1
|
Alzahrani AA, Almajidi YQ, Jasim SA, Hjazi A, Olegovich BD, Alkhafaji AT, Abdulridui HA, Ahmed BA, Alawadi A, Alsalamy A. Getting to know ovarian cancer: Focusing on the effect of LncRNAs in this cancer and the effective signaling pathways. Pathol Res Pract 2024; 254:155084. [PMID: 38244434 DOI: 10.1016/j.prp.2023.155084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/22/2024]
Abstract
This article undertakes a comprehensive investigation of ovarian cancer, examining the complex nature of this challenging disease. The main focus is on understanding the role of long non-coding RNAs (lncRNAs) in the context of ovarian cancer (OC), and their regulatory functions in disease progression. Through extensive research, the article identifies specific lncRNAs that play significant roles in the intricate molecular processes of OC. Furthermore, the study examines the signaling pathways involved in the development of OC, providing a detailed comprehension of the underlying molecular mechanisms. By connecting lncRNA dynamics with signaling pathways, this exploration not only advances our understanding of ovarian cancer but also reveals potential targets for therapeutic interventions. The findings open up opportunities for targeted treatments, highlighting the importance of personalized approaches in addressing this complex disease and driving progress in ovarian cancer research and treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Saudi Arabia
| | - Bokov Dmitry Olegovich
- Institute of Pharmacy, Moscow Medical University, Moscow, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | | | | | - Batool Ali Ahmed
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Iraq
| |
Collapse
|
2
|
Xiao L, Shi XY, Li ZL, Li M, Zhang MM, Yan SJ, Wei ZL. Downregulation of LINC01508 contributes to cisplatin resistance in ovarian cancer via the regulation of the Hippo-YAP pathway. J Gynecol Oncol 2021; 32:e77. [PMID: 34132072 PMCID: PMC8362814 DOI: 10.3802/jgo.2021.32.e77] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/07/2021] [Accepted: 06/05/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Some long non-coding RNAs (lncRNAs) have been found to contribute to cisplatin resistance. Here, we identified a novel lncRNA that was downregulated in cisplatin-resistant to ovarian cancer (OC) cells and aimed to examine the contribution of LINC01508 to cisplatin resistance in OC cells. METHODS Differences in the lncRNA expression profile between OV2008 and C13K cells were assessed by lncRNA expression microarray. The expression of LINC01508 in ovarian epithelial cells, four OC cells, and OC, benign ovary tumor and normal ovary, cisplatin-resistant and non-resistant OC specimens were evaluated by quantitative real-time polymerase chain reaction (qPCR). The role of LINC01508 in OC cisplatin-resistant was evaluated by cell counting kit-8 (CCK-8), flow cytometry, colony formation, wound healing, Transwell, and tumor growth inhibition study in vivo. The clinical associations of LINC01508 in OC were evaluated using correlation analysis. The effects of verteporfin (VP) on cisplatin were explored to reveal the function of the hippo-YAP pathway on the cisplatin tolerance of C13K. RESULTS LINC01508 was downregulated in cisplatin-resistant OC cells and platinum-resistant OC tissue (p<0.01). LINC01508 downregulation was correlated with tumor size, residual tumor, and platinum resistance. The overexpression of LINC01508 improves in vitro and in vivo sensitivity to cisplatin while predicts the poor overall survival which need further follow-up research. The increased level of LINC01508 could suppress the cisplatin resistance of OC cells through the inhibition of the hippo-YAP pathway. CONCLUSIONS The study proposes that dysregulation of LINC01508 expression results in resistance of OC to cisplatin through the inhibition of the hippo-YAP pathway.
Collapse
Affiliation(s)
- Lan Xiao
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xiao Yan Shi
- Central Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Lian Li
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Min Li
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Min Min Zhang
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Shi Jie Yan
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Zhao Lian Wei
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China.
| |
Collapse
|
3
|
Jeng KS, Sheen IS, Lin SS, Leu CM, Chang CF. The Role of Endoglin in Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22063208. [PMID: 33809908 PMCID: PMC8004096 DOI: 10.3390/ijms22063208] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/31/2022] Open
Abstract
Endoglin (CD105) is a type-1 integral transmembrane glycoprotein and coreceptor for transforming growth factor-β (TGF-β) ligands. The endoglin/TGF-β signaling pathway regulates hemostasis, cell proliferation/migration, extracellular matrix (ECM) synthesis and angiogenesis. Angiogenesis contributes to early progression, invasion, postoperative recurrence, and metastasis in hepatocellular carcinoma (HCC), one of the most widespread malignancies globally. Endoglin is overexpressed in newly formed HCC microvessels. It increases microvessel density in cirrhotic and regenerative HCC nodules. In addition, circulating endoglin is present in HCC patients, suggesting potential for use as a diagnostic or prognostic factor. HCC angiogenesis is dynamic and endoglin expression varies by stage. TRC105 (carotuximab) is an antibody against endoglin, and three of its clinical trials were related to liver diseases. A partial response was achieved when combining TRC105 with sorafenib. Although antiangiogenic therapy still carries some risks, combination therapy with endoglin inhibitors or other targeted therapies holds promise.
Collapse
Affiliation(s)
- Kuo-Shyang Jeng
- Division of General Surgery, Far Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-S.J.); (S.-S.L.)
| | - I-Shyan Sheen
- Department of Hepatogastroenterology, Chang-Gung Memorial Hospital, Linkou Medical Center, Chang-Gung University, Taoyuan city 33305, Taiwan;
| | - Shu-Sheng Lin
- Division of General Surgery, Far Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-S.J.); (S.-S.L.)
| | - Chuen-Miin Leu
- Institute of Microbiology and Immunology, National Yang-Ming Chiao-Tung University, Taipei city 11221, Taiwan;
| | - Chiung-Fang Chang
- Division of General Surgery, Far Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-S.J.); (S.-S.L.)
- Correspondence: ; Tel.: +886-2-7728-4564
| |
Collapse
|
4
|
Oncul S, Amero P, Rodriguez-Aguayo C, Calin GA, Sood AK, Lopez-Berestein G. Long non-coding RNAs in ovarian cancer: expression profile and functional spectrum. RNA Biol 2020; 17:1523-1534. [PMID: 31847695 PMCID: PMC7567512 DOI: 10.1080/15476286.2019.1702283] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), initially recognized as byproducts of the transcription process, have been proven to play crucial modulatory roles in preserving overall homoeostasis of cells and tissues. Furthermore, aberrant levels of these transcripts have been shown to contribute many diseases, including cancer. Among these, many aspects of ovarian cancer biology have been found to be regulated by lncRNAs, including cancer initiation, progression and dissemination. In this review, we summarize recent studies to highlight the various roles of lncRNAs in ovary in normal and pathological conditions, immune system, diagnosis, prognosis, and therapy. We address lncRNAs that have been extensively studied in ovarian cancer and their contribution to cellular dynamics.
Collapse
Affiliation(s)
- Selin Oncul
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biochemistry, Faculty of Pharmacy, The University of Hacettepe, Ankara, Turkey
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Sharbatoghli M, Vafaei S, Aboulkheyr Es H, Asadi-Lari M, Totonchi M, Madjd Z. Prediction of the treatment response in ovarian cancer: a ctDNA approach. J Ovarian Res 2020; 13:124. [PMID: 33076944 PMCID: PMC7574472 DOI: 10.1186/s13048-020-00729-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is the eighth most commonly occurring cancer in women. Clinically, the limitation of conventional screening and monitoring approaches inhibits high throughput analysis of the tumor molecular markers toward prediction of treatment response. Recently, analysis of liquid biopsies including circulating tumor DNA (ctDNA) open new way toward cancer diagnosis and treatment in a personalized manner in various types of solid tumors. In the case of ovarian carcinoma, growing pre-clinical and clinical studies underscored promising application of ctDNA in diagnosis, prognosis, and prediction of treatment response. In this review, we accumulate and highlight recent molecular findings of ctDNA analysis and its associations with treatment response and patient outcome. Additionally, we discussed the potential application of ctDNA in the personalized treatment of ovarian carcinoma. ctDNA-monitoring usage during the ovarian cancer treatments procedures.
Collapse
Affiliation(s)
- Mina Sharbatoghli
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Somayeh Vafaei
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Asadi-Lari
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
TRANSLATION MEDICINE, BIOMEDICINE AND MEDICAL BIOTECHNOLOGY: THE TRANSITION TO PERSONALIZED MEDICINE. BIOTECHNOLOGIA ACTA 2020. [DOI: 10.15407/biotech13.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Xue C, Shao S, Yan Y, Yang S, Bai S, Wu Y, Zhang J, Liu R, Ma H, Chai L, Zhang X, Ren J. Association between G-protein coupled receptor 4 expression and microvessel density, clinicopathological characteristics and survival in hepatocellular carcinoma. Oncol Lett 2020; 19:2609-2620. [PMID: 32218811 PMCID: PMC7068660 DOI: 10.3892/ol.2020.11366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/14/2019] [Indexed: 12/27/2022] Open
Abstract
G-protein coupled receptor 4 (GPR4) acts as a proton-sensing receptor and plays a role in regulating angiogenesis. Endoglin/CD105 is a marker of cell proliferation in vascular endothelial cells, particularly in tumor vasculature cells. Although there have been several studies investigating angiogenesis in hepatocellular carcinoma (HCC), none have investigated the association between GPR4 and microvessel density (MVD)-CD105 in this type of cancer. In the present study, CD105 and GPR4 were found to be expressed in benign and malignant liver tissues by immunofluorescence staining and laser confocal microscopy. Compared with levels in benign tissues, CD105 and GPR4 were highly expressed in neoplastic tissues. Furthermore, the average fluorescence intensity of GPR4 and MVD-CD105 was positively correlated. GPR4 and CD105 were found to be co-localized in the vascular endothelium in tumor tissues. Furthermore, the expression of GPR4 was higher in the marginal region of tumor tissues compared with the central region. These findings suggest that the expression of GPR4 in tumor microvessels in HCC may be implicated in tumor angiogenesis and development. Furthermore, the association between the expression of GPR4 and the clinicopathological features of patients with HCC further suggests a role for GPR4 in tumor angiogenesis and growth. Overall, these results suggest the potential of GPR4 as a prognostic factor and as an antiangiogenic target in patients with HCC.
Collapse
Affiliation(s)
- Chaofan Xue
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shuai Shao
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yanli Yan
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Si Yang
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shuheng Bai
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yinying Wu
- Department of Chemotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jiangzhou Zhang
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Rui Liu
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hailin Ma
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Linyan Chai
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaozhi Zhang
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Juan Ren
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
8
|
Association of expression of p53, livin, ERCC1, BRCA1 and PARP1 in epithelial ovarian cancer tissue with drug resistance and prognosis. Pathol Res Pract 2020; 216:152794. [DOI: 10.1016/j.prp.2019.152794] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/28/2019] [Accepted: 12/12/2019] [Indexed: 01/01/2023]
|
9
|
Liu S, Zou B, Tian T, Luo X, Mao B, Zhang X, Lei H. Overexpression of the lncRNA FER1L4 inhibits paclitaxel tolerance of ovarian cancer cells via the regulation of the MAPK signaling pathway. J Cell Biochem 2019; 120:7581-7589. [PMID: 30444026 DOI: 10.1002/jcb.28032] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/15/2018] [Indexed: 01/24/2023]
Abstract
To determine how the lncRNA FER1L4 in ovarian cancer cells influences paclitaxel (PTX) resistance, we examined the expression level of FER1L4 in human ovarian epithelial cell lines IOSE80 and HOSEpiC and human ovarian cancer cell lines OVCAR-3, Caov-3, and SKOV3 through RNA isolation and quantitative polymerase chain reaction (qRT-PCR). SKOV3 cell lines were treated with PTX. The cell survival rate and apoptosis rate of SKOV3 and SKOV3-PR at different PTX dose levels were evaluated. Next, qRT-PCR was performed to detect the expression of FER1L4 in SKOV3 and SKOV3-PR cell lines. SKOV3-PR cell lines were transfected with pcDNA3.1 as the control group (SKOV3-PR/pcDNA3.1) or pcDNA3.1-FER1L4 to upregulate the expression level of FER1L4 (SKOV3-PR/pcDNA3.1-FER1L4). The level of cell survival, apoptosis, and colony formation were compared between the two groups using MTT, flow cytometry analysis, and colony formation assay. To reveal the molecular mechanism, we measured the relative protein phosphorylation level of ERK and MAPK in SKOV3, SKOV3-PR, SKOV3-PR/pcDNA3.1, and SKOV3-PR/pcDNA3.1-FER1L4 groups using an enzyme-linked immunosorbent assay. The effects of SB203580 (a p38 MAPK inhibitor) on PTX were also investigated to reveal the function of the MAPK pathway on the PTX tolerance of SKOV3. In comparison with normal ovarian epithelial cells, FER1L4 was downregulated. The FER1L4 level was decreased in human ovarian cancer cells with drug resistance than in common ovarian cancer cells. The upregulation of FER1L4 could promote the PTX sensitivity of ovarian cancer cells. The increased level of FER1L4 could suppress the PTX resistance of ovarian cancer cells through the inhibition of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Siwei Liu
- Department of Obstetrics & Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Bingyu Zou
- Department of Obstetrics & Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Tian Tian
- Department of Obstetrics & Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Xiaohui Luo
- Department of Obstetrics & Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Banyun Mao
- Department of Obstetrics & Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Xun Zhang
- Department of Obstetrics & Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Huajiang Lei
- Department of Obstetrics & Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Up-regulation of miR-383-5p suppresses proliferation and enhances chemosensitivity in ovarian cancer cells by targeting TRIM27. Biomed Pharmacother 2019; 109:595-601. [DOI: 10.1016/j.biopha.2018.10.148] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 09/03/2018] [Accepted: 10/24/2018] [Indexed: 11/21/2022] Open
|
11
|
Wang J, Qian Y, Gao M. Overexpression of PDK4 is associated with cell proliferation, drug resistance and poor prognosis in ovarian cancer. Cancer Manag Res 2018; 11:251-262. [PMID: 30636897 PMCID: PMC6307676 DOI: 10.2147/cmar.s185015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Ovarian cancer is a major type of gynecological malignancy which characterized by the chemoresistance, heterogeneity and highly metastasis. However, the mechanism underlying the progression of ovarian cancer remains elusive. Pyruvate dehydrogenase kinase family plays critical roles in tumorigenesis, and PDK4 has been demonstrated to be an oncogene in many types of cancers. The aim of this study was to identify the role of PDK4 in ovarian cancer. Methods We explored the PDK4 expression according to the public database containing patients with different effect of chemotherapy. Cell proliferation and invasion assays were used to determine the function of PDK4. Mice xenograft experiment was conducted to test the pro-tumorigenesis function of PDK4 in vivo. Cell apoptosis under treatment of chemo drugs was detected by flow cytometry and TUNEL analysis. Spheroid formation assay and CD133+ cell population were used to determine the PDK4-induced stem-like traits. Immunohistochemical staining was performed to test the expression of PDK4 in ovarian cancer tissues, and Kaplan– Meier curve with log-rank test was performed to determine the association between PDK4 expression and ovarian cancer patients’ prognosis. Results Overexpression of PDK4 markedly promoted cell proliferation, invasion and tumor growth in vivo. Furthermore, PDK4 confers cell resistant to chemotherapy-induced apoptosis. Mechanically, we demonstrated that PDK4 induced stem-like traits. Meanwhile, PDK4 expression was significantly evaluated in ovarian cancer tissues compared to that in adjacent non-cancer tissues, and high expression of PDK4 was associated with poor overall survival and progression-free survival of ovarian cancer patients. Conclusion These results identify a novel role of PDK4 in regulating cell stem-like trait, which directly enhances the cell proliferation, invasion and chemoresistance in ovarian cancer, and targeting PDK4 could be a potential approach for ovarian cancer treatments.
Collapse
Affiliation(s)
- Jinghao Wang
- Department of Gynecology and Obstetrics, The Second Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yu Qian
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Meiyan Gao
- Department of Biotherapy, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, China,
| |
Collapse
|
12
|
microRNA-488 inhibits chemoresistance of ovarian cancer cells by targeting Six1 and mitochondrial function. Oncotarget 2017; 8:80981-80993. [PMID: 29113360 PMCID: PMC5655255 DOI: 10.18632/oncotarget.20941] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of miR-488 has been implicated in several human cancers. In this study, we aim to explore its expression and biological function in ovarian cancers. We found miR-488 expression was downregulated in ovarian cancer tissues. Using CCK8 and colony formation assay showed that miR-488 inhibited SKOV3 cell proliferation and colony formation, with downregulation of cyclin D1 and cyclin E protein. While miR-488 inhibitor promoted OVCAR3 cell growth and colony formation. Cell viability and Annexin V/PI staining showed that miR-488 downregulated cell survival and increased apoptosis rate when treated with cisplatin and paclitaxel. Further experiments using MitoTracker and JC-1 staining indicated that miR-488 regulated mitochondrial fission/fusion balance and inhibited mitochondrial membrane potential, with p-Drp1, Drp1 and Fis1 downregulation. Luciferase reporter assay showed that Six1 is a target of miR-488. We also found a negative association between Six1 and miR-488 in ovarian cancer tissues. In addition, Six1 overexpression induced mitochondrial fission and increased mitochondrial potential, with upregulation of Drp1 signaling. Six1 depletion showed the opposite effects. Restoration of Six1 in SKOV3 cells rescued decreased p-Drp1 and Drp1 expression induced by miR-488 mimic. Six1 plasmid also reversed the effects of miR-488 on chemoresistance and apoptosis. Taken together, the present study showed that, by targeting Six1, miR-488 inhibits chemoresistance of ovarian cancer cells through regulation of mitochondrial function.
Collapse
|
13
|
Hou R, Jiang L, Yang Z, Wang S, Liu Q. Rab14 is overexpressed in ovarian cancers and promotes ovarian cancer proliferation through Wnt pathway. Tumour Biol 2016; 37:16005–16013. [PMID: 27718127 DOI: 10.1007/s13277-016-5420-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 09/23/2016] [Indexed: 01/01/2023] Open
Abstract
The Rab GTPase family protein Rab14 has been implicated in cancer development. However, its clinical significance in ovarian cancers and its biological effects have not been examined. The present study aims to examine the clinical significance, biological roles, and molecular mechanism of Rab14 in ovarian cancer progression. We examined expression pattern of Rab14 in 122 cases of ovarian cancer specimens using immunohistochemistry and found Rab14 overexpression correlated with FIGO stage (p = 0.0041). We depleted Rab14 in SKOV3 cells using siRNA and overexpressed Rab14 in SW626 cells. Knockdown of Rab14 inhibited cell growth and invasion while its overexpression facilitated cell growth and invasion. In addition, Rab14 overexpression increased paclitaxel resistance in SW626 cells while its depletion reduced drug resistance. Then, we investigated the role of Rab14 in the regulation of WNT/β-catenin signaling, demonstrating Rab14 overexpression regulated GSK3β phosphorylation and nuclear β-catenin accumulation. Rab14 depletion inhibited while its overexpression enhanced TCF transcriptional activity with corresponding change of Wnt target genes including MMP7 and c-myc. Wnt inhibitor abolished the effect of Rab14 on cell proliferation and Wnt target genes. In conclusion, the present study demonstrated that Rab14 promotes aggressiveness of ovarian cancer cell through, at least partly, Wnt signaling pathway.
Collapse
Affiliation(s)
- Rui Hou
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Luo Jiang
- Department of Ultrasonography, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhuo Yang
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shizhuo Wang
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qifang Liu
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
14
|
Zheng H, Lu R, Xie S, Wen X, Wang H, Gao X, Guo L. Human leukocyte antigen-E alleles and expression in patients with serous ovarian cancer. Cancer Sci 2015; 106:522-8. [PMID: 25711417 PMCID: PMC4452152 DOI: 10.1111/cas.12641] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 01/12/2023] Open
Abstract
Human leukocyte antigen-E (HLA-E) is one of the most extensively studied non-classical MHC class I molecules that is almost non-polymorphic. Only two alleles (HLA-E*0101 and HLA-E*0103) are found in worldwide populations, and suggested to be functional differences between these variants. The HLA-E molecule can contribute to the escape of cancer cells from host immune surveillance. However, it is still unknown whether HLA-E gene polymorphisms might play a role in cancer immune escape. To explore the association between HLA-E alleles and the susceptibility to serous ovarian cancer (SOC), 85 primary SOC patients and 100 healthy women were enrolled. Here, we indicated that high frequency of HLA-E*0103 allele existed in SOC patients by the allele-specific quantitative real-time PCR method. The levels of HLA-E protein expression in SOC patients with the HLA-E*0103 allele were higher than those with the HLA-E*0101 allele using immunohistochemistry analysis. The cell surface expression and functional differences between the two alleles were verified by K562 cells transfected with HLA-E*0101 or HLA-E*0103 allelic heavy chains. The HLA-E*0103 allele made the transfer of the HLA-E molecule to the cell surface easier, and HLA-E/peptides complex more stable. These differences ultimately influenced the function of natural killer cells, showing that the cells transfected with HLA-E*0103 allele inhibited natural killer cells to lysis. This study reveals a novel mechanism regarding the susceptibility to SOC, which is correlated with the HLA-E*0103 allele.
Collapse
Affiliation(s)
- Hui Zheng
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan UniversityShanghai, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Renquan Lu
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan UniversityShanghai, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Suhong Xie
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan UniversityShanghai, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Xuemei Wen
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Hongling Wang
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Xiang Gao
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan UniversityShanghai, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Lin Guo
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan UniversityShanghai, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, China
| |
Collapse
|
15
|
Isaksson HS, Sorbe B, Nilsson TK. Whole genome expression profiling of blood cells in ovarian cancer patients -prognostic impact of the CYP1B1, MTSS1, NCALD, and NOP14. Oncotarget 2015; 5:4040-9. [PMID: 24961659 PMCID: PMC4147304 DOI: 10.18632/oncotarget.1938] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer patients with different tumor stages and cell differentiation might be distinguished from each other by gene expression profiles in whole blood cell mRNA by the Affymetrix Human Gene 1.0 ST Array. We also examined if there is any association with other clinical variables, response to therapy, and residual tumor burden after surgery. Patients were divided into two groups, one with poor prognosis, advanced stage and poorly differentiated tumors (n = 22), and one group with good prognosis, early stage and well- to medium differentiated tumors (n = 11). Six genes were found to be differentially expressed: the PDIA3, LYAR, NOP14, NCALD and MTSS1 genes were down-regulated and the CYP1B1 gene expression was up-regulated in the poor prognosis group, all with p value <0.05, adjusted for mass comparison. In survival analyses, CYP1B1, MTSS1, NCALD and NOP14 remained significantly different (p<0.05). Patient groups did not differ in any transcript related to acute phase or immune responses. This minimal gene expression signature of prognostic ovarian cancer-related genes opens up an avenue for more practicable monitoring of ovarian cancer patients by simple peripheral blood tests, which may evolve into a tool to guide selection of curative and postoperative supportive therapies.
Collapse
Affiliation(s)
| | | | - Torbjörn K Nilsson
- Department of Medical Biosciences/Clinical Chemistry, Umeå University,Umeå, Sweden
| |
Collapse
|
16
|
Lopez J, Banerjee S, Kaye SB. New developments in the treatment of ovarian cancer--future perspectives. Ann Oncol 2014; 24 Suppl 10:x69-x76. [PMID: 24265409 DOI: 10.1093/annonc/mdt475] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Over the past 40 years, the treatment of ovarian cancer has undoubtedly improved as a result of better multi-modality care and platinum-based chemotherapy. More recently, the introduction of anti-angiogenic therapy, PARP inhibitors and a weekly regimen for paclitaxel indicate that results are likely to improve further. However, major challenges remain and these will be reviewed in this article. We assess key issues in anti-angiogenic treatment including potential ways for addressing resistance; we review the current studies of PARP inhibitor treatment, which shows most promise in patients with germline BRCA mutations; we describe the potential for folate-receptor-directed therapy, given the high level of FR expression in ovarian cancer and we highlight the potential for molecular targeted therapy, focusing on specific subgroups of the disease with targets such as the PI3 K/AKT and RAS/RAF/MEK pathways and the ErbB family of oncogenes. We anticipate that progress will accelerate with a better understanding of the molecular pathogenesis of the various subtypes of ovarian cancer, leading to an increasingly personalized approach to treating women with this disease.
Collapse
Affiliation(s)
- J Lopez
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, Sutton
| | | | | |
Collapse
|
17
|
Interferon regulatory factor 1 is an independent predictor of platinum resistance and survival in high-grade serous ovarian carcinoma. Gynecol Oncol 2014; 134:591-8. [PMID: 24995581 DOI: 10.1016/j.ygyno.2014.06.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 01/01/2023]
Abstract
OBJECTIVE High-grade serous ovarian cancer (HGSOC) that is resistant to platinum-based chemotherapy has a particularly poor prognosis. Response to platinum has both prognostic survival value and dictates secondary treatment strategies. Using transcriptome analysis, we sought to identify differentially expressed genes/pathways based on a tumor's platinum response for discovering novel predictive biomarkers. METHODS Seven primary HGSOC tumor samples, representing two extremes of platinum sensitivity/timing of disease recurrence, were analyzed by RNA-Seq, Ingenuity Pathways Analysis (IPA) and Upstream Regulator Analysis (URA), and used to explore differentially expressed genes and prevalent molecular and cellular processes. Progression-free and overall survival (PFS, OS) was estimated using the Kaplan-Meier method in two different sample sets including GEO and TCGA data sets. RESULTS IPA and URA highlighted an IRF1-driven transcriptional program (P=0.0017; z-score of 3.091) in the platinum sensitive improved PFS group. QRT-PCR analysis of 31 HGSOC samples demonstrated a significant difference in PFS between low and high IRF1 expression groups (P=0.048) and between groups that were platinum sensitive versus not (P=0.016). In a larger validation data set, increased levels of IRF1 were associated with both increased PFS (P=0.043) and OS (P=0.019) and the effect on OS was independent of debulking status (optimal debulking, P=0.025; suboptimal, P=0.041). CONCLUSION Transcriptome analysis identifies IRF1, a transcription factor that functions both in immune regulation and as a tumor suppressor, as being associated with platinum sensitivity and an independent predictor of both PFS and OS in HGSOC.
Collapse
|
18
|
Xie C, Han Y, Fu L, Li Q, Qiu X, Wang E. Overexpression of CARMA3 is associated with advanced tumor stage, cell cycle progression, and cisplatin resistance in human epithelial ovarian cancer. Tumour Biol 2014; 35:7957-64. [PMID: 24833094 DOI: 10.1007/s13277-014-2070-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/06/2014] [Indexed: 11/24/2022] Open
Abstract
CARD recruited membrane associated protein 3 (CARMA3) overexpression has been found in several human cancers. However, its expression pattern and biological roles in human ovarian cancers are not clear. In this study, we examined the expression pattern of CARMA3 in 101 ovarian cancer specimens. We found that 52 (51.5 %) showed CARMA3 overexpression. CARMA3 overexpression positively correlated with tumor histology and advanced FIGO stage. CARMA3 depletion in ovarian cancer cell lines A2780 and HO8910 inhibited ovarian cancer cell proliferation and blocked cell cycle progression. CARMA3 depletion also sensitized ovarian cancer cells to cisplatin-induced cytotoxicity. In addition, Western blot showed that CARMA3 depletion downregulated cyclin D1, cyclin E, and Bcl-2 levels. In conclusion, our data provides evidence that CARMA3 is overexpressed in ovarian cancers and associated with advanced stage. CARMA3 regulates the ovarian cancer cell proliferation, cell cycle progression, and chemoresistance.
Collapse
Affiliation(s)
- Chengyao Xie
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Bei'er Road 92, Heping District, Shenyang, Liaoning Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
19
|
Expression and biological role of cytoglobin in human ovarian cancer. Tumour Biol 2014; 35:6933-9. [PMID: 24737588 DOI: 10.1007/s13277-014-1941-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 04/03/2014] [Indexed: 01/01/2023] Open
Abstract
Loss of cytoglobin is found to be involved in the progression of several human cancers. However, its expression pattern and biological roles in human ovarian cancers are not clear. In this study, we examined cytoglobin expression in 118 archived ovarian cancer specimens using immunohistochemistry. A total of 72 specimens (61.0 %) showed cytoglobin downregulation. cytoglobin downregulation positively correlated with advanced FIGO stage and tumor grade. Cytoglobin plasmid transfection was performed in SKOV3 cell line and siRNA knockdown was carried out in SW626 cell line. MTT, colony formation assay and matrigel invasion assay were carried out to assess the role of cytoglobin on cell proliferation and invasion. Cytoglobin overexpression inhibited cell growth, invasion, cell cycle progression and cyclin D1 expression in SKOV3 cell line and its depletion promoted cell proliferation, invasion, cell cycle transition and cyclin D1 expression. In conclusion, cytoglobin is downregulated in ovarian cancers and associated with advanced stage. Our data provides evidence that cytoglobin regulates the ovarian cancer cell proliferation and invasion.
Collapse
|
20
|
Chekerov R, Braicu I, Castillo-Tong DC, Richter R, Cadron I, Mahner S, Woelber L, Marth C, Van Gorp T, Speiser P, Zeillinger R, Vergote I, Sehouli J. Outcome and clinical management of 275 patients with advanced ovarian cancer International Federation of Obstetrics and Gynecology II to IV inside the European Ovarian Cancer Translational Research Consortium-OVCAD. Int J Gynecol Cancer 2013; 23:268-75. [PMID: 23358178 DOI: 10.1097/igc.0b013e31827de6b9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION The Sixth Framework Program European Union project OVCAD, "Ovarian Cancer-Diagnosis of a Silent Killer," aimed to investigate new predictors for early detection of minimal residual disease in epithelial ovarian cancer (EOC). Here we present the main pathologic, surgical, and chemotherapy characteristics of the OVCAD patient cohort. METHODS Between February 2005 and December 2008, 5 European gynecologic cancer centers (WP2 group) enrolled prospective 275 consecutive patients with EOC into this translational study. Inclusion criteria were as follows: advanced International Federation of Obstetrics and Gynecology II to IV stage, cytoreductive surgery, platinum-based chemotherapy, and collected tumor samples. WP2 coordinated the implementation, screening, and recruiting of the patients and tumor samples into a Web-based data bank according established standard operating procedures. RESULTS Median age at the time of diagnosis was 58 years. Most patients presented advanced high-grade EOC: International Federation of Obstetrics and Gynecology III/IV (94.5%), grade 2/3 (96%), serous histology (86.2%), ascites (76%), peritoneal carcinomatosis (67.6%), and lymph node involvement (52%). The most common surgical procedures were omentectomy (92.4%), bilateral salpingo-oophorectomy (90.9%), hysterectomy (77.3%), pelvic (69.5%) and paraaortic (66.9%) lymphadenectomy, and large (37.7%) or small bowel resection (13.4%). Patients were treated commonly with platinum-based therapy (98.2%). The macroscopic cytoreduction rate was 68.4%. After a median follow-up of 37 months, 70 patients (25.5%) developed a platinum-resistant recurrence. Biological materials such as tumor and paraffin tissue, ascites, and blood samples were collected consecutively. CONCLUSIONS The implementation of the OVCAD cohort demonstrated the feasibility and advantages of an open, prospective, and multicenter recruitment inside a translational research study. Essential was the predefinition of all inclusion criteria, standard operating procedures, and Web-based software, which enabled the prospective patient recruitment and tissue sampling, minimizing institutional bias and variability in the quality of the biological samples. The translational concept of the OVCAD study does not conflict with the state-of-the-art surgical and chemotherapy management and guaranteed an improved outcome of patients with EOC.
Collapse
Affiliation(s)
- Radoslav Chekerov
- Department of Gynecology, European Competence Centre for Ovarian Cancer, Charité University Hospital, Campus Virchow, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Carbotti G, Orengo AM, Mezzanzanica D, Bagnoli M, Brizzolara A, Emionite L, Puppo A, Centurioni MG, Bruzzone M, Marroni P, Rossello A, Canevari S, Ferrini S, Fabbi M. Activated leukocyte cell adhesion molecule soluble form: a potential biomarker of epithelial ovarian cancer is increased in type II tumors. Int J Cancer 2012; 132:2597-605. [PMID: 23169448 DOI: 10.1002/ijc.27948] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 11/07/2012] [Indexed: 02/06/2023]
Abstract
Activated leukocyte cell adhesion molecule (ALCAM) is involved in cell-cell interactions in cancer. Shedding of its ectodomain by the metalloprotease ADAM17/TACE generates a soluble form (sALCAM). Here, we show that serum sALCAM levels were significantly higher in epithelial ovarian cancer (EOC) (p < 0.005) than in controls. The performance of sALCAM as classifier, tested by receiver operating characteristic curve, resulted in an area under the curve (AUC) of 0.8067. Serum sALCAM levels showed direct correlation with Carbohydrate Antigen-125 (CA125/MUC16). Moreover, significantly higher levels were found in type II tumors, even in stage I/II, suggesting that elevated sALCAM is an early feature of aggressive EOC. In addition, sALCAM levels were higher in ascites than in sera, suggesting local processing of ALCAM in the peritoneal cavity. In immunodeficient mice, intraperitoneally implanted with a human EOC cell line, human sALCAM progressively increased in serum and was even higher in the ascites. The biochemical characterization of the sALCAM in EOC sera and ascites, showed two predominant forms of approximately 95 and 65 kDa but no EOC-specific isoform. In addition, full-length transmembrane ALCAM but no soluble form was detected in tumor-derived exosomes found in ascites. Finally, in vitro invasion assays showed that inhibition of ADAM17/TACE activity decreased EOC invasive properties, while opposite effects were mediated by a sALCAM-Fc chimera and by an antibody interfering with ALCAM/ALCAM interactions. Altogether these data suggest that sALCAM is a marker of EOC, which correlates with more aggressive type II tumors, and that ADAM17/TACE activity and sALCAM itself mediate enhanced invasiveness.
Collapse
Affiliation(s)
- Grazia Carbotti
- Department of Integrated Oncological Therapies, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fang Y, Li Z, Wang X, Zhang S. Expression and biological role of δ-catenin in human ovarian cancer. J Cancer Res Clin Oncol 2012; 138:1769-76. [PMID: 22699932 DOI: 10.1007/s00432-012-1257-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 05/23/2012] [Indexed: 11/25/2022]
Abstract
OBJECTIVE δ-Catenin is found to be involved in the progression of several human cancers. However, its expression pattern and biological roles in human ovarian cancers are not clear. In this study, we examined the expression pattern of δ-catenin in 149 ovarian cancer specimens. We also depleted and overexpressed δ-catenin expression in ovarian cancer cell lines and investigated its role in cell proliferation and invasion. METHODS δ-Catenin expression was analyzed in 149 archived ovarian cancer specimens using immunohistochemistry. siRNA knockdown and plasmid transfection were performed in SKOV3, SW626, and OVCAR3 cell lines. MTT, colony formation assay, soft agar colony assay, and matrigel invasion assay were carried out to assess the role of δ-catenin in cell proliferation and invasion. We also performed cell cycle analysis in δ-catenin depleted and overexpressed cells. In addition, we examined the level of several cell cycle-related molecules using Western blot. RESULTS Of the 149 patients in the study, 104 (69.7 %) showed δ-catenin overexpression. δ-catenin overexpression positively correlated with advanced FIGO stage. δ-Catenin depletion in ovarian cancer cell lines inhibited ovarian cancer cell proliferation and invasion. Depletion of δ-catenin also blocked cell cycle progression and downregulated cyclin D1 expression in ovarian cancer cells. Overexpression of δ-catenin enhanced cell proliferation, invasion, and upregulated cyclinD1 expression. CONCLUSIONS δ-Catenin is overexpressed in ovarian cancers and associated with advanced stage. Our data provide evidence that δ-catenin regulates the ovarian cancer cell proliferation, invasion, and cell cycle. δ-Catenin thus has potential as a therapeutic target.
Collapse
Affiliation(s)
- Yuanyuan Fang
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, [corrected] 36 Sanhao Street, Shenyang, 110004 Liaoning, People's Republic of China.
| | | | | | | |
Collapse
|
23
|
Skirnisdottir I, Mayrhofer M, Rydåker M, Åkerud H, Isaksson A. Loss-of-heterozygosity on chromosome 19q in early-stage serous ovarian cancer is associated with recurrent disease. BMC Cancer 2012; 12:407. [PMID: 22967087 PMCID: PMC3495882 DOI: 10.1186/1471-2407-12-407] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 09/06/2012] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Ovarian cancer is a heterogeneous disease and prognosis for apparently similar cases of ovarian cancer varies. Recurrence of the disease in early stage (FIGO-stages I-II) serous ovarian cancer results in survival that is comparable to those with recurrent advanced-stage disease. The aim of this study was to investigate if there are specific genomic aberrations that may explain recurrence and clinical outcome. METHODS Fifty-one women with early stage serous ovarian cancer were included in the study. DNA was extracted from formalin fixed samples containing tumor cells from ovarian tumors. Tumor samples from thirty-seven patients were analysed for allele-specific copy numbers using OncoScan single nucleotide polymorphism arrays from Affymetrix and the bioinformatic tool Tumor Aberration Prediction Suite. Genomic gains, losses, and loss-of-heterozygosity that associated with recurrent disease were identified. RESULTS The most significant differences (p < 0.01) in Loss-of-heterozygosity (LOH) were identified in two relatively small regions of chromosome 19; 8.0-8,8 Mbp (19 genes) and 51.5-53.0 Mbp (37 genes). Thus, 56 genes on chromosome 19 were potential candidate genes associated with clinical outcome. LOH at 19q (51-56 Mbp) was associated with shorter disease-free survival and was an independent prognostic factor for survival in a multivariate Cox regression analysis. In particular LOH on chromosome 19q (51-56 Mbp) was significantly (p < 0.01) associated with loss of TP53 function. CONCLUSIONS The results of our study indicate that presence of two aberrations in TP53 on 17p and LOH on 19q in early stage serous ovarian cancer is associated with recurrent disease. Further studies related to the findings of chromosomes 17 and 19 are needed to elucidate the molecular mechanism behind the recurring genomic aberrations and the poor clinical outcome.
Collapse
Affiliation(s)
| | - Markus Mayrhofer
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Maria Rydåker
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Helena Åkerud
- Department of Women’s and Children’s Health, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Anders Isaksson
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, SE-751 85, Uppsala, Sweden
| |
Collapse
|
24
|
CIP2A is overexpressed in human ovarian cancer and regulates cell proliferation and apoptosis. Tumour Biol 2012; 33:2299-306. [PMID: 22923389 DOI: 10.1007/s13277-012-0492-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 08/10/2012] [Indexed: 01/06/2023] Open
Abstract
CIP2A is a recently characterized oncoprotein which involves in the progression of several human malignancies. This study aimed to investigate its clinical significance and biological function in ovarian cancer. CIP2A expression was analyzed in 152 archived ovarian cancer specimens using immunohistochemistry. One hundred cases (65.79 %) showed CIP2A overexpression, including 63 of 92 serous carcinomas (68.48 %), 21 of 33 endometrioid carcinomas (63.64 %), 12 of 23 mucinous carcinomas (52.17 %), and 4 of 4 clear cell carcinomas (100 %). There is no significant difference of CIP2A expression between serous tumors and all other morphologies combined. CIP2A overexpression positively correlated with advanced FIGO stage (p = 0.0336) and tumor grade (p = 0.0213). siRNA knockdown was performed in A2780 and SKOV3 cell lines. MTT, colony formation assay, and flow cytometry were carried out to assess the role of CIP2A in proliferation, cell cycle, and apoptosis. CIP2A depletion in ovarian cancer cell lines inhibited proliferation, blocked cell cycle progression, and increased paclitaxel-induced apoptosis. Furthermore, CIP2A depletion downregulated cyclin D1, c-myc, phospho-Rb, Bcl-2, and phospho-AKT expression. These results validate the role of CIP2A as a clinically relevant oncoprotein and establish CIP2A as a promising therapeutic target of ovarian cancer.
Collapse
|
25
|
Deloia JA, Bhagwat NR, Darcy KM, Strange M, Tian C, Nuttall K, Krivak TC, Niedernhofer LJ. Comparison of ERCC1/XPF genetic variation, mRNA and protein levels in women with advanced stage ovarian cancer treated with intraperitoneal platinum. Gynecol Oncol 2012; 126:448-54. [PMID: 22609620 DOI: 10.1016/j.ygyno.2012.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/08/2012] [Accepted: 05/09/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Approximately 20% of patients receiving platinum-based chemotherapy for epithelial ovarian cancer (EOC) are refractory or develop early recurrence. Identifying these patients early could reduce treatment-associated morbidity and allow quicker transfer to more effective therapies. Much attention has focused on ERCC1 as a potential predictor of response to therapy because of its essential role in the repair of platinum-induced DNA damage. The purpose of this study was to accurately measure protein levels of ERCC1 and its essential binding partner XPF from patients with EOC treated with platinum-based therapy and determine if protein levels correlate with mRNA levels, patient genotypes or clinical outcomes. METHODS ERCC1 and XPF mRNA and protein levels were measured in frozen EOC specimens from 41 patients receiving intraperitoneal platinum-based chemotherapy using reverse transcription polymerase chain reaction and western blots. Genotypes of common nucleotide polymorphisms were also analyzed. Patient outcomes included progression free (PFS) and overall survival (OS). RESULTS Expression of ERCC1 and XPF were tightly correlated with one another at both the mRNA and protein level. However, the mRNA and protein levels of ERCC1 were not positively correlated. Likewise, none of the SNPs analyzed correlated with ERCC1 or XPF protein levels. There was an inverse correlation between mRNA levels and patient outcomes. CONCLUSION Neither genotype nor mRNA levels are predictive of protein expression. Despite this, low ERCC1 mRNA significantly correlated with improved PFS and OS.
Collapse
Affiliation(s)
- Julie A Deloia
- School of Public Health and Health Services, The George Washington University, NW, Washington, DC 20037, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
DNA-damage response gene polymorphisms and therapeutic outcomes in ovarian cancer. THE PHARMACOGENOMICS JOURNAL 2011; 13:159-72. [DOI: 10.1038/tpj.2011.50] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Bibliography. Lymphoma. Current world literature. Curr Opin Oncol 2011; 23:537-41. [PMID: 21836468 DOI: 10.1097/cco.0b013e32834b18ec] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Arienti C, Tesei A, Verdecchia GM, Framarini M, Virzì S, Grassi A, Scarpi E, Turci L, Silvestrini R, Amadori D, Zoli W. Peritoneal carcinomatosis from ovarian cancer: chemosensitivity test and tissue markers as predictors of response to chemotherapy. J Transl Med 2011; 9:94. [PMID: 21689426 PMCID: PMC3141502 DOI: 10.1186/1479-5876-9-94] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/20/2011] [Indexed: 01/16/2023] Open
Abstract
Background Platinum-based regimens are the treatments of choice in ovarian cancer, which remains the leading cause of death from gynecological malignancies in the Western world. The aim of the present study was to compare the advantages and limits of a conventional chemosensitivity test with those of new biomolecular markers in predicting response to platinum regimens in a series of patients with peritoneal carcinomatosis from ovarian cancer. Methods Fresh surgical biopsy specimens were obtained from 30 patients with primary or recurrent peritoneal carcinomatosis from ovarian cancer. ERCC1, GSTP1, MGMT, XPD, and BRCA1 gene expression levels were determined by Real-Time RT-PCR. An in vitro chemosensitivity test was used to define a sensitivity or resistance profile to the drugs used to treat each patient. Results MGMT and XPD expression was directly and significantly related to resistance to platinum-containing treatment (p = 0.036 and p = 0.043, respectively). Significant predictivity in terms of sensitivity and resistance was observed for MGMT expression (75.0% and 72.5%, respectively; p = 0.03), while high predictivity of resistance (90.9%) but very low predictivity of sensitivity (37.5%) (p = 0.06) were observed for XPD. The best overall and significant predictivity was observed for chemosensitivity test results (85.7% sensitivity and 91.3% resistance; p = 0.0003). Conclusions The in vitro assay showed a consistency with results observed in vivo in 27 out of the 30 patients analyzed. Sensitivity and resistance profiles of different drugs used in vivo would therefore seem to be better defined by the in vitro chemosensitivity test than by expression levels of markers.
Collapse
Affiliation(s)
- Chiara Arienti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (I.R.S.T.), Meldola, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
|