1
|
Wang Y, Zhang H, Zhan Y, Li Z, Li S, Guo S. Comprehensive in silico analysis of prognostic and immune infiltrates for FGFs in human ovarian cancer. J Ovarian Res 2024; 17:197. [PMID: 39385288 PMCID: PMC11465590 DOI: 10.1186/s13048-024-01496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/14/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Fibroblast growth factors (FGFs) are cell signaling proteins that perform multiple biological processes in many biological processes (cell development, repair, and metabolism). The dynamics of tumor cells, such as angiogenesis, transformation, and proliferation, have a significant impact on neoplasia and are modulated by FGFs. FGFs' expression and prognostic significance in ovarian cancer (OC), however, remain unclear. METHODS Through a series of in silico analysis, we investigated the transcriptional, survival data, genetic variation, gene-gene interaction network, ferroptosis-related genes, and DNA methylation of FGFs in OC patients. RESULTS We discovered that while FGF18 expression levels were higher in OC tissues than in normal OC tissues, FGF2/7/10/17/22 expression levels were lower in the former, and that FGF1/19 expression was related to the tumor stage in OC patients. According to the survival analysis, the clinical prognosis of individuals with OC was associated with the aberrant expression of FGFs. The function of FGFs and their neighboring genes was mainly connected to the cellular response to FGF stimulus. There was a negative correlation between FGF expression and various immune cell infiltration. CONCLUSIONS This study clarifies the relationship between FGFs and OC, which might provide new insights into the choice of prognostic biomarkers of OC patients.
Collapse
Affiliation(s)
- Yu Wang
- Emergency Medicine Clinical Research Center, Beijing Chao-yang Hospital, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Capital Medical University, Beijing, 100020, P.R. China
| | - Haiyue Zhang
- Thrombosis research center, Beijing Jishuitan hospital, Capital Medical University, Beijing, China, Xicheng District, Beijing 100035, China
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Xicheng District, Beijing, China
| | - Yuanyuan Zhan
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, P.R. China
| | - Zhuoran Li
- Emergency Medicine Clinical Research Center, Beijing Chao-yang Hospital, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Capital Medical University, Beijing, 100020, P.R. China
| | - Sujing Li
- Department of Plastic Surgery, Zhengzhou First People's Hospital, Zhengzhou, China
| | - Shubin Guo
- Emergency Medicine Clinical Research Center, Beijing Chao-yang Hospital, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Capital Medical University, Beijing, 100020, P.R. China.
| |
Collapse
|
2
|
Chen Y, He Y, Liu S. RUNX1-Regulated Signaling Pathways in Ovarian Cancer. Biomedicines 2023; 11:2357. [PMID: 37760803 PMCID: PMC10525517 DOI: 10.3390/biomedicines11092357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 09/29/2023] Open
Abstract
Ovarian cancer is the leading cause of gynecological death worldwide, and its poor prognosis and high mortality seriously affect the life of ovarian cancer patients. Runt-related transcription factor 1 (RUNX1) has been widely studied in hematological diseases and plays an important role in the occurrence and development of hematological diseases. In recent years, studies have reported the roles of RUNX1 in solid tumors, including the significantly increased expression of RUNX1 in ovarian cancer. In ovarian cancer, the dysregulation of the RUNX1 signaling pathway has been implicated in tumor progression, metastasis, and response to therapy. At the same time, the decreased expression of RUNX1 in ovarian cancer can significantly improve the sensitivity of clinical chemotherapy and provide theoretical support for the subsequent diagnosis and treatment target of ovarian cancer, providing prognosis and treatment options to patients with ovarian cancer. However, the role of RUNX1 in ovarian cancer remains unclear. Therefore, this article reviews the relationship between RUNX1 and the occurrence and development of ovarian cancer, as well as the closely regulated signaling pathways, to provide some inspiration and theoretical support for future research on RUNX1 in ovarian cancer and other diseases.
Collapse
Affiliation(s)
- Yuanzhi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying He
- School of Chemical Science & Technology, Yunnan University, Kunming 650091, China
| | - Shubai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Murali R, Balasubramaniam V, Srinivas S, Sundaram S, Venkatraman G, Warrier S, Dharmarajan A, Gandhirajan RK. Deregulated Metabolic Pathways in Ovarian Cancer: Cause and Consequence. Metabolites 2023; 13:metabo13040560. [PMID: 37110218 PMCID: PMC10141515 DOI: 10.3390/metabo13040560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Ovarian cancers are tumors that originate from the different cells of the ovary and account for almost 4% of all the cancers in women globally. More than 30 types of tumors have been identified based on the cellular origins. Epithelial ovarian cancer (EOC) is the most common and lethal type of ovarian cancer which can be further divided into high-grade serous, low-grade serous, endometrioid, clear cell, and mucinous carcinoma. Ovarian carcinogenesis has been long attributed to endometriosis which is a chronic inflammation of the reproductive tract leading to progressive accumulation of mutations. Due to the advent of multi-omics datasets, the consequences of somatic mutations and their role in altered tumor metabolism has been well elucidated. Several oncogenes and tumor suppressor genes have been implicated in the progression of ovarian cancer. In this review, we highlight the genetic alterations undergone by the key oncogenes and tumor suppressor genes responsible for the development of ovarian cancer. We also summarize the role of these oncogenes and tumor suppressor genes and their association with a deregulated network of fatty acid, glycolysis, tricarboxylic acid and amino acid metabolism in ovarian cancers. Identification of genomic and metabolic circuits will be useful in clinical stratification of patients with complex etiologies and in identifying drug targets for personalized therapies against cancer.
Collapse
Affiliation(s)
- Roopak Murali
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Vaishnavi Balasubramaniam
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Satish Srinivas
- Department of Radiation Oncology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai 600116, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai 600116, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
- Cuor Stem Cellutions Pvt Ltd., Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
- Stem Cell and Cancer Biology Laboratory, Curtin University, Perth, WA 6102, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia
- Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Rajesh Kumar Gandhirajan
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| |
Collapse
|
4
|
Dansonka-Mieszkowska A, Szafron LA, Kulesza M, Stachurska A, Leszczynski P, Tomczyk-Szatkowska A, Sobiczewski P, Parada J, Kulinczak M, Moes-Sosnowska J, Pienkowska-Grela B, Kupryjanczyk J, Chechlinska M, Szafron LM. PROM1, CXCL8, RUNX1, NAV1 and TP73 genes as independent markers predictive of prognosis or response to treatment in two cohorts of high-grade serous ovarian cancer patients. PLoS One 2022; 17:e0271539. [PMID: 35867729 PMCID: PMC9307210 DOI: 10.1371/journal.pone.0271539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/02/2022] [Indexed: 11/18/2022] Open
Abstract
Considering the vast biological diversity and high mortality rate in high-grade ovarian cancers, identification of novel biomarkers, enabling precise diagnosis and effective, less aggravating treatment, is of paramount importance. Based on scientific literature data, we selected 80 cancer-related genes and evaluated their mRNA expression in 70 high-grade serous ovarian cancer (HGSOC) samples by Real-Time qPCR. The results were validated in an independent Northern American cohort of 85 HGSOC patients with publicly available NGS RNA-seq data. Detailed statistical analyses of our cohort with multivariate Cox and logistic regression models considering clinico-pathological data and different TP53 mutation statuses, revealed an altered expression of 49 genes to affect the prognosis and/or treatment response. Next, these genes were investigated in the validation cohort, to confirm the clinical significance of their expression alterations, and to identify genetic variants with an expected high or moderate impact on their products. The expression changes of five genes, PROM1, CXCL8, RUNX1, NAV1, TP73, were found to predict prognosis or response to treatment in both cohorts, depending on the TP53 mutation status. In addition, we revealed novel and confirmed known SNPs in these genes, and showed that SNPs in the PROM1 gene correlated with its elevated expression.
Collapse
Affiliation(s)
- Agnieszka Dansonka-Mieszkowska
- Laboratory of Genetic and Molecular Cancer Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Laura Aleksandra Szafron
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Kulesza
- Laboratory of Genetic and Molecular Cancer Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Stachurska
- Laboratory of Genetic and Molecular Cancer Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Pawel Leszczynski
- Laboratory of Genetic and Molecular Cancer Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Agnieszka Tomczyk-Szatkowska
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Piotr Sobiczewski
- Department of Gynecological Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Joanna Parada
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Mariusz Kulinczak
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Joanna Moes-Sosnowska
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Barbara Pienkowska-Grela
- Cytogenetics Laboratory, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jolanta Kupryjanczyk
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Chechlinska
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Lukasz Michal Szafron
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- * E-mail:
| |
Collapse
|
5
|
Lim LM, Chung WY, Hwang DY, Yu CC, Ke HL, Liang PI, Lin TW, Cheng SM, Huang AM, Kuo HT. Whole-exome sequencing identified mutational profiles of urothelial carcinoma post kidney transplantation. J Transl Med 2022; 20:324. [PMID: 35864526 PMCID: PMC9301867 DOI: 10.1186/s12967-022-03522-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
Kidney transplantation is a lifesaving option for patients with end-stage kidney disease. In Taiwan, urothelial carcinoma (UC) is the most common de novo cancer after kidney transplantation (KT). UC has a greater degree of molecular heterogeneity than do other solid tumors. Few studies have explored genomic alterations in UC after KT. We performed whole-exome sequencing to compare the genetic alterations in UC developed after kidney transplantation (UCKT) and in UC in patients on hemodialysis (UCHD). After mapping and variant calling, 18,733 and 11,093 variants were identified in patients with UCKT and UCHD, respectively. We excluded known single-nucleotide polymorphisms (SNPs) and retained genes that were annotated in the Catalogue of Somatic Mutations in Cancer (COSMIC), in the Integrative Onco Genomic cancer mutations browser (IntOGen), and in the Cancer Genome Atlas (TCGA) database of genes associated with bladder cancer. A total of 14 UCKT-specific genes with SNPs identified in more than two patients were included in further analyses. The single-base substitution (SBS) profile and signatures showed a relative high T > A pattern compared to COMSIC UC mutations. Ingenuity pathway analysis was used to explore the connections among these genes. GNAQ, IKZF1, and NTRK3 were identified as potentially involved in the signaling network of UCKT. The genetic analysis of posttransplant malignancies may elucidate a fundamental aspect of the molecular pathogenesis of UCKT.
Collapse
Affiliation(s)
- Lee-Moay Lim
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Yu Chung
- Department of Computer Science and Information Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Daw-Yang Hwang
- National Institute of Cancer Research, National Health Research Institute, Tainan, Taiwan
| | - Chih-Chuan Yu
- National Institute of Cancer Research, National Health Research Institute, Tainan, Taiwan
| | - Hung-Lung Ke
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Peir-In Liang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ting-Wei Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Siao Muk Cheng
- National Institute of Cancer Research, National Health Research Institute, Tainan, Taiwan
| | - A-Mei Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. .,Ph.D. Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Hung-Tien Kuo
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan. .,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
6
|
Wu L, Zhang Y, Ren J. Epigenetic modification in alcohol use disorder and alcoholic cardiomyopathy: From pathophysiology to therapeutic opportunities. Metabolism 2021; 125:154909. [PMID: 34627873 DOI: 10.1016/j.metabol.2021.154909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023]
Abstract
Alcohol consumption prompts detrimental psychological, pathophysiological and health issues, representing one of the major causes of death worldwide. Alcohol use disorder (AUD), which is characterized by compulsive alcohol intake and loss of control over alcohol usage, arises from a complex interplay between genetic and environmental factors. More importantly, long-term abuse of alcohol is often tied with unfavorable cardiac remodeling and contractile alterations, a cadre of cardiac responses collectively known as alcoholic cardiomyopathy (ACM). Recent evidence has denoted a pivotal role for ethanol-triggered epigenetic modifications, the interface between genome and environmental cues, in the organismal and cellular responses to ethanol exposure. To-date, three major epigenetic mechanisms (DNA methylation, histone modifications, and RNA-based mechanisms) have been identified for the onset and development of AUD and ACM. Importantly, these epigenetic changes induced by alcohol may be detectable in the blood, thus offering diagnostic, therapeutic, and prognostic promises of epigenetic markers for AUD and alcoholic complications. In addition, several epigenetic drugs have shown efficacies in the management of alcohol abuse, loss of control for alcohol usage, relapse, drinking-related anxiety and behavior in withdrawal. In this context, medications targeting epigenetic modifications may hold promises for pharmaceutical management of AUD and ACM.
Collapse
Affiliation(s)
- Lin Wu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai 200032, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai 200032, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
7
|
Wang J, Li J, Chen R, Yue H, Li W, Wu B, Bai Y, Zhu G, Lu X. DNA methylation-based profiling reveals distinct clusters with survival heterogeneity in high-grade serous ovarian cancer. Clin Epigenetics 2021; 13:190. [PMID: 34645493 PMCID: PMC8515755 DOI: 10.1186/s13148-021-01178-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 09/29/2021] [Indexed: 12/27/2022] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the most common type of epigenetically heterogeneous ovarian cancer. Methylation typing has previously been used in many tumour types but not in HGSOC. Methylation typing in HGSOC may promote the development of personalized care. The present study used DNA methylation data from The Cancer Genome Atlas database and identified four unique methylation subtypes of HGSOC. With the poorest prognosis and high frequency of residual tumours, cluster 4 featured hypermethylation of a panel of genes, which indicates that demethylation agents may be tested in this group and that neoadjuvant chemotherapy may be used to reduce the possibility of residual lesions. Cluster 1 and cluster 2 were significantly associated with metastasis genes and metabolic disorders, respectively. Two feature CpG sites, cg24673765 and cg25574024, were obtained through Cox proportional hazards model analysis of the CpG sites. Based on the methylation level of the two CpG sites, the samples were classified into high- and low-risk groups to identify the prognostic information. Similar results were obtained in the validation set. Taken together, these results explain the epigenetic heterogeneity of HGSOC and provide guidance to clinicians for the prognosis of HGSOC based on DNA methylation sites.
Collapse
Affiliation(s)
- Jieyu Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No. 128, Shenyang Road, Yangpu District, Shanghai, 200090, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, China
| | - Jun Li
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No. 128, Shenyang Road, Yangpu District, Shanghai, 200090, China
| | - Ruifang Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No. 128, Shenyang Road, Yangpu District, Shanghai, 200090, China
| | - Huiran Yue
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No. 128, Shenyang Road, Yangpu District, Shanghai, 200090, China
| | - Wenzhi Li
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No. 128, Shenyang Road, Yangpu District, Shanghai, 200090, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, China
| | - Beibei Wu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No. 128, Shenyang Road, Yangpu District, Shanghai, 200090, China
| | - Yang Bai
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No. 128, Shenyang Road, Yangpu District, Shanghai, 200090, China
| | - Guohua Zhu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No. 128, Shenyang Road, Yangpu District, Shanghai, 200090, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, China
| | - Xin Lu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No. 128, Shenyang Road, Yangpu District, Shanghai, 200090, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Faaborg L, Jakobsen A, Waldstrøm M, Petersen CB, Andersen RF, Steffensen KD. HOXA9-methylated DNA as a diagnostic biomarker of ovarian malignancy. Biomark Med 2021; 15:1309-1317. [PMID: 34514844 DOI: 10.2217/bmm-2021-0144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aim: In ovarian cancer, methylated HOXA9 (meth-HOXA9) has been proposed as a relevant biomarker, however, its role in the carcinogenic development remains unknown. This study aimed at evaluating meth-HOXA9 as a diagnostic biomarker in ovarian cancer. Materials & methods: The meth-HOXA9 status was examined in 138 tissue specimens encompassing normal ovaries, benign- and borderline tumors, and ovarian cancer using droplet digital PCR. Results: Meth-HOXA9 was detected in 93% (82/88) and 88% (14/16) of ovarian cancer and borderline tumors, respectively. In patients with benign ovarian tumors meth-HOXA9 was detected in 17% (3/18). Using receiver operating characteristic (ROC) analysis meth-HOXA9 had a diagnostic accuracy of 98%. Conclusion: Meth-HOXA9 is highly cancer specific and could serve as a general diagnostic marker of ovarian malignancy.
Collapse
Affiliation(s)
- Louise Faaborg
- Department of Oncology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, 7100, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, 5000, Denmark
| | - Anders Jakobsen
- Department of Oncology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, 7100, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, 5000, Denmark
| | - Marianne Waldstrøm
- Institute of Regional Health Research, University of Southern Denmark, Odense, 5000, Denmark.,Department of Pathology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, 7100, Denmark
| | - Christina B Petersen
- Department of Pathology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, 7100, Denmark
| | - Rikke F Andersen
- Department of Clinical Biochemistry, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, 7100, Denmark
| | - Karina D Steffensen
- Department of Oncology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, 7100, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, 5000, Denmark.,Center for Shared Decision Making, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, 7100, Denmark
| |
Collapse
|
9
|
Al-Zahrani MH, Yahya FM, Assidi M, Dallol A, Buhmeida A. Klotho promoter methylation status and its prognostic value in ovarian cancer. Mol Clin Oncol 2021; 15:181. [PMID: 34277000 PMCID: PMC8278383 DOI: 10.3892/mco.2021.2343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/21/2021] [Indexed: 01/22/2023] Open
Abstract
Among all gynecological cancers, ovarian cancer (OC) is one of the deadliest types of cancer worldwide. Epigenetic silencing of some genes has been reported to be associated with OC. In this context, Klotho (KL) gene methylation is a promising biomarker for OC. The present study aimed to investigate the methylation profiles of KL and assess its prognostic value. A total of 63 formalin-fixed paraffin-embedded tissue samples from patients with primary OC were collected and analyzed in the present study. The methylation profiles of KL were assessed by performing DNA bisulfate treatment followed by DNA promoter methylation analysis using the MethyLight assay. The results revealed KL promoter hypermethylation in 62% of the OC cohort. Additionally, significant associations were observed between KL methylation profiles and tumor subtype (P<0.0001) and tumor site (P=0.039). Furthermore, Kaplan-Meier analysis revealed that a worse disease-specific survival was significantly associated with hypermethylated KL (P=0.03, log-rank; hazard ration, 0.58; 95% confidence interval (CI), 0.26-0.90). Cox regression multivariate analysis indicated that KL promoter methylation was an independent OC prognostic indicator (P=0.029). The current study suggested that KL may be a novel biomarker to predict prognosis in patients with OC, since patients with higher KL promoter methylation were more likely to have a poor prognosis and would therefore require frequent follow-up and integrative personalized therapeutic approaches.
Collapse
Affiliation(s)
- Maryam H. Al-Zahrani
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fatimah M. Yahya
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mourad Assidi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Medical Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashraf Dallol
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Medical Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdelbaset Buhmeida
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
10
|
Abstract
Significance: Unique to the branched-chain aminotransferase (BCAT) proteins is their redox-active CXXC motif. Subjected to post-translational modification by reactive oxygen species and reactive nitrogen species, these proteins have the potential to adopt numerous cellular roles, which may be fundamental to their role in oncogenesis and neurodegenerative diseases. An understanding of the interplay of the redox regulation of BCAT with important cell signaling mechanisms will identify new targets for future therapeutics. Recent Advances: The BCAT proteins have been assigned novel thiol oxidoreductase activity that can accelerate the refolding of proteins, in particular when S-glutathionylated, supporting a chaperone role for BCAT in protein folding. Other metabolic proteins were also shown to have peroxide-mediated redox associations with BCAT, indicating that the cellular function of BCAT is more diverse. Critical Issues: While the role of branched-chain amino acid metabolism and its metabolites has dominated aspects of cancer research, less is known about the role of BCAT. The importance of the CXXC motif in regulating the BCAT activity under hypoxic conditions, a characteristic of tumors, has not been addressed. Understanding how these proteins operate under various cellular redox conditions will become important, in particular with respect to their moonlighting roles. Future Directions: Advances in the quantification of thiols, their measurement, and the manipulation of metabolons that rely on redox-based interactions should accelerate the investigation of the cellular role of moonlighting proteins such as BCAT. Given the importance of cross talk between signaling pathways, research should focus more on these "housekeeping" proteins paying attention to their wider application. Antioxid. Redox Signal. 34, 1048-1067.
Collapse
Affiliation(s)
- Myra Elizabeth Conway
- Department of Applied Science, University of the West of England, Bristol, United Kingdom
| |
Collapse
|
11
|
Integration of multiomics data with graph convolutional networks to identify new cancer genes and their associated molecular mechanisms. NAT MACH INTELL 2021. [DOI: 10.1038/s42256-021-00325-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Shojaeian S, Moazeni-Roodi A, Allameh A, Garajei A, Kazemnejad A, Kabir K, Zarnani AH. Methylation of TGM-3 Promoter and Its Association with Oral Squamous Cell Carcinoma (OSCC). Avicenna J Med Biotechnol 2021; 13:65-73. [PMID: 34012521 PMCID: PMC8112137 DOI: 10.18502/ajmb.v13i2.5523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background: Oral Squamous Cell Carcinoma (OSCC) is among the ten most common cancers worldwide. Hypermethylation of CpG sites in the promoter region and subsequent down-regulation of a tumor suppressor gene, TGM-3 has been proposed to be linked to different types of human cancers including OSCC. In this study, methylation status of CpG sites in the promoter region of TGM-3 has been evaluated in a cohort of patients with OSCC compared to normal controls. Methods: Forty fresh tissue samples were obtained from newly diagnosed OSCC patients and normal individuals referred to dentistry clinic for tooth extraction. DNA was extracted, bisulfite conversion was performed and it was subjected to PCR using bisulfite-sequencing PCR (BSP) primers. Prepared samples were sequenced on a DNA analyzer with both forward and reverse primers of the region of interest. The peak height values of cytosine and thymine were calculated and methylation levels for each CpG site within the DNA sequence was quantified. Results: Quantitative DNA methylation analyses in CpG islands revealed that it was significantly higher in OSCC patients compared to controls. DNA methylation at CpG1/CpG3/CpG5 (p=0.004–0.01) and CpG1/CpG3 (p=0.001–0.019) sites was associated with tumor stage and grade, respectively. Male OSCC patients had higher methylation rate at CpG3 (p=0.032), while smoker patients showed higher methylation rate at CpG6 (p=0.045). Conclusion: These results manifested the contribution of DNA methylation of TGM-3 in OSCC and its potential association with clinico-pathologic parameters in OSCC.
Collapse
Affiliation(s)
- Sorour Shojaeian
- Department of Biochemistry, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ata Garajei
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.,Department of Head and Neck Surgical Oncology and Reconstructive Surgery, The Cancer Institute, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Anoshirvan Kazemnejad
- Department of Bio-statistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kourosh Kabir
- Department of Community Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
13
|
Mucin-Type O-GalNAc Glycosylation in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:25-60. [PMID: 34495529 DOI: 10.1007/978-3-030-70115-4_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mucin-type GalNAc O-glycosylation is one of the most abundant and unique post-translational modifications. The combination of proteome-wide mapping of GalNAc O-glycosylation sites and genetic studies with knockout animals and genome-wide analyses in humans have been instrumental in our understanding of GalNAc O-glycosylation. Combined, such studies have revealed well-defined functions of O-glycans at single sites in proteins, including the regulation of pro-protein processing and proteolytic cleavage, as well as modulation of receptor functions and ligand binding. In addition to isolated O-glycans, multiple clustered O-glycans have an important function in mammalian biology by providing structural support and stability of mucins essential for protecting our inner epithelial surfaces, especially in the airways and gastrointestinal tract. Here the many O-glycans also provide binding sites for both endogenous and pathogen-derived carbohydrate-binding proteins regulating critical developmental programs and helping maintain epithelial homeostasis with commensal organisms. Finally, O-glycan changes have been identified in several diseases, most notably in cancer and inflammation, where the disease-specific changes can be used for glycan-targeted therapies. This chapter will review the biosynthesis, the biology, and the translational perspectives of GalNAc O-glycans.
Collapse
|
14
|
Zhang Y, Liu J, Raj-Kumar PK, Sturtz LA, Praveen-Kumar A, Yang HH, Lee MP, Fantacone-Campbell JL, Hooke JA, Kovatich AJ, Shriver CD, Hu H. Development and validation of prognostic gene signature for basal-like breast cancer and high-grade serous ovarian cancer. Breast Cancer Res Treat 2020; 184:689-698. [PMID: 32880016 PMCID: PMC8916168 DOI: 10.1007/s10549-020-05884-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 08/13/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE Molecular similarities have been reported between basal-like breast cancer (BLBC) and high-grade serous ovarian cancer (HGSOC). To date, there have been no prognostic biomarkers that can provide risk stratification and inform treatment decisions for both BLBC and HGSOC. In this study, we developed a molecular signature for risk stratification in BLBC and further validated this signature in HGSOC. METHODS RNA-seq data was downloaded from The Cancer Genome Atlas (TCGA) project for 190 BLBC and 314 HGSOC patients. Analyses of differentially expressed genes between recurrent vs. non-recurrent cases were performed using different bioinformatics methods. Gene Signature was established using weighted linear combination of gene expression levels. Their prognostic performance was evaluated using survival analysis based on progression-free interval (PFI) and disease-free interval (DFI). RESULTS 63 genes were differentially expressed between 18 recurrent and 40 non-recurrent BLBC patients by two different methods. The recurrence index (RI) calculated from this 63-gene signature significantly stratified BLBC patients into two risk groups with 38 and 152 patients in the low-risk (RI-Low) and high-risk (RI-High) groups, respectively (p = 0.0004 and 0.0023 for PFI and DFI, respectively). Similar performance was obtained in the HGSOC cohort (p = 0.0131 and 0.004 for PFI and DFI, respectively). Multivariate Cox regression adjusting for age, grade, and stage showed that the 63-gene signature remained statistically significant in stratifying HGSOC patients (p = 0.0005). CONCLUSION A gene signature was identified to predict recurrence in BLBC and HGSOC patients. With further validation, this signature may provide an additional prognostic tool for clinicians to better manage BLBC, many of which are triple-negative and HGSOC patients who are currently difficult to treat.
Collapse
Affiliation(s)
- Yi Zhang
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | - Jianfang Liu
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | | | - Lori A Sturtz
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | | | - Howard H Yang
- Center for Cancer Research, National Cancer Institute, Rockville, MD, USA
| | - Maxwell P Lee
- Center for Cancer Research, National Cancer Institute, Rockville, MD, USA
| | - J Leigh Fantacone-Campbell
- Murtha Cancer Center Research Program, Bethesda, MD, USA
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Walter Reed National Military Medical Center, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jeffrey A Hooke
- Murtha Cancer Center Research Program, Bethesda, MD, USA
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Walter Reed National Military Medical Center, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Albert J Kovatich
- Murtha Cancer Center Research Program, Bethesda, MD, USA
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Walter Reed National Military Medical Center, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Craig D Shriver
- Murtha Cancer Center Research Program, Bethesda, MD, USA
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Walter Reed National Military Medical Center, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Hai Hu
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA.
| |
Collapse
|
15
|
Yu X, Li Y, Ding Y, Zhang H, Ding N, Lu M. HuR Promotes Ovarian Cancer Cell Proliferation by Regulating TIMM44 mRNA Stability. Cell Biochem Biophys 2020; 78:447-453. [PMID: 32901414 DOI: 10.1007/s12013-020-00939-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022]
Abstract
The human antigen R (HuR) could play an essential role in stabilizing the mRNAs of many tumor-associated genes. Little research is performed to investigate the relevant mechanism mediated by HuR to promote the progress of ovarian cancer. The Cancer Genome Atlas (TCGA) dataset was retrieved to calculate the correlation between HuR and translocase of inner mitochondrial membrane 44 (TIMM44) expression. HuR expression plasmid, TIMM44 expression plasmid, siRNA HuR, and TIMM44 siRNAs were further transfected into A2780 and SKOV3 cells. The 3'UTR of TIMM44 fragment was cloned into the back of Renilla luciferase in the pSicheck2 dual fluorescent reporter to indicate the interaction between HuR and TIMM44. Cell count and MTT assay were performed to assay the proliferation ability of A2780 and SKOV3 cells. High-level HuR expression in 56 ovarian cancer patients recruited in Zibo Central Hospital was positively correlated with metastasis status and poor prognosis revealed by Kaplan-Meier analysis. Both HuR and TIMM44 can promote the proliferation of SKOV3 and A2780 cells. A high correlation of HuR and TIMM44 expression was testified in the TCGA data. Luciferase reporter assay confirmed that HuR could bind to TIMM44 to maintain the mRNA stability. TIMM44 siRNA administration inhibited the proliferation of SKOV3 cells, which could not be rescued. All of these indicate that the main function of HuR on ovarian cancer proliferation is mediated by TIMM44 through mRNA stability regulation, and HuR/TIMM44 complex can be used as a target to inhibit the proliferation of ovarian cancer cells.
Collapse
Affiliation(s)
- Xiaohui Yu
- Department of Gynaecology, ZIBO Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, Shandong, China
| | - Yujiao Li
- Department of Gynaecology, ZIBO Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, Shandong, China
| | - Yumei Ding
- Department of Gynaecology, ZIBO Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, Shandong, China
| | - Hong Zhang
- Department of Gynaecology, ZIBO Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, Shandong, China
| | - Ning Ding
- Department of Gynaecology, ZIBO Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, Shandong, China
| | - Ming Lu
- Department of Gynaecology, ZIBO Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, Shandong, China.
| |
Collapse
|
16
|
Nie Y, Ding Y, Yang M. GRHL2 Upregulation Predicts a Poor Prognosis and Promotes the Resistance of Serous Ovarian Cancer to Cisplatin. Onco Targets Ther 2020; 13:6303-6314. [PMID: 32636649 PMCID: PMC7335298 DOI: 10.2147/ott.s250412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022] Open
Abstract
Background GRHL2 has been shown to function in ovarian carcinogenesis. However, the relationship between GRHL2 and cisplatin (DDP) resistance in serous ovarian cancer (SOC) is not clear. The purpose of this study was to elucidate the function and mechanism of GRHL2 in DDP resistance of SOC. Materials and Methods Immunohistochemistry (IHC) was utilized to identify GRHL2 protein expression in DDP resistant and sensitive SOC tissues. GRHL2 mRNA and protein levels were identified using quantitative real-time PCR (qRT-PCR) and Western blotting in SKOV3/DDP and SKOV3 cell lines. We conducted loss- and gain-of-function experiments to uncover the consequence of GRHL2 knockdown or overexpression on the sensitivity of ovarian cancer cells to DDP in vitro and in vivo and the underlying mechanism. Results It was observed that expression of GRHL2 was higher in DDP resistant SOC tissues relative to DDP sensitive SOC tissues. In addition, the increased expression of GRHL2 led to shorter progression-free survival (PFS) and overall survival (OS). Meanwhile, the GRHL2 transcript and protein levels in SKOV3/DDP were also higher than SKOV3. Small hairpin RNA (shRNA)-facilitated GRHL2 gene knockdown considerably heightened the sensitivity of SKOV3/DDP cells to DDP by inhibiting proliferation and promoting apoptosis, while up-regulation of GRHL2 significantly reduced the sensitivity of SKOV3 cells to DDP by promoting proliferation and decreasing apoptosis. In addition, GRHL2 promotes DDP resistance of SOC through activation of ERK/MAPK signaling pathways. Conclusion Our results suggest that GRHL2 up-regulation predicts a poor prognosis and promotes the resistance of SOC to DDP. Therefore, GRHL2 may be a possible treatment target for cisplatin-resistant serous ovarian cancer.
Collapse
Affiliation(s)
- Yanting Nie
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Yiling Ding
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Mengyuan Yang
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| |
Collapse
|
17
|
Gong G, Lin T, Yuan Y. Integrated analysis of gene expression and DNA methylation profiles in ovarian cancer. J Ovarian Res 2020; 13:30. [PMID: 32192517 PMCID: PMC7082962 DOI: 10.1186/s13048-020-00632-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/12/2020] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Ovarian cancer is an epithelial malignancy that intrigues people for its poor outcome and lack of efficient treatment, while methylation is an important mechanism that have been recognized in many malignancies. In this study, we attempt to assess abnormally methylated gene markers and pathways in ovarian cancer by integrating three microarray datasets. METHODS Three datasets including expression (GSE26712 and GSE66957) and methylation (GSE81224) datasets were accessed. GEO2R platform was used to detect abnormally methylated-differentially expressed genes. Protein-protein interaction (PPI) networks were built and analysed for hypermethylated and hypermethylated differentially expressed genes using Cytoscape software and Mcode app. GEPIA and cBioPortal platforms were used to validate the expression of the hub genes and the correlation between their mRNA expressions and methylation levels. Kaplan Meier-plotter platform were used to assess the prognostic significance of the hub genes. RESULTS Six hundred eighty-one hypomethylated-upregulated genes were detected and involved in Rap1 signaling pathway, biosynthesis of amino acids, endocrine resistance, apoptosis, pathways in cancer. The hub genes were TNF, UBC, SRC, ESR1, CDK1, PECAM1, CXCR4, MUC1, IKBKG. Additionally, 337 hypermethylated-downregulated genes were detected and involved in pathways in cancer, focal adhesion, sphingolipid signaling pathway, EGFR tyrosine kinase inhibitor resistance, cellular senescence. The hub genes were BDNF, CDC42, CD44, PPP2R5C, PTEN, UBB, BMP2, FOXO1, KLHL2. TNF, ESR1, MUC1, CD44, PPP2R5C, PTEN, UBB and FOXO1 showed significant negative correlation between their mRNA expressions and methylation levels. TNF, ESR1 and FOXO1 showed prognostic significance. CONCLUSIONS Two novel gene networks were found for ovarian cancer. TNF, ESR1, MUC1 and FOXO1 are our candidate genes that might take part in ovarian cancer progression in an epigenetic approach, TNF, ESR1 and FOXO1 may serve as potential markers for ovarian cancer prognosis evaluation.
Collapse
Affiliation(s)
- Guanghui Gong
- Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China.
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, People's Republic of China.
| | - Ting Lin
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, 410208, People's Republic of China
- Hunan Provincial Key Discipline of Chinese Head and Neck Science, Changsha, 410208, People's Republic of China
| | - Yishu Yuan
- Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China
| |
Collapse
|
18
|
LY75 Ablation Mediates Mesenchymal-Epithelial Transition (MET) in Epithelial Ovarian Cancer (EOC) Cells Associated with DNA Methylation Alterations and Suppression of the Wnt/β-Catenin Pathway. Int J Mol Sci 2020; 21:ijms21051848. [PMID: 32156068 PMCID: PMC7084525 DOI: 10.3390/ijms21051848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/26/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Growing evidence demonstrates that epithelial-mesenchymal transition (EMT) plays an important role in epithelial ovarian cancer (EOC) progression and spreading; however, its molecular mechanisms remain poorly defined. We have previously shown that the antigen receptor LY75 can modulate EOC cell phenotype and metastatic potential, as LY75 depletion directed mesenchymal-epithelial transition (MET) in EOC cell lines with mesenchymal phenotype. We used the LY75-mediated modulation of EMT as a model to investigate for DNA methylation changes during EMT in EOC cells, by applying the reduced representation bisulfite sequencing (RRBS) methodology. Numerous genes have displayed EMT-related DNA methylation patterns alterations in their promoter/exon regions. Ten selected genes, whose DNA methylation alterations were further confirmed by alternative methods, were further identified, some of which could represent new EOC biomarkers/therapeutic targets. Moreover, our methylation data were strongly indicative for the predominant implication of the Wnt/β-catenin pathway in the EMT-induced DNA methylation variations in EOC cells. Consecutive experiments, including alterations in the Wnt/β-catenin pathway activity in EOC cells with a specific inhibitor and the identification of LY75-interacting partners by a proteomic approach, were strongly indicative for the direct implication of the LY75 receptor in modulating the Wnt/β-catenin signaling in EOC cells.
Collapse
|
19
|
Singh A, Gupta S, Sachan M. Epigenetic Biomarkers in the Management of Ovarian Cancer: Current Prospectives. Front Cell Dev Biol 2019; 7:182. [PMID: 31608277 PMCID: PMC6761254 DOI: 10.3389/fcell.2019.00182] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer (OC) causes significant morbidity and mortality as neither detection nor screening of OC is currently feasible at an early stage. Difficulty to promptly diagnose OC in its early stage remains challenging due to non-specific symptoms in the early-stage of the disease, their presentation at an advanced stage and poor survival. Therefore, improved detection methods are urgently needed. In this article, we summarize the potential clinical utility of epigenetic signatures like DNA methylation, histone modifications, and microRNA dysregulation, which play important role in ovarian carcinogenesis and discuss its application in development of diagnostic, prognostic, and predictive biomarkers. Molecular characterization of epigenetic modification (methylation) in circulating cell free tumor DNA in body fluids offers novel, non-invasive approach for identification of potential promising cancer biomarkers, which can be performed at multiple time points and probably better reflects the prevailing molecular profile of cancer. Current status of epigenetic research in diagnosis of early OC and its management are discussed here with main focus on potential diagnostic biomarkers in tissue and body fluids. Rapid and point of care diagnostic applications of DNA methylation in liquid biopsy has been precluded as a result of cumbersome sample preparation with complicated conventional methods of isolation. New technologies which allow rapid identification of methylation signatures directly from blood will facilitate sample-to answer solutions thereby enabling next-generation point of care molecular diagnostics. To date, not a single epigenetic biomarker which could accurately detect ovarian cancer at an early stage in either tissue or body fluid has been reported. Taken together, the methodological drawbacks, heterogeneity associated with ovarian cancer and non-validation of the clinical utility of reported potential biomarkers in larger ovarian cancer populations has impeded the transition of epigenetic biomarkers from lab to clinical settings. Until addressed, clinical implementation as a diagnostic measure is a far way to go.
Collapse
Affiliation(s)
- Alka Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| |
Collapse
|
20
|
Wang L, Ni S, Du Z, Li X. A six‐CpG‐based methylation markers for the diagnosis of ovarian cancer in blood. J Cell Biochem 2019; 121:1409-1419. [PMID: 31502352 DOI: 10.1002/jcb.29376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Lei Wang
- Department of Obstetrics and Gynecology Shengjing Hospital of China Medical University Shenyang China
| | - Sha Ni
- Department of Obstetrics and Gynecology Shengjing Hospital of China Medical University Shenyang China
| | - Zhenhua Du
- Department of Obstetrics and Gynecology Shengjing Hospital of China Medical University Shenyang China
| | - Xiuqin Li
- Department of Obstetrics and Gynecology Shengjing Hospital of China Medical University Shenyang China
| |
Collapse
|
21
|
HOX Genes in High Grade Ovarian Cancer. Cancers (Basel) 2019; 11:cancers11081107. [PMID: 31382546 PMCID: PMC6721551 DOI: 10.3390/cancers11081107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
HOX genes are highly conserved members of the homeobox superfamily that have a crucial role in determining cellular identity. High grade ovarian cancer is the most lethal gynaecological malignancy. Our understanding of the role of HOX genes in the oncogenesis of ovarian cancer is evolving, and here we review their dysregulated expression patterns, their function in cell survival and invasion, their potential uses as biomarkers, and ways in which HOX genes are being targeted with new and existing drugs.
Collapse
|
22
|
Ciafrè S, Carito V, Ferraguti G, Greco A, Chaldakov GN, Fiore M, Ceccanti M. How alcohol drinking affects our genes: an epigenetic point of view. Biochem Cell Biol 2018; 97:345-356. [PMID: 30412425 DOI: 10.1139/bcb-2018-0248] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This work highlights recent studies in epigenetic mechanisms that play a role in alcoholism, which is a complex multifactorial disorder. There is a large body of evidence showing that alcohol can modify gene expression through epigenetic processes, namely DNA methylation and nucleosomal remodeling via histone modifications. In that regard, chronic exposure to ethanol modifies DNA and histone methylation, histone acetylation, and microRNA expression. The alcohol-mediated chromatin remodeling in the brain promotes the transition from use to abuse and addiction. Unravelling the multiplex pattern of molecular modifications induced by ethanol could support the development of new therapies for alcoholism and drug addiction targeting epigenetic processes.
Collapse
Affiliation(s)
- Stefania Ciafrè
- a Institute of Translational Pharmacology, IFT-CNR, 100 via del Fosso del Cavaliere, Rome 00133, Italy
| | - Valentina Carito
- b Institute of Cell Biology and Neurobiology, IBCN-CNR, c/o Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155 (00161), Rome, Italy
| | - Giampiero Ferraguti
- c Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico, 155 (00161), Rome, Italy
| | - Antonio Greco
- d Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155 (00161), Rome, Italy
| | - George N Chaldakov
- e Laboratory of Cell Biology, Department of Anatomy and Histology, Medical University, BG-9002 Varna, Bulgaria
| | - Marco Fiore
- b Institute of Cell Biology and Neurobiology, IBCN-CNR, c/o Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155 (00161), Rome, Italy
| | - Mauro Ceccanti
- f Centro Riferimento Alcologico Regione Lazio, Sapienza University of Rome, Viale del Policlinico, 155 (00161), Rome, Italy
| |
Collapse
|
23
|
Pisanic TR, Cope LM, Lin SF, Yen TT, Athamanolap P, Asaka R, Nakayama K, Fader AN, Wang TH, Shih IM, Wang TL. Methylomic Analysis of Ovarian Cancers Identifies Tumor-Specific Alterations Readily Detectable in Early Precursor Lesions. Clin Cancer Res 2018; 24:6536-6547. [PMID: 30108103 DOI: 10.1158/1078-0432.ccr-18-1199] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/12/2018] [Accepted: 08/09/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE High-grade serous ovarian carcinoma (HGSOC) typically remains undiagnosed until advanced stages when peritoneal dissemination has already occurred. Here, we sought to identify HGSOC-specific alterations in DNA methylation and assess their potential to provide sensitive and specific detection of HGSOC at its earliest stages. EXPERIMENTAL DESIGN MethylationEPIC genome-wide methylation analysis was performed on a discovery cohort comprising 23 HGSOC, 37 non-HGSOC malignant, and 36 histologically unremarkable gynecologic tissue samples. The resulting data were processed using selective bioinformatic criteria to identify regions of high-confidence HGSOC-specific differential methylation. Quantitative methylation-specific real-time PCR (qMSP) assays were then developed for 8 of the top-performing regions and analytically validated in a cohort of 90 tissue samples. Lastly, qMSP assays were used to assess and compare methylation in 30 laser-capture microdissected (LCM) fallopian tube epithelia samples obtained from cancer-free and serous tubal intraepithelial carcinoma (STIC) positive women. RESULTS Bioinformatic selection identified 91 regions of robust, HGSOC-specific hypermethylation, 23 of which exhibited an area under the receiver-operator curve (AUC) value ≥ 0.9 in the discovery cohort. Seven of 8 top-performing regions demonstrated AUC values between 0.838 and 0.968 when analytically validated by qMSP in a 90-patient cohort. A panel of the 3 top-performing genes (c17orf64, IRX2, and TUBB6) was able to perfectly discriminate HGSOC (AUC 1.0). Hypermethylation within these loci was found exclusively in LCM fallopian tube epithelia from women with STIC lesions, but not in cancer-free fallopian tubes. CONCLUSIONS A panel of methylation biomarkers can be used to accurately identify HGSOC, even at precursor stages of the disease.
Collapse
Affiliation(s)
- Thomas R Pisanic
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland.
| | - Leslie M Cope
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Departments of Oncology and Biostatistics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shiou-Fu Lin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Departments of Gynecology and Obstetrics and Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ting-Tai Yen
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Departments of Gynecology and Obstetrics and Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pornpat Athamanolap
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ryoichi Asaka
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Departments of Gynecology and Obstetrics and Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Amanda N Fader
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Departments of Gynecology and Obstetrics and Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tza-Huei Wang
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Ie-Ming Shih
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Departments of Gynecology and Obstetrics and Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tian-Li Wang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Departments of Gynecology and Obstetrics and Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
24
|
Losi L, Fonda S, Saponaro S, Chelbi ST, Lancellotti C, Gozzi G, Alberti L, Fabbiani L, Botticelli L, Benhattar J. Distinct DNA Methylation Profiles in Ovarian Tumors: Opportunities for Novel Biomarkers. Int J Mol Sci 2018; 19:ijms19061559. [PMID: 29882921 PMCID: PMC6032431 DOI: 10.3390/ijms19061559] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 01/16/2023] Open
Abstract
Aberrant methylation of multiple promoter CpG islands could be related to the biology of ovarian tumors and its determination could help to improve treatment strategies. DNA methylation profiling was performed using the Methylation Ligation-dependent Macroarray (MLM), an array-based analysis. Promoter regions of 41 genes were analyzed in 102 ovarian tumors and 17 normal ovarian samples. An average of 29% of hypermethylated promoter genes was observed in normal ovarian tissues. This percentage increased slightly in serous, endometrioid, and mucinous carcinomas (32%, 34%, and 45%, respectively), but decreased in germ cell tumors (20%). Ovarian tumors had methylation profiles that were more heterogeneous than other epithelial cancers. Unsupervised hierarchical clustering identified four groups that are very close to the histological subtypes of ovarian tumors. Aberrant methylation of three genes (BRCA1, MGMT, and MLH1), playing important roles in the different DNA repair mechanisms, were dependent on the tumor subtype and represent powerful biomarkers for precision therapy. Furthermore, a promising relationship between hypermethylation of MGMT, OSMR, ESR1, and FOXL2 and overall survival was observed. Our study of DNA methylation profiling indicates that the different histotypes of ovarian cancer should be treated as separate diseases both clinically and in research for the development of targeted therapies.
Collapse
Affiliation(s)
- Lorena Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy.
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, 41124 Modena, Italy.
| | - Sergio Fonda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Sara Saponaro
- Department of Life Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy.
- Institute of Pathology, Lausanne University Hospital, 1011 Lausanne, Switzerland.
| | - Sonia T Chelbi
- Institute of Pathology, Lausanne University Hospital, 1011 Lausanne, Switzerland.
| | - Cesare Lancellotti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Gaia Gozzi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Loredana Alberti
- Institute of Pathology, Lausanne University Hospital, 1011 Lausanne, Switzerland.
| | - Luca Fabbiani
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, 41124 Modena, Italy.
| | - Laura Botticelli
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, 41124 Modena, Italy.
| | - Jean Benhattar
- Institute of Pathology, Lausanne University Hospital, 1011 Lausanne, Switzerland.
- Aurigen, Centre de Génétique et Pathologie, 1004 Lausanne, Switzerland.
| |
Collapse
|
25
|
Jedi M, Young GP, Pedersen SK, Symonds EL. Methylation and Gene Expression of BCAT1 and IKZF1 in Colorectal Cancer Tissues. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2018; 12:1179554918775064. [PMID: 29780264 PMCID: PMC5952276 DOI: 10.1177/1179554918775064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/12/2018] [Indexed: 12/20/2022]
Abstract
The genes BCAT1 and IKZF1 are hypermethylated in colorectal cancer (CRC), but little is known about how this relates to gene expression. This study assessed the relationship between methylation and gene expression of BCAT1 and IKZF1 in CRC and adjacent non-neoplastic tissues. The tissues were obtained at surgery from 36 patients diagnosed with different stages of CRC (stage I n = 8, stage II n = 13, stage III n = 10, stage IV n = 5). Methylated BCAT1 and IKZF1 were detected in 92% and 72% CRC tissues, respectively, with levels independent of stage (P > .05). In contrast, only 31% and 3% of non-neoplastic tissues were methylated for BCAT1 and IKZF1, respectively (P < .001). The IKZF1 messenger RNA (mRNA) expression was significantly lower in the cancer tissues compared with that of non-neoplastic tissues, whereas the BCAT1 mRNA levels were similar. The latter may be due to the BCAT1 polymerase chain reaction assay detecting more than 1 mRNA transcript. Further studies are warranted to establish the role of the epigenetic silencing of IKZF1 in colorectal oncogenesis.
Collapse
Affiliation(s)
- Maher Jedi
- Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Graeme P Young
- Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, SA, Australia
| | | | - Erin L Symonds
- Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, SA, Australia.,Bowel Health Service, Flinders Medical Centre, Bedford Park, SA, Australia
| |
Collapse
|
26
|
The mannose receptor LY75 (DEC205/CD205) modulates cellular phenotype and metastatic potential of ovarian cancer cells. Oncotarget 2017; 7:14125-42. [PMID: 26871602 PMCID: PMC4924702 DOI: 10.18632/oncotarget.7288] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 01/29/2016] [Indexed: 12/16/2022] Open
Abstract
The molecular basis of epithelial ovarian cancer (EOC) dissemination is still poorly understood. Previously, we identified the mannose receptor LY75 gene as hypomethylated in high-grade (HG) serous EOC tumors, compared to normal ovarian tissues. LY75 represents endocytic receptor expressed on dendritic cells and so far, has been primarily studied for its role in antigen processing and presentation. Here we demonstrate that LY75 is overexpressed in advanced EOC and that LY75 suppression induces mesenchymal-to-epithelial transition (MET) in EOC cell lines with mesenchymal morphology (SKOV3 and TOV112), accompanied by reduction of their migratory and invasive capacity in vitro and enhanced tumor cell colonization and metastatic growth in vivo. LY75 knockdown in SKOV3 cells also resulted in predominant upregulation of functional pathways implicated in cell proliferation and metabolism, while pathways associated with cell signaling and adhesion, complement activation and immune response were mostly suppressed. Moreover, LY75 suppression had an opposite effect on EOC cell lines with epithelial phenotype (A2780s and OV2008), by directing epithelial-to-mesenchymal transition (EMT) associated with reduced capacity for in vivo EOC cell colonization, as similar/identical signaling pathways were reversely regulated, when compared to mesenchymal LY75 knockdown EOC cells.To our knowledge, this is the first report of a gene displaying such pleiotropic effects in sustaining the cellular phenotype of EOC cells and points to novel functions of this receptor in modulating EOC dissemination. Our data also support previous findings regarding the superior capacity of epithelial cancer cells in metastatic colonization of distant sites, compared to cancer cells with mesenchymal-like morphology.
Collapse
|
27
|
Sheta R, Bachvarova M, Plante M, Gregoire J, Renaud MC, Sebastianelli A, Popa I, Bachvarov D. Altered expression of different GalNAc‑transferases is associated with disease progression and poor prognosis in women with high-grade serous ovarian cancer. Int J Oncol 2017; 51:1887-1897. [PMID: 29039611 DOI: 10.3892/ijo.2017.4147] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/25/2017] [Indexed: 11/06/2022] Open
Abstract
Protein glycosylation perturbations are implicated in a variety of diseases, including cancer. Aberrant glycosylation in cancer is frequently attributed to altered expression of polypeptide GalNAc transferases (GalNAc‑Ts) - enzymes initiating mucin-type O-glycosylation. A previous study from our group demonstrated that one member of this family (GALNT3) is overexpressed in epithelial ovarian cancer (EOC), and GALNT3 expression correlated with shorter progression-free survival (PFS) in EOC patients with advanced disease. As considerable degree of redundancy between members of the GalNAc‑Ts gene family has been frequently observed, we decided to investigate whether other members of this family are essential in EOC progression. In silico analysis based on publically available data was indicative for altered expression of five GalNAc‑Ts (GALNT2, T4, T6, T9 and T14) in ovarian high-grade serous carcinoma (HGSC) samples compared to non-tumoral (control) ovarian tissue. We analyzed protein expression of these GalNAc‑Ts in EOC cells and tumors by western blotting, followed by immunohistochemical (IHC) evaluation of their expression in EOC tumor and control samples using tissue microarrays (TMAs). Western blot analyses were indicative for low expression of GALNT2 and strong expression of GALNT6, T9 and T14 in both EOC cells and tumors. These observations were confirmed by IHC. GALNT2 displayed significantly lower expression, while GALNT6, GALNT9 and GALNT14 showed significantly higher expression in HGSC tumors compared to control tissue. Importantly, GALNT6 and GALNT14 expression correlated with poor prognosis of serous EOC patients. Moreover, our results suggest for overlapping functions of some GalNAc‑Ts, more specifically GALNT3 and GALNT6, in directing EOC progression. Our results are indicative for a possible implication of different members of the GalNAc‑T gene family in modulating EOC progression, and the potential use of GALNT6 and GALNT14 as novel prognostic EOC biomarkers. These data warrant future studies on the role of members of the GalNAc‑Ts gene family in ovarian tumorigenesis.
Collapse
Affiliation(s)
- Razan Sheta
- Department of Molecular Medicine, Laval University, Quebec, Quebec G1V 0A6, Canada
| | | | - Marie Plante
- CHU de Québec Research Center, Hotel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
| | - Jean Gregoire
- CHU de Québec Research Center, Hotel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
| | - Marie-Claude Renaud
- CHU de Québec Research Center, Hotel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
| | | | - Ion Popa
- Molecular Biology, Medical Biochemistry, and Pathology, Laval University, QC G1V 0A6, Canada
| | - Dimcho Bachvarov
- Department of Molecular Medicine, Laval University, Quebec, Quebec G1V 0A6, Canada
| |
Collapse
|
28
|
Srivastava SK, Ahmad A, Miree O, Patel GK, Singh S, Rocconi RP, Singh AP. Racial health disparities in ovarian cancer: not just black and white. J Ovarian Res 2017; 10:58. [PMID: 28931403 PMCID: PMC5607508 DOI: 10.1186/s13048-017-0355-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/01/2017] [Indexed: 01/24/2023] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy, which disproportionately affects African American (AA) women. Lack of awareness and socioeconomic factors are considered important players in OC racial health disparity, while at the same time, some recent studies have brought focus on the genetic basis of disparity as well. Differential polymorphisms, mutations and expressions of genes have been reported in OC patients of diverse racial and ethnic backgrounds. Combined, it appears that neither genetic nor the socioeconomic factors alone might explain the observed racially disparate health outcomes among OC patients. Rather, a more logical explanation would be the one that takes into consideration the combination and/or the interplay of these factors, perhaps even including some environmental ones. Hence, in this article, we attempt to review the available information on OC racial health disparity, and provide an overview of socioeconomic, environmental and genetic factors, as well as the epigenetic changes that can act as a liaison between the three. A better understanding of these underlying causes will help further research on effective cancer management among diverse patient population and ultimately narrow health disparity gaps.
Collapse
Affiliation(s)
- Sanjeev K Srivastava
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604-1405, USA. .,Division of Cell Biology and Genetics, Tatva Biosciences, Coastal Innovation Hub, 600 Clinic Drive, Mobile, AL, 36688, USA.
| | - Aamir Ahmad
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604-1405, USA
| | - Orlandric Miree
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604-1405, USA
| | - Girijesh Kumar Patel
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604-1405, USA
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604-1405, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, USA
| | - Rodney P Rocconi
- Division of Gynecologic Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Ajay P Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604-1405, USA. .,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, USA.
| |
Collapse
|
29
|
Sheta R, Wang ZQ, Bachvarova M, Plante M, Gregoire J, Renaud MC, Sebastianelli A, Gobeil S, Morin C, Macdonald E, Vanderhyden B, Bachvarov D. Hic-5 regulates epithelial to mesenchymal transition in ovarian cancer cells in a TGFβ1-independent manner. Oncotarget 2017; 8:82506-82530. [PMID: 29137281 PMCID: PMC5669907 DOI: 10.18632/oncotarget.19714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/17/2017] [Indexed: 01/01/2023] Open
Abstract
The molecular basis of epithelial ovarian cancer (EOC) dissemination is still poorly understood. We have previously identified the hydrogen peroxide-inducible clone-5 (Hic-5) gene as hypomethylated in high-grade (HG) serous EOC tumors, compared to normal ovarian tissues. Hic-5 is a focal adhesion scaffold protein and has been primarily studied for its role as a key mediator of TGF-β–induced epithelial-to-mesenchymal transition (EMT) in epithelial cells of both normal and malignant origin; however, its role in EOC has been never investigated. Here we demonstrate that Hic-5 is overexpressed in advanced EOC, and that Hic-5 is upregulated upon TGFβ1 treatment in the EOC cell line with epithelial morphology (A2780s), associated with EMT induction. However, ectopic expression of Hic-5 in A2780s cells induces EMT independently of TGFβ1, accompanied with enhancement of cellular proliferation rate and migratory/invasive capacity and increased resistance to chemotherapeutic drugs. Moreover, Hic-5 knockdown in the EOC cells with mesenchymal morphology (SKOV3) was accompanied by induction of mesenchymal-to-epithelial transition (MET), followed by a reduction of their proliferative, migratory/invasive capacity, and increased drugs sensitivity in vitro, as well as enhanced tumor cell colonization and metastatic growth in vivo. The modulation of Hic-5 expression in EOC cells resulted in altered regulation of numerous EMT-related canonical pathways and was indicative for a possible role of Hic-5 in controlling EMT through a RhoA/ROCK mediated mechanism. To our knowledge, this is the first report examining the role of Hic-5 in EOC, and its role in maintaining the mesenchymal phenotype of EOC cells independently of exogenous TGFβ1 treatment.
Collapse
Affiliation(s)
- Razan Sheta
- Department of Molecular Medicine, Université Laval, Québec, Québec, Canada.,Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec, Québec, Canada
| | - Zhi-Qiang Wang
- Department of Molecular Medicine, Université Laval, Québec, Québec, Canada.,Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec, Québec, Canada
| | - Magdalena Bachvarova
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec, Québec, Canada
| | - Marie Plante
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec, Québec, Canada.,Department of Obstetrics and Gynecology, Université Laval, Québec, Québec, Canada
| | - Jean Gregoire
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec, Québec, Canada.,Department of Obstetrics and Gynecology, Université Laval, Québec, Québec, Canada
| | - Marie-Claude Renaud
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec, Québec, Canada.,Department of Obstetrics and Gynecology, Université Laval, Québec, Québec, Canada
| | - Alexandra Sebastianelli
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec, Québec, Canada.,Department of Obstetrics and Gynecology, Université Laval, Québec, Québec, Canada
| | - Stephane Gobeil
- Department of Molecular Medicine, Université Laval, Québec, Québec, Canada.,Centre de recherche du CHU de Québec, CHUL, Québec, Québec, Canada
| | - Chantale Morin
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec, Québec, Canada
| | - Elizabeth Macdonald
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Barbara Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Dimcho Bachvarov
- Department of Molecular Medicine, Université Laval, Québec, Québec, Canada.,Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec, Québec, Canada
| |
Collapse
|
30
|
Riggio AI, Blyth K. The enigmatic role of RUNX1 in female-related cancers - current knowledge & future perspectives. FEBS J 2017; 284:2345-2362. [PMID: 28304148 DOI: 10.1111/febs.14059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/15/2017] [Accepted: 03/13/2017] [Indexed: 12/15/2022]
Abstract
Historically associated with the aetiology of human leukaemia, the runt-related transcription factor 1 (RUNX1) gene has in recent years reared its head in an assortment of epithelial cancers. This review discusses the state-of-the-art knowledge of the enigmatic role played by RUNX1 in female-related cancers of the breast, the uterus and the ovary. The weight of evidence accumulated so far is indicative of a very context-dependent role, as either an oncogene or a tumour suppressor. This is corroborated by high-throughput sequencing endeavours which report different genetic alterations affecting the gene, including amplification, deep deletion and mutations. Herein, we attempt to dissect that contextual role by firstly giving an overview of what is currently known about RUNX1 function in these specific tumour types, and secondly by delving into connections between this transcription factor and the physiology of these female tissues. In doing so, RUNX1 emerges not only as a gene involved in female sex development but also as a crucial mediator of female hormone signalling. In view of RUNX1 now being listed as a driver gene, we believe that greater knowledge of the mechanisms underlying its functional dualism in epithelial cancers is worthy of further investigation.
Collapse
Affiliation(s)
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, UK
| |
Collapse
|
31
|
Liu Y, Sun L, Fong P, Yang J, Zhang Z, Yin S, Jiang S, Liu X, Ju H, Huang L, Bai J, Gong K, Yan S, Zhang C, Shao G. An association between overexpression of DNA methyltransferase 3B4 and clear cell renal cell carcinoma. Oncotarget 2017; 8:19712-19722. [PMID: 28160561 PMCID: PMC5386716 DOI: 10.18632/oncotarget.14966] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 01/03/2017] [Indexed: 12/20/2022] Open
Abstract
It is well known that abnormal DNA methylations occur frequently in kidney cancer. However, it remains unclear exactly which types of DNA methyltransferases (DNMT) contribute to the pathologies of kidney cancers. In order to determine the functions of DNA methyltransferase in kidney tumorigenesis on the molecular level, we examined the mRNA expression levels of DNMT1, DNMT3A, DNMT3B, and DNMT3B variants in renal cell carcinoma tissue. Both mRNA and protein levels of DNMT3B4, a splice variant of DNMT3B, were increased in renal cell carcinoma tissue compared with adjacent control tissues. Additionally, Alu elements and long interspersed nuclear elements (LINE-1) were hypomethylated in renal cell carcinoma tissue. Meanwhile, methylation of the promoter for RASSF1A, a tumor suppressor gene, was moderately increased in renal cell carcinoma tissue, while RASSF1A expression was decreased. Thus, our data suggest that the overexpression of DNMT3B4 may play an important role in human kidney tumorigenesis through chromosomal instability and methylation of RASSF1A.
Collapse
Affiliation(s)
- You Liu
- Biomedicine Research Center and Basic Medical College, Baotou Medical College, Inner Mongolia, PRC
| | - Liantao Sun
- Biomedicine Research Center and Basic Medical College, Baotou Medical College, Inner Mongolia, PRC
| | - Peter Fong
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Jie Yang
- Biomedicine Research Center and Basic Medical College, Baotou Medical College, Inner Mongolia, PRC
| | - Zhuxia Zhang
- Biomedicine Research Center and Basic Medical College, Baotou Medical College, Inner Mongolia, PRC
| | - Shuihui Yin
- Biomedicine Research Center and Basic Medical College, Baotou Medical College, Inner Mongolia, PRC
| | - Shuyuan Jiang
- Biomedicine Research Center and Basic Medical College, Baotou Medical College, Inner Mongolia, PRC
| | - Xiaolei Liu
- Biomedicine Research Center and Basic Medical College, Baotou Medical College, Inner Mongolia, PRC
| | - Hongge Ju
- Biomedicine Research Center and Basic Medical College, Baotou Medical College, Inner Mongolia, PRC
| | - Lihua Huang
- Biomedicine Research Center and Basic Medical College, Baotou Medical College, Inner Mongolia, PRC
| | - Jing Bai
- Biomedicine Research Center and Basic Medical College, Baotou Medical College, Inner Mongolia, PRC
| | - Kerui Gong
- Department of Oral and Maxillofacial Surgery, University of California San Francsico, San Francisco, CA, USA
| | - Shaochun Yan
- Biomedicine Research Center and Basic Medical College, Baotou Medical College, Inner Mongolia, PRC
| | - Chunyang Zhang
- Department of Neurology, First Affiliated Hospital of Baotou Medical College, Inner Mongolia, PRC
| | - Guo Shao
- Biomedicine Research Center and Basic Medical College, Baotou Medical College, Inner Mongolia, PRC
- Institute for Hypoxia Medicine, Capital Medical University, Beijing, PRC
| |
Collapse
|
32
|
Faddaoui A, Sheta R, Bachvarova M, Plante M, Gregoire J, Renaud MC, Sebastianelli A, Gobeil S, Morin C, Ghani K, Bachvarov D. Suppression of the grainyhead transcription factor 2 gene (GRHL2) inhibits the proliferation, migration, invasion and mediates cell cycle arrest of ovarian cancer cells. Cell Cycle 2017; 16:693-706. [PMID: 28278050 DOI: 10.1080/15384101.2017.1295181] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Previously, we have identified the Grainyhead transcription factor 2 gene (GRHL2) as notably hypomethylated in high-grade (HG) serous epithelial ovarian tumors, compared with normal ovarian tissues. GRHL2 is known for its functions in normal tissue development and wound healing. In the context of cancer, the role of GRHL2 is still ambiguous as both tumorigenic and tumor suppressive functions have been reported for this gene, although a role of GRHL2 in maintaining the epithelial status of cancer cells has been suggested. In this study, we report that GRHL2 is strongly overexpressed in both low malignant potential (LMP) and HG serous epithelial ovarian tumors, which probably correlates with its hypomethylated status. Suppression of the GRHL2 expression led to a sharp decrease in cell proliferation, migration and invasion and induced G1 cell cycle arrest in epithelial ovarian cancer (EOC) cells displaying either epithelial (A2780s) or mesenchymal (SKOV3) phenotypes. However, no phenotypic alterations were observed in these EOC cell lines following GRHL2 silencing. Gene expression profiling and consecutive canonical pathway and network analyses confirmed these data, as in both these EOC cell lines, GRHL2 ablation was associated with the downregulation of various genes and pathways implicated in cell growth and proliferation, cell cycle control and cellular metabolism. Taken together, our data are indicative for a strong oncogenic potential of the GRHL2 gene in EOC progression and support recent findings on the role of GRHL2 as one of the major phenotypic stability factors (PSFs) that stabilize the highly aggressive/metastatic hybrid epithelial/mesenchymal (E/M) phenotype of cancer cells.
Collapse
Affiliation(s)
- Adnen Faddaoui
- a Department of Molecular Medicine , Université Laval , Québec , Canada.,b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada
| | - Razan Sheta
- a Department of Molecular Medicine , Université Laval , Québec , Canada.,b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada
| | - Magdalena Bachvarova
- b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada
| | - Marie Plante
- b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada.,c Department of Obstetrics and Gynecology , Université Laval , Québec , Canada
| | - Jean Gregoire
- b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada.,c Department of Obstetrics and Gynecology , Université Laval , Québec , Canada
| | - Marie-Claude Renaud
- b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada.,c Department of Obstetrics and Gynecology , Université Laval , Québec , Canada
| | - Alexandra Sebastianelli
- b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada.,c Department of Obstetrics and Gynecology , Université Laval , Québec , Canada
| | - Stephane Gobeil
- a Department of Molecular Medicine , Université Laval , Québec , Canada.,d Centre de Recherche du CHU de Québec , CHUL , Québec , Canada
| | - Chantale Morin
- b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada
| | - Karim Ghani
- b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada
| | - Dimcho Bachvarov
- a Department of Molecular Medicine , Université Laval , Québec , Canada.,b Centre de Recherche du CHU de Québec , L'Hôtel-Dieu de Québec , Québec , Canada
| |
Collapse
|
33
|
Epigenetic basis of cancer health disparities: Looking beyond genetic differences. Biochim Biophys Acta Rev Cancer 2017; 1868:16-28. [PMID: 28108348 DOI: 10.1016/j.bbcan.2017.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/07/2017] [Accepted: 01/16/2017] [Indexed: 12/18/2022]
Abstract
Despite efforts at various levels, racial health disparities still exist in cancer patients. These inequalities in incidence and/or clinical outcome can only be explained by a multitude of factors, with genetic basis being one of them. Several investigations have provided convincing evidence to support epigenetic regulation of cancer-associated genes, which results in the differential transcriptome and proteome, and may be linked to a pre-disposition of individuals of certain race/ethnicity to early or more aggressive cancers. Recent technological advancements and the ability to quickly analyze whole genome have aided in these efforts, and owing to their relatively easy detection, methylation events are much well-characterized, than the acetylation events, across human populations. The early trend of investigating a pre-determined set of genes for differential epigenetic regulation is paving way for more unbiased screening. This review summarizes our current understanding of the epigenetic events that have been tied to the racial differences in cancer incidence and mortality. A better understanding of the epigenetics of racial diversity holds promise for the design and execution of novel strategies targeting the human epigenome for reducing the disparity gaps.
Collapse
|
34
|
Sapiezynski J, Taratula O, Rodriguez-Rodriguez L, Minko T. Precision targeted therapy of ovarian cancer. J Control Release 2016; 243:250-268. [PMID: 27746277 DOI: 10.1016/j.jconrel.2016.10.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/09/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
Abstract
The review is aimed at describing modern approaches to detection as well as precision and personalized treatment of ovarian cancer. Modern methods and future directions of nanotechnology-based targeted and personalized therapy are discussed.
Collapse
Affiliation(s)
- Justin Sapiezynski
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, Oregon State University, Portland, OR 97239, United States
| | - Lorna Rodriguez-Rodriguez
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, United States; Department of Obstetrics and Gynecology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, United States
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, United States.
| |
Collapse
|
35
|
Wang ZQ, Faddaoui A, Bachvarova M, Plante M, Gregoire J, Renaud MC, Sebastianelli A, Guillemette C, Gobeil S, Macdonald E, Vanderhyden B, Bachvarov D. BCAT1 expression associates with ovarian cancer progression: possible implications in altered disease metabolism. Oncotarget 2016; 6:31522-43. [PMID: 26372729 PMCID: PMC4741622 DOI: 10.18632/oncotarget.5159] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/28/2015] [Indexed: 12/17/2022] Open
Abstract
Previously, we have identified the branched chain amino-acid transaminase 1 (BCAT1) gene as notably hypomethylated in low-malignant potential (LMP) and high-grade (HG) serous epithelial ovarian tumors, compared to normal ovarian tissues. Here we show that BCAT1 is strongly overexpressed in both LMP and HG serous epithelial ovarian tumors, which probably correlates with its hypomethylated status. Knockdown of the BCAT1 expression in epithelial ovarian cancer (EOC) cells led to sharp decrease of cell proliferation, migration and invasion and inhibited cell cycle progression. BCAT1 silencing was associated with the suppression of numerous genes and pathways known previously to be implicated in ovarian tumorigenesis, and the induction of some tumor suppressor genes (TSGs). Moreover, BCAT1 suppression resulted in downregulation of numerous genes implicated in lipid production and protein synthesis, suggesting its important role in controlling EOC metabolism. Further metabolomic analyses were indicative for significant depletion of most amino acids and different phospho- and sphingolipids following BCAT1 knockdown. Finally, BCAT1 suppression led to significantly prolonged survival time in xenograft model of advanced peritoneal EOC. Taken together, our findings provide new insights about the functional role of BCAT1 in ovarian carcinogenesis and identify this transaminase as a novel EOC biomarker and putative EOC therapeutic target.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Molecular Medicine, Laval University, Québec PQ, Canada.,Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec PQ, Canada
| | - Adnen Faddaoui
- Department of Molecular Medicine, Laval University, Québec PQ, Canada.,Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec PQ, Canada
| | | | - Marie Plante
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec PQ, Canada.,Department of Obstetrics and Gynecology, Laval University, Québec PQ, Canada
| | - Jean Gregoire
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec PQ, Canada.,Department of Obstetrics and Gynecology, Laval University, Québec PQ, Canada
| | - Marie-Claude Renaud
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec PQ, Canada.,Department of Obstetrics and Gynecology, Laval University, Québec PQ, Canada
| | - Alexandra Sebastianelli
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec PQ, Canada.,Department of Obstetrics and Gynecology, Laval University, Québec PQ, Canada
| | - Chantal Guillemette
- Centre de recherche du CHU de Québec, CHUL, Québec PQ, Canada.,Faculty of Pharmacy, Laval University, Québec PQ, Canada
| | - Stéphane Gobeil
- Department of Molecular Medicine, Laval University, Québec PQ, Canada.,Centre de recherche du CHU de Québec, CHUL, Québec PQ, Canada
| | - Elizabeth Macdonald
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Barbara Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Dimcho Bachvarov
- Department of Molecular Medicine, Laval University, Québec PQ, Canada.,Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec PQ, Canada
| |
Collapse
|
36
|
Ruan P, Shen J, Santella RM, Zhou S, Wang S. NEpiC: a network-assisted algorithm for epigenetic studies using mean and variance combined signals. Nucleic Acids Res 2016; 44:e134. [PMID: 27302130 PMCID: PMC5027497 DOI: 10.1093/nar/gkw546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/04/2016] [Indexed: 12/13/2022] Open
Abstract
DNA methylation plays an important role in many biological processes. Existing epigenome-wide association studies (EWAS) have successfully identified aberrantly methylated genes in many diseases and disorders with most studies focusing on analysing methylation sites one at a time. Incorporating prior biological information such as biological networks has been proven to be powerful in identifying disease-associated genes in both gene expression studies and genome-wide association studies (GWAS) but has been under studied in EWAS. Although recent studies have noticed that there are differences in methylation variation in different groups, only a few existing methods consider variance signals in DNA methylation studies. Here, we present a network-assisted algorithm, NEpiC, that combines both mean and variance signals in searching for differentially methylated sub-networks using the protein–protein interaction (PPI) network. In simulation studies, we demonstrate the power gain from using both the prior biological information and variance signals compared to using either of the two or neither information. Applications to several DNA methylation datasets from the Cancer Genome Atlas (TCGA) project and DNA methylation data on hepatocellular carcinoma (HCC) from the Columbia University Medical Center (CUMC) suggest that the proposed NEpiC algorithm identifies more cancer-related genes and generates better replication results.
Collapse
Affiliation(s)
- Peifeng Ruan
- School of Computer Science and Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai 200433, China
| | - Jing Shen
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Regina M Santella
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Shuigeng Zhou
- School of Computer Science and Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai 200433, China
| | - Shuang Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| |
Collapse
|
37
|
Ovarian cancer and the immune system - The role of targeted therapies. Gynecol Oncol 2016; 142:349-56. [PMID: 27174875 DOI: 10.1016/j.ygyno.2016.05.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/03/2016] [Accepted: 05/07/2016] [Indexed: 01/21/2023]
Abstract
The majority of patients with epithelial ovarian cancer are diagnosed with advanced disease. While many of these patients will respond initially to chemotherapy, the majority will relapse and die of their disease. Targeted therapies that block or activate specific intracellular signaling pathways have been disappointing. In the past 15years, the role of the immune system in ovarian cancer has been investigated. Patients with a more robust immune response, as documented by the presence of lymphocytes infiltrating within their tumor, have increased survival and better response to chemotherapy. In addition, a strong immunosuppressive environment often accompanies ovarian cancer. Recent research has identified potential therapies that leverage the immune system to identify and destroy tumor cells that previously evaded immunosurveillance mechanisms. In this review, we discuss the role of the immune system in ovarian cancer and focus on specific pathways and molecules that show a potential for targeted therapy. We also review the ongoing clinical trials using targeted immunotherapy in ovarian cancer. The role of targeted immunotherapy in patients with ovarian cancer represents a field of growing research and clinical importance.
Collapse
|
38
|
Roos L, van Dongen J, Bell CG, Burri A, Deloukas P, Boomsma DI, Spector TD, Bell JT. Integrative DNA methylome analysis of pan-cancer biomarkers in cancer discordant monozygotic twin-pairs. Clin Epigenetics 2016; 8:7. [PMID: 26798410 PMCID: PMC4721070 DOI: 10.1186/s13148-016-0172-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/12/2016] [Indexed: 02/06/2023] Open
Abstract
Background A key focus in cancer research is the discovery of biomarkers that accurately diagnose early lesions in non-invasive tissues. Several studies have identified malignancy-associated DNA methylation changes in blood, yet no general cancer biomarker has been identified to date. Here, we explore the potential of blood DNA methylation as a biomarker of pan-cancer (cancer of multiple different origins) in 41 female cancer discordant monozygotic (MZ) twin-pairs sampled before or after diagnosis using the Illumina HumanMethylation450 BeadChip. Results We analysed epigenome-wide DNA methylation profiles in 41 cancer discordant MZ twin-pairs with affected individuals diagnosed with tumours at different single primary sites: the breast, cervix, colon, endometrium, thyroid gland, skin (melanoma), ovary, and pancreas. No significant global differences in whole blood DNA methylation profiles were observed. Epigenome-wide analyses identified one novel pan-cancer differentially methylated position at false discovery rate (FDR) threshold of 10 % (cg02444695, P = 1.8 × 10−7) in an intergenic region 70 kb upstream of the SASH1 tumour suppressor gene, and three suggestive signals in COL11A2, AXL, and LINC00340. Replication of the four top-ranked signals in an independent sample of nine cancer-discordant MZ twin-pairs showed a similar direction of association at COL11A2, AXL, and LINC00340, and significantly greater methylation discordance at AXL compared to 480 healthy concordant MZ twin-pairs. The effects at cg02444695 (near SASH1), COL11A2, and LINC00340 were the most promising in biomarker potential because the DNA methylation differences were found to pre-exist in samples obtained prior to diagnosis and were limited to a 5-year period before diagnosis. Gene expression follow-up at the top-ranked signals in 283 healthy individuals showed correlation between blood methylation and gene expression in lymphoblastoid cell lines at PRL, and in the skin tissue at AXL. A significant enrichment of differential DNA methylation was observed in enhancer regions (P = 0.03). Conclusions We identified DNA methylation signatures in blood associated with pan-cancer, at or near SASH1, COL11A2, AXL, and LINC00340. Three of these signals were present up to 5 years prior to cancer diagnosis, highlighting the potential clinical utility of whole blood DNA methylation analysis in cancer surveillance. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0172-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leonie Roos
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jenny van Dongen
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Christopher G Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK ; MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK ; Human Development and Health Academic Unit, Institute of Developmental Sciences, University of Southampton, Southampton, UK ; Epigenomic Medicine, Centre for Biological Sciences, Faculty of Environmental and Natural Sciences, University of Southampton, Southampton, UK
| | - Andrea Burri
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dorret I Boomsma
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| |
Collapse
|
39
|
Earp MA, Cunningham JM. DNA methylation changes in epithelial ovarian cancer histotypes. Genomics 2015; 106:311-21. [PMID: 26363302 DOI: 10.1016/j.ygeno.2015.09.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 09/04/2015] [Accepted: 09/06/2015] [Indexed: 12/12/2022]
Abstract
Survival after a diagnosis of ovarian cancer has not improved, and despite histological differences, treatment is similar for all cases. Understanding the molecular basis for ovarian cancer risk and prognosis is fundamental, and to this end much has been gleaned about genetic changes contributing to risk, and to a lesser extent, survival. There's considerable evidence for genetic differences between the four pathologically defined histological subtypes; however, the contribution of epigenetics is less well documented. In this report, we review alterations in DNA methylation in ovarian cancer, focusing on histological subtypes, and studies examining the roles of methylation in determining therapy response. As epigenetics is making its way into clinical care, we review the application of cell free DNA methylation to ovarian cancer diagnosis and care. Finally, we comment on recurrent limitations in the DNA methylation literature for ovarian cancer, which can and should be addressed to mature this field.
Collapse
Affiliation(s)
- Madalene A Earp
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| | - Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
40
|
Chugh S, Gnanapragassam VS, Jain M, Rachagani S, Ponnusamy MP, Batra SK. Pathobiological implications of mucin glycans in cancer: Sweet poison and novel targets. Biochim Biophys Acta Rev Cancer 2015; 1856:211-25. [PMID: 26318196 DOI: 10.1016/j.bbcan.2015.08.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/15/2015] [Accepted: 08/25/2015] [Indexed: 12/13/2022]
Abstract
Mucins are large glycoproteins expressed on the epithelia that provide a protective barrier against harsh insults from toxins and pathogenic microbes. These glycoproteins are classified primarily as being secreted and membrane-bound; both forms are involved in pathophysiological functions including inflammation and cancer. The high molecular weight of mucins is attributed to their large polypeptide backbone that is extensively covered by glycan moieties that modulate the function of mucins and, hence, play an important role in physiological functions. Deregulation of glycosylation machinery during malignant transformation results in altered mucin glycosylation. This review describes the functional implications and pathobiological significance of altered mucin glycosylation in cancer. Further, this review delineates various factors such as glycosyltransferases and tumor microenvironment that contribute to dysregulation of mucin glycosylation during cancer. Finally, this review discusses the scope of mucin glycan epitopes as potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Seema Chugh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Vinayaga S Gnanapragassam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
41
|
Singh AK, Chandra N, Bapat SA. Evaluation of Epigenetic Drug Targeting of Heterogenous Tumor Cell Fractions Using Potential Biomarkers of Response in Ovarian Cancer. Clin Cancer Res 2015; 21:5151-63. [PMID: 26130461 DOI: 10.1158/1078-0432.ccr-15-0505] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/18/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Resolution of aberrant epigenetic changes leading to altered gene expression during transformation and tumor progression is pertinent for mechanistic understanding of disrupted pathways in cancer. Such changes provide for biomarkers that can be applied in drug screening and improved disease management. EXPERIMENTAL DESIGN Genome-wide profiling and analyses of promoter DNA methylation, histone modifications, and gene expression of an in vitro progression model of serous ovarian adenocarcinoma were carried out. Similar in silico analyses and comparison of methylation and gene expression of early- and late-grade ovarian cancer samples in The Cancer Genome Atlas assigned a clinical relevance to our study. Candidate biomarkers were evaluated for epigenetic drug treatments in experimental animal models on a background of differing tumor cell responses arising from intratumor heterogeneity. RESULTS Differentially regulated genes during tumor progression were identified through the previously mentioned analyses as candidate biomarkers. In examining the tumor suppressor PTGIS as a potential biomarker for treatment with either 5-Aza-dC or TSA, 5-Aza-dC effectively stabilized cell cycling, restricted genetic instability, and derepressed PTGIS expression, while TSA led to emergence of drug-resistant progenitors lacking PTGIS expression. Profiling MEST and RXRγ for curcumin and CBB1007, respectively, indicated an inability of curcumin and CBB1007 in restricting residual tumor regenerative capabilities. CONCLUSIONS Our study provides novel insights into epigenetic regulation in ovarian cancer progression and potential biomarkers for evaluating efficacy of epigenetic drugs in restricting residual tumor regeneration. Such approaches may assign a new functional interpretation of drug efficacy and cell tumor responses in ovarian cancer.
Collapse
Affiliation(s)
- Anand Kamal Singh
- National Centre for Cell Science, NCCS Complex, Pune, Maharashtra, India
| | - Nishi Chandra
- National Centre for Cell Science, NCCS Complex, Pune, Maharashtra, India
| | - Sharmila A Bapat
- National Centre for Cell Science, NCCS Complex, Pune, Maharashtra, India.
| |
Collapse
|
42
|
Al-Shabanah OA, Hafez MM, Hassan ZK, Sayed-Ahmed MM, Abozeed WN, Alsheikh A, Al-Rejaie SS. Methylation of SFRPs and APC genes in ovarian cancer infected with high risk human papillomavirus. Asian Pac J Cancer Prev 2015; 15:2719-25. [PMID: 24761891 DOI: 10.7314/apjcp.2014.15.6.2719] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Secreted frizzled-related protein (SFRP) genes, new tumor suppressor genes, are negative regulators of the Wnt pathway whose alteration is associated with various tumors. In ovarian cancer, SFRPs genes promoter methylation can lead to gene inactivation. This study investigated mechanisms of SFRP and adenomatous polyposis coli (APC) genes silencing in ovarian cancer infected with high risk human papillomavirus. MATERIALS AND METHODS DNA was extracted from 200 formalin-fixed paraffin-embedded ovarian cancer and their normal adjacent tissues (NAT) and DNA methylation was detected by methylation specific PCR (MSP). High risk human papillomavirus (HPV) was detected by nested PCR with consensus primers to amplify a broad spectrum of HPV genotypes. RESULTS The percentages of SFRP and APC genes with methylation were significantly higher in ovarian cancer tissues infected with high risk HPV compared to NAT. The methylated studied genes were associated with suppression in their gene expression. CONCLUSION This finding highlights the possible role of the high risk HPV virus in ovarian carcinogenesis or in facilitating cancer progression by suppression of SFRP and APC genes via DNA methylation.
Collapse
Affiliation(s)
- Othman Abdulla Al-Shabanah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia E-mail :
| | | | | | | | | | | | | |
Collapse
|
43
|
Tone AA, McConechy MK, Yang W, Ding J, Yip S, Kong E, Wong KK, Gershenson DM, Mackay H, Shah S, Gilks B, Tinker AV, Clarke B, McAlpine JN, Huntsman D. Intratumoral heterogeneity in a minority of ovarian low-grade serous carcinomas. BMC Cancer 2014; 14:982. [PMID: 25523272 PMCID: PMC4320586 DOI: 10.1186/1471-2407-14-982] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/11/2014] [Indexed: 12/20/2022] Open
Abstract
Background Ovarian low-grade serous carcinoma (LGSC) has fewer mutations than ovarian high-grade serous carcinoma (HGSC) and a less aggressive clinical course. However, an overwhelming majority of LGSC patients do not respond to conventional chemotherapy resulting in a poor long-term prognosis comparable to women diagnosed with HGSC. KRAS and BRAF mutations are common in LGSC, leading to clinical trials targeting the MAPK pathway. We assessed the stability of targetable somatic mutations over space and/or time in LGSC, with a view to inform stratified treatment strategies and clinical trial design. Methods Eleven LGSC cases with primary and recurrent paired samples were identified (stage IIB-IV). Tumor DNA was isolated from 1–4 formalin-fixed paraffin-embedded tumor blocks from both the primary and recurrence (n = 37 tumor and n = 7 normal samples). Mutational analysis was performed using the Ion Torrent AmpliSeqTM Cancer Panel, with targeted validation using Fluidigm-MiSeq, Sanger sequencing and/or Raindance Raindrop digital PCR. Results KRAS (3/11), BRAF (2/11) and/or NRAS (1/11) mutations were identified in five unique cases. A novel, non-synonymous mutation in SMAD4 was observed in one case. No somatic mutations were detected in the remaining six cases. In two cases with a single matched primary and recurrent sample, two KRAS hotspot mutations (G12V, G12R) were both stable over time. In three cases with multiple samplings from both the primary and recurrent surgery some mutations (NRAS Q61R, BRAF V600E, SMAD4 R361G) were stable across all samples, while others (KRAS G12V, BRAF G469V) were unstable. Conclusions Overall, the majority of cases with detectable somatic mutations showed mutational stability over space and time while one of five cases showed both temporal and spatial mutational instability in presumed drivers of disease. Investigation of additional cases is required to confirm whether mutational heterogeneity in a minority of LGSC is a general phenomenon that should be factored into the design of clinical trials and stratified treatment for this patient population. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-982) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - David Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
44
|
Wang ZQ, Bachvarova M, Morin C, Plante M, Gregoire J, Renaud MC, Sebastianelli A, Bachvarov D. Role of the polypeptide N-acetylgalactosaminyltransferase 3 in ovarian cancer progression: possible implications in abnormal mucin O-glycosylation. Oncotarget 2014; 5:544-60. [PMID: 24504219 PMCID: PMC3964228 DOI: 10.18632/oncotarget.1652] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/15/2014] [Indexed: 12/22/2022] Open
Abstract
Previously, we have identified the polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3) gene as notably hypomethylated in low-malignant potential (LMP) and high-grade (HG) serous epithelial ovarian tumors, compared to normal ovarian tissues. Here we show that GALNT3 is strongly overexpressed in HG serous EOC tumors as compared to normal ovarian tissue. Moreover, the GALNT3 expression significantly correlated with shorter progression-free survival (PFS) intervals in epithelial ovarian cancer (EOC) patients with advanced disease. Knockdown of the GALNT3 expression in EOC cells led to sharp decrease of cell proliferation and induced S-phase cell cycle arrest. Additionally, GALNT3 suppression significantly inhibited EOC cell migration and invasion. Gene expression profiling and consecutive network and pathway analyses confirmed these findings, as numerous genes and pathways known previously to be implicated in ovarian tumorigenesis, including EOC tumor invasion and metastasis, were found to be downregulated upon GALNT3 suppression, while some tumor suppressor genes were induced. Moreover, GALNT3 downregulation was associated with reduced MUC1 protein expression in EOC cells, probably related to destabilization of the MUC1 protein due to lack of GALNT3 glycosylation activity. GALNT3 knockdown was also accompanied with increase of the cell adhesion molecules β-catenin and E-cadherin, which are normally suppressed by MUC1 in cancer, thus supporting the role of the GALNT3-MUC1 axis in EOC invasion. Taken together, our data are indicative for a strong oncogenic potential of the GALNT3 gene in advanced EOC and identify this transferase as a novel EOC biomarker and putative EOC therapeutic target. Our findings also suggest that GALNT3 overexpression might contribute to EOC progression through aberrant mucin O-glycosylation.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
| | - Magdalena Bachvarova
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
| | - Chantale Morin
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
| | - Marie Plante
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Obstetrics and Gynecology, Laval University, Québec (Québec), Canada
| | - Jean Gregoire
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Obstetrics and Gynecology, Laval University, Québec (Québec), Canada
| | - Marie-Claude Renaud
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Obstetrics and Gynecology, Laval University, Québec (Québec), Canada
| | - Alexandra Sebastianelli
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Obstetrics and Gynecology, Laval University, Québec (Québec), Canada
| | - Dimcho Bachvarov
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
| |
Collapse
|
45
|
Wang ZQ, Keita M, Bachvarova M, Gobeil S, Morin C, Plante M, Gregoire J, Renaud MC, Sebastianelli A, Trinh XB, Bachvarov D. Inhibition of RUNX2 transcriptional activity blocks the proliferation, migration and invasion of epithelial ovarian carcinoma cells. PLoS One 2013; 8:e74384. [PMID: 24124450 PMCID: PMC3790792 DOI: 10.1371/journal.pone.0074384] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/31/2013] [Indexed: 01/19/2023] Open
Abstract
Previously, we have identified the RUNX2 gene as hypomethylated and overexpressed in post-chemotherapy (CT) primary cultures derived from serous epithelial ovarian cancer (EOC) patients, when compared to primary cultures derived from matched primary (prior to CT) tumors. However, we found no differences in the RUNX2 methylation in primary EOC tumors and EOC omental metastases, suggesting that DNA methylation-based epigenetic mechanisms have no impact on RUNX2 expression in advanced (metastatic) stage of the disease. Moreover, RUNX2 displayed significantly higher expression not only in metastatic tissue, but also in high-grade primary tumors and even in low malignant potential tumors. Knockdown of the RUNX2 expression in EOC cells led to a sharp decrease of cell proliferation and significantly inhibited EOC cell migration and invasion. Gene expression profiling and consecutive network and pathway analyses confirmed these findings, as various genes and pathways known previously to be implicated in ovarian tumorigenesis, including EOC tumor invasion and metastasis, were found to be downregulated upon RUNX2 suppression, while a number of pro-apoptotic genes and some EOC tumor suppressor genes were induced. Taken together, our data are indicative for a strong oncogenic potential of the RUNX2 gene in serous EOC progression and suggest that RUNX2 might be a novel EOC therapeutic target. Further studies are needed to more completely elucidate the functional implications of RUNX2 and other members of the RUNX gene family in ovarian tumorigenesis.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
| | - Mamadou Keita
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
| | - Magdalena Bachvarova
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
| | - Stephane Gobeil
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
- Centre de recherche du CHU de Québec, CHUL, Québec (Québec), Canada
| | - Chantale Morin
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
| | - Marie Plante
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Obstetrics and Gynecology, Laval University, Québec (Québec), Canada
| | - Jean Gregoire
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Obstetrics and Gynecology, Laval University, Québec (Québec), Canada
| | - Marie-Claude Renaud
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Obstetrics and Gynecology, Laval University, Québec (Québec), Canada
| | - Alexandra Sebastianelli
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Obstetrics and Gynecology, Laval University, Québec (Québec), Canada
| | - Xuan Bich Trinh
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Gynecological Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Dimcho Bachvarov
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- * E-mail:
| |
Collapse
|
46
|
Keita M, Bachvarova M, Morin C, Plante M, Gregoire J, Renaud MC, Sebastianelli A, Trinh XB, Bachvarov D. The RUNX1 transcription factor is expressed in serous epithelial ovarian carcinoma and contributes to cell proliferation, migration and invasion. Cell Cycle 2013; 12:972-86. [PMID: 23442798 DOI: 10.4161/cc.23963] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Previously, we have identified the RUNX1 gene as hypomethylated and overexpressed in post-chemotherapy (CT) primary cultures derived from epithelial ovarian cancer (EOC) patients, when compared with primary cultures derived from matched primary (prior to CT) tumors. Here we show that RUNX1 displays a trend of hypomethylation, although not significant, in omental metastases compared with primary EOC tumors. Surprisingly, RUNX1 displayed significantly higher expression not only in metastatic tissue, but also in high-grade primary tumors and even in low malignant potential tumors. The RUNX1 expression levels were almost identical in primary tumors and omental metastases, suggesting that RUNX1 hypomethylation might have a limited impact on its overexpression in advanced (metastatic) stage of the disease. Knockdown of the RUNX1 expression in EOC cells led to sharp decrease of cell proliferation and induced G 1 cell cycle arrest. Moreover, RUNX1 suppression significantly inhibited EOC cell migration and invasion. Gene expression profiling and consecutive network and pathway analyses confirmed these findings, as numerous genes and pathways known previously to be implicated in ovarian tumorigenesis, including EOC tumor invasion and metastasis, were found to be downregulated upon RUNX1 suppression, while a number of pro-apoptotic genes and some EOC tumor suppressor genes were induced. Taken together, our data are indicative for a strong oncogenic potential of the RUNX1 gene in EOC progression and suggest that RUNX1 might be a novel EOC therapeutic target. Further studies are needed to more completely elucidate the functional implications of RUNX1 and other members of the RUNX gene family in ovarian tumorigenesis.
Collapse
Affiliation(s)
- Mamadou Keita
- Department of Molecular Medicine, Laval University, Québec, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|