoarthritis (OA) is yet unclear. METHODS A mix of bioinformatics methods and in vitro experimental methodologies was used to study and corroborate the role of MAM-related genes and cellular senescence-related genes in the development of OA. The Gene Expression Omnibus database was used to obtain the microarray information that is relevant to the OA. Several bioinformatic methods were employed to carry out function enrichment analysis and protein-protein correlation analysis, build the correlation regulatory network, and investigate potential relationships between MAM-related genes and cellular senescence-related genes in OA. These methods also served to identify the MAM-related and OA-related genes (MAM-OARGs). RESULTS For the additional functional enrichment analysis, a total of 13 MAM-OARGs were detected. The correlation regulatory network was also created. Hub MAM-OARGs were shown to have a strong correlation with genes relevant to cellular senescence in OA. Results of in vitro experiments further demonstrated a positive correlation between MAM-OARGs (PTPN1 and ITPR1) and cellular senescence-related and OA-related genes. CONCLUSIONS As a result, our findings can offer new insights into the investigations of MAM-related genes and cellular senescence-related genes, which could be linked to the OA as well as brand-new potential treatment targets.
Collapse
Affiliation(s)
| | | | - Qixue Liu
- Department of Orthopedics,
The Fourth Affiliated Hospital of School of Medicine, and International
School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, PR China
| | - Zhicheng Tong
- Department of Orthopedics,
The Fourth Affiliated Hospital of School of Medicine, and International
School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, PR China
| | - Binghua Song
- Department of Orthopedics,
The Fourth Affiliated Hospital of School of Medicine, and International
School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, PR China
| | - Wei Wei
- Department of Orthopedics,
The Fourth Affiliated Hospital of School of Medicine, and International
School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, PR China
| | - Chong Teng
- Department of Orthopedics,
The Fourth Affiliated Hospital of School of Medicine, and International
School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, PR China
| |
Collapse
|
5
|
Liu W, Li HM, Bai G. Construction of a novel mRNA-miRNA-lncRNA/circRNA triple subnetwork associated with immunity and aging in intervertebral disc degeneration. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:1176-1195. [PMID: 38555595 DOI: 10.1080/15257770.2024.2334353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVE Intervertebral disk degeneration (IVDD) is one of the most common causes of low back pain. However, in the etiology of IVDD, the specific method by which nucleus pulposus (NP) cell senescence and the immune response induce disease is uncertain. METHODS Gene Expression Omnibus database was used to find differentially expressed genes (DEGs), differentially expressed miRNAs (DE miRNAs), differentially expressed lncRNAs (DE lncRNAs), and differentially expressed circRNAs (DE circRNAs). Functional enrichment analysis was performed through Enrichr database. Potential regulatory miRNAs, lncRNAs and circRNAs of mRNAs were predicted by ENCORI and circBank, respectively. RESULTS We identified 198 upregulated and 131 downregulated genes, 39 upregulated and 22 downregulated miRNAs, 2152 upregulated and 564 downregulated lncRNAs, and 352 upregulated and 279 downregulated circRNAs as DEGs, DE miRNAs, DE lncRNAs, DE circRNAs, respectively. Functional enrichment analysis revealed that they were significantly enriched in Toll-like receptor signaling route and the NF-kappa B signaling pathway. An mRNA-miRNA-lncRNA/circRNA network linked to the pathogenesis of NP cells in IVDD was constructed based on node degree and differential expression level. Eight immune-related DEGs (6 upregulated and 2 downregulated genes) and five aging-related DEGs (3 upregulated and 2 downregulated genes) were identified in the critical network. CONCLUSION We established a novel immune-related and aging-related triple regulatory network of mRNA-miRNA-lncRNA/circRNA ceRNA, among which all RNAs may be utilized as the pathogenesis biomarker of NP cells in IVDD.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopedics, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, P R China
| | - Hui-Min Li
- Department of Orthopedics, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, P R China
| | - Guangchao Bai
- Department of Orthopedics, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, P R China
| |
Collapse
|
6
|
Liu W, Li HM, Bai G. Integrated bioinformatics analysis of ferroptosis-related gene signature in inflammation and immunity in intervertebral disc degeneration. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 44:238-258. [PMID: 38531048 DOI: 10.1080/15257770.2024.2332403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Ferroptosis has recently been shown to play a significant role in the progression of intervertebral disk degeneration (IDD), although the underlying mechanism is still unknown. The objective of this work was to use stringent bioinformatic techniques to clarify the crucial roles played by genes associated with ferroptosis in the emergence of IDD. For additional study, the microarray data pertinent to the IDD were acquired from the Gene Expression Omnibus database. The ferroptosis-related and IDD-related genes (FIDDRGs) were identified using a variety of bioinformatic techniques, which were also used to carry out function enrichment analysis, protein-protein correlation analysis, build the correlation regulatory network, and examine the potential connections between ferroptosis and immune abnormalities and inflammatory responses in IDD. A total of 16 FIDDRGs were eliminated for the further function enrichment analysis, and 10 hub FIDDRGs were chosen to build the correlation regulatory network. Hub FIDDRGs were shown to be highly associated with M2 macrophages and hub inflammatory response-related genes in IDD. When seen as a whole, our findings can give fresh perspectives on the mechanistic studies of ferroptosis in the emergence of IDD and new prospective targets for the therapeutic approaches.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopedics, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, PR China
| | - Hui-Min Li
- Department of Orthopedics, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, PR China
| | - Guangchao Bai
- Department of Orthopedics, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, PR China
| |
Collapse
|